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Abstract

We present SpectroMotion, a novel approach that com-
bines 3D Gaussian Splatting (3DGS) with physically-based
rendering (PBR) and deformation fields to reconstruct dy-
namic specular scenes. Previous methods extending 3DGS to
model dynamic scenes have struggled to represent specular
surfaces accurately. Our method addresses this limitation
by introducing a residual correction technique for accurate
surface normal computation during deformation, comple-
mented by a deformable environment map that adapts to
time-varying lighting conditions. We implement a coarse-
to-fine training strategy significantly enhancing scene ge-
ometry and specular color prediction. It is the only ex-
isting 3DGS method capable of synthesizing photoreal-
istic real-world dynamic specular scenes, outperforming
state-of-the-art methods in rendering complex, dynamic,
and specular scenes. Please see our project page at cd-
fan0627.github.io/spectromotion.

1. Introduction

3D Gaussian Splatting (3DGS) [16] has emerged as a ground-
breaking technique in 3D scene reconstruction, offering fast
training and real-time rendering capabilities. By representing
3D scene using a collection of 3D Gaussians and employing
a point-based rendering approach, 3DGS has significantly
improved efficiency in novel view synthesis. However, ex-
tending 3DGS to model dynamic scenes, especially those
containing specular surfaces accurately, has remained a sig-
nificant challenge.

Existing extensions of 3DGS have made progress in either
dynamic scene reconstruction or specular object rendering,
but none have successfully combined both aspects. Methods
tackling dynamic scenes often struggle with accurately rep-
resenting specular surfaces, while those focusing on specular
rendering are limited to static scenes. This capability gap has
hindered the application of 3DGS to real-world scenarios
where both motion and specular reflections are present.

We present SpectroMotion, a novel approach that ad-
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Figure 1. Our method, SpectroMotion, recovers and renders
dynamic scenes with higher-quality reflections compared to
prior work. It introduces physical normal estimation, deformable
environment maps, and a coarse-to-fine training strategy to achieve
superior results in rendering dynamic scenes with reflections. Here,
we present a rendered test image, corresponding normal maps, and
a ground-truth image, where the ground-truth normal map (used as
a reference) is generated using a pre-trained normal estimator [6].
For Deformable 3DGS, we use the shortest axes of the deformed
3D Gaussians as the normals. We have highlighted the specular
regions to demonstrate the effectiveness of our approach.

dresses these limitations by combining 3D Gaussian Splat-
ting with physically based rendering (PBR) and deforma-
tion fields. Our method introduces three key innovations: a
residual correction technique for accurate surface normal
computation during deformation, a deformable environment
map that adapts to time-varying lighting conditions, and a
coarse-to-fine training strategy that significantly enhances
scene geometry and specular color prediction.

Our evaluations demonstrate that SpectroMotion outper-
forms prior methods in view synthesis of scenes containing
dynamic specular objects, as illustrated in Fig. 1. It is the
only 3DGS method capable of synthesizing photorealistic
real-world dynamic specular scenes, surpassing state-of-the-
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art techniques in rendering complex, dynamic, and specular
content. This advancement represents a significant leap in 3D
scene reconstruction, particularly for challenging scenarios
involving moving specular objects.

In summary, we make the following contributions:
• We propose SpectroMotion, a physically-based render-

ing (PBR) approach combining deformation fields and
3D Gaussian Splatting for real-world dynamic specular
scenes.

• We introduce a residual correction method for accurate
surface normals during deformation, coupled with a de-
formable environment map to handle time-varying lighting
conditions in dynamic scenes.

• We develop a coarse-to-fine training strategy enhancing
scene geometry and specular color prediction, outperform-
ing state-of-the-art methods.

2. Related Work

2.1. Dynamic Scene Reconstruction
Recent works have leveraged NeRF representations to jointly
solve for canonical space and deformation fields in dynamic
scenes using RGB supervision [4, 9, 19, 26, 27, 31, 32, 34,
39, 45, 47]. Further advancements in dynamic neural ren-
dering include object segmentation [36], incorporation of
depth information [1], utilization of 2D CNNs for scene pri-
ors [24, 33], and multi-view video compression [18]. How-
ever, these NeRF-based methods are computationally inten-
sive, limiting their practical applications. To address this,
3D Gaussian Splatting [16] has emerged as a promising
alternative, offering real-time rendering capabilities while
maintaining high visual quality. Building upon this efficient
representation, recent research has adapted 3D Gaussians
for dynamic scenes [11, 22, 29, 38, 44, 46, 49]. Neverthe-
less, these approaches do not explicitly account for changes
in surface normal during the dynamic process. Our work
extends this line of research by combining specular object
rendering based on normal estimation with a deformation
field, enabling each 3D Gaussian to model dynamic specular
scenes effectively.

2.2. Reflective Object Rendering
While significant progress has been made in rendering re-
flective objects, challenges from complex light interactions
persist. Recent years have seen numerous studies address-
ing these issues, primarily by decomposing appearance into
lighting and material properties [2, 3, 17, 30, 37, 41, 54–56].
Building on this foundation, some research has focused on
improving the capture and reproduction of specular reflec-
tions [28, 40, 42, 51]. In contrast, others have leveraged
signed distance functions (SDFs) to enhance normal esti-
mation [8, 20, 21, 25, 53]. The emergence of 3D Gaussian
Splatting (3DGS) has sparked a new wave of techniques

[7, 12, 23, 35, 50, 57] that integrate Gaussian splatting with
physically-based rendering. Nevertheless, accurately mod-
eling dynamic environments and time-varying specular re-
flections remains a significant challenge. To address this
limitation, our work introduces a novel approach incorporat-
ing a deformable environment map and additional explicit
Gaussian attributes specifically designed to capture specular
color changes over time.

3. Method
Overview of the approach. The overview of our method
is illustrated in Fig. 2. Given an input monocular video
sequence of frames and corresponding camera poses, we
design a three-stage approach to reconstruct the dynamic
specular scene, as detailed in Sec. 3.2. Accurate specular
reflection requires precise normal estimation, so Sec. 3.3
elaborates on how we estimate normals in dynamic scenes.
Finally, we introduce the losses used throughout the training
process in Sec. 3.4.

3.1. Preliminary

3D Gaussian Splatting. Each 3D Gaussian is defined by
a center position x ∈ R3 and a covariance matrix Σ. 3D
Gaussian Splatting [16] optimizes the covariance matrix
using scaling factors s ∈ R3 and rotation unit quaternion r ∈
R4. For novel-view rendering, 3D Gaussians are projected
onto 2D camera planes using differentiable splatting [52]:

Σ′=JWΣWTJT . (1)

Pixel colors are computed using point-based volumetric ren-
dering:

C =
∑
i∈N

Tiαici, αi = σie
− 1

2 (x)
TΣ′(x), (2)

where Ti =
∏i−1

j=1(1 − αj) is the transmittance, σi is the
opacity, and ci is the color of each 3D Gaussian.

3.2. Specular Rendering
Since accurate reflections depend heavily on precise geome-
try, we implement a three-stage coarse-to-fine training strat-
egy: static, dynamic, and specular stages. This approach
ensures both stable scene geometry and accurate specular
rendering.

3.2.1. Coarse-to-Fine Training Strategy
Static stage. In the static stage, we employ vanilla
3DGS [16] for static scene reconstruction to stabilize the
geometry of the static scene. Specifically, we optimize the
position x, scaling s, rotation r, opacity α, and coefficients
of spherical harmonics (SH) of the 3D Gaussians by mini-
mizing the photometric loss Lcolor identical to 3DGS [16].
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Figure 2. Method Overview. Our method stabilizes the scene geometry through three stages. In the static stage, we stabilize the geometry of
the static scene by minimizing photometric loss Lcolor between vanilla 3DGS renders and ground truth images. The dynamic stage combines
canonical 3D Gaussians G with a deformable Gaussian MLP to model dynamic scenes while simultaneously minimizing normal loss Lnormal

between rendered normal map Nt and gradient normal map from depth map Dt, thus further enhancing the overall scene geometry. Finally,
the specular stage introduces a deformable reflection MLP to handle changing environment lighting, deforming reflection directions ωt

r to
query a canonical environment map for specular color cts. It is then combined with diffuse color cd (using zero-order spherical harmonics)
and learnable specular tint stint per 3D Gaussian to obtain the final color ctfinal. This approach enables the modeling of dynamic specular
scenes and high-quality novel view rendering.

Dynamic stage. Following the static stage, we address dy-
namic objects using Deformable 3DGS [49]. For each 3D
Gaussian in canonical 3D Gaussians G, we input its position
x and time t into a deformable Gaussian MLP with param-
eters θG to predict position, rotation, and scaling residuals:
(∆xt,∆rt,∆st) = FθG(γ(x), γ(t)), where γ denotes posi-
tional encoding. Attributes of the corresponding 3D Gaus-
sian in deformed 3D Gaussians Gt at time t is obtained by
(xt, rt, st) = (∆xt,∆rt,∆st) + (x, r, s).

This approach separates motion and geometric structural
learning, allowing accurate simulation of dynamic behaviors
while maintaining a stable geometric reference. To further
enhance scene geometry, we estimate normals of deformed
3D Gaussians and optimize them using:

Lnormal = 1−Nt · N̂t, (3)

where Nt is the rendered normal map and N̂t is the normal
map derived from the rendered depth map Dt. This process
improves local associations among 3D Gaussians and opti-

mizes both depth and normal information across the entire
scene.
Specular stage. We adopt an image-based lighting (IBL)
model, where the environment light is given by a learn-
able cubemap. Following the rendering equation [14], split-
sum approximation [15, 30], and Cook-Torrance reflectance
model [5], the outgoing radiance of the specular component
Ls is expressed as:

Ls =

∫
Ω

DGF

4(ωt
o · nt)(ωi · nt)

(ωi · nt)dωi

×
∫
Ω

Li(ωi)D(ωi, ω
t
o)(ωi · nt)dωi, (4)

where Ω is the hemisphere around the surface normal nt (de-
scribe in Sec. 3.3.) D, G, and F represent the GGX normal
distribution function [43], geometric attenuation, and Fres-
nel term, respectively. ωt

o is the view direction, and Li(ωi)
is the incident radiance. In the first term, we follow the
GaussianShader [13] directly computed by stint ∗ F1 + F2,
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where F1 and F2 are two pre-computed scalars depending
on roughness ρ, view direction ωt

o and normal nt. Rough-
ness ρ ∈ [0, 1] and specular tint stint ∈ [0, 1]3 are learn-
able parameters for each 3D Gaussian. The second term is
pre-integrated in a filtered learnable cubemap, where each
mip-level corresponds to a specific roughness value. The
cubemap can be queried using the reflection direction to
obtain the value of the second term. After the static and dy-
namic stages, the geometry is well-defined. This allows us
to calculate reflection directions ωt

r = 2(ωt
o · nt)nt − ωt

o

accurately.
Ls represents only the specular color of the static envi-

ronment light. To handle time-varying lighting in dynamic
scenes, we introduce a deformable environment map, de-
tailed in the following section.

3.2.2. Deformable Environment Map for Dynamic Light-
ing.

The concept of a deformable environment map involves
treating the vanilla environment cubemap as a canonical en-
vironment map and combining it with a deformation field.
This approach enables us to model time-varying lighting con-
ditions effectively. We first apply positional encoding to the
reflection direction ωt

r and time t to implement this. These
encoded values are then input into a deformable reflection
MLP with parameters θR. This process allows us to obtain
the deformed reflection residual ∆ω̄t

r = FθR(γ(ω
t
r), γ(t))

for each specified time t.
Subsequently, we add the deformed reflection residual

∆ω̄t
r to the reflection direction ωt

r, yielding the deformed
reflection direction ω̄t

r = ∆ω̄t
r + ωt

r.
We can then use this deformed reflection direction ω̄t

r to
query the canonical environment map. The queried value
is then multiplied by the first term of Equation 4, allowing
us to obtain time-varying specular color cts. This approach
effectively captures the dynamic nature of lighting in the
scene while maintaining a stable canonical reference.

3.2.3. Color Decomposition and Staged Training Strat-
egy.

We decompose the final color ctfinal into diffuse and specu-
lar components to better distinguish between high and low-
frequency information: ctfinal = cd + cts, where cd is the
diffuse color (using zero-order spherical harmonics as view-
independent color), and cs

t is the view-dependent color com-
ponent. To manage the transition from spherical harmonics
to ctfinal and mitigate potential geometry disruptions, in the
early specular stage, we fix the deformable Gaussian MLP
and most 3D Gaussian attributes, optimizing only zero-order
SH, specular tint, and roughness. We temporarily suspend
densification during this phase. As ctfinal becomes more com-
plete, we gradually resume optimization of all parameters
and reinstate the densification process.

We further split the specular stage into two parts, applying

a coarse-to-fine strategy to the environment map. In the first
part, we focus on optimizing the canonical environment
map for time-invariant lighting. This establishes a stable
foundation for the overall lighting structure. In the second
part, we proceed to optimize the deformable reflection MLP
for dynamic elements. This approach ensures a more robust
learning process, allowing us to capture the static lighting
conditions before introducing the complexities of dynamic
components.

3.3. Physical Normal Estimation
Challenges in normal estimation for 3D Gaussians. Nor-
mal estimation is essential for modeling specular objects
in 3D Gaussians, where GaussianShader [12] initially used
the shortest axis combined with a residual normal for ap-
proximation. While this works for static scenes, it becomes
problematic with deformed Gaussians because the residual
should vary at each time step. A straightforward approach of
rotating the residual normal based on quaternion differences
between canonical and deformed states proves insufficient,
as it does not account for shape changes during deforma-
tion. When deformation alters the relative axis lengths, the
shortest axis assumption breaks down. This highlights the
need for a more comprehensive approach that considers both
rotational and shape deformation effects to achieve accurate
normal estimation for dynamic specular objects.
Improved rotation calculation for deformed 3D Gaus-
sians. To overcome the limitations of naive methods and
accurately model the normal of deformed 3D Gaussians, we
propose using both the shortest and longest axes of canoni-
cal and deformed Gaussians to compute the rotation matrix.
This approach accounts for both rotation and shape changes
during deformation. We first align the deformed Gaussian’s
axes with those of the canonical Gaussian using the follow-
ing method:

vt
s =

{
vt
s if vs · vt

s > 0,

−vt
s otherwise.

, vt
l =

{
vt
l if vl · vt

l > 0,

−vt
l otherwise.

,

(5)

where vs and vl represent the shortest and longest axes of
canonical 3D Gaussians, while vt

s and vt
l denote the same

for deformed 3D Gaussians. We then construct orthogonal
matrices using these aligned axes and their cross-products:

U =
[
vs vl vs × vl

]
, Vt =

[
vt
s vt

l vt
s × vt

l

]
.

(6)
Finally, we derive the rotation matrix Rt = VtU⊤.

Adjusting normal residuals and ensuring accuracy. To
account for shape changes during deformation, we scale the
normal residual based on the ratio of oblateness β

βt between
canonical and deformed 3D Gaussians.

β =
|vl| − |vs|

|vl|
, βt =

|vt
l | − |vt

s|
|vt

l |
, (7)
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Figure 3. Normal estimation. (a) shows that flatter 3D Gaussians align better with scene surfaces, their shortest axis closely matching the
surface normal. In contrast, less flat 3D Gaussians fit less accurately, with their shortest axis diverging from the surface normal. (b) shows
that when the deformed 3D Gaussian becomes flatter (t = t1), normal residual ∆n is rotated by Rt

1 and scaled down by β
βt
1

, as flatter

Gaussians require smaller normal residuals. Conversely, when the deformation results in a less flat shape (t = t2), ∆n is rotated by Rt
2

and amplified by β
βt
2

, requiring a larger correction to align the shortest axis with the surface normal. (c) shows how γk changes with w

(where w =
|vt

s|
|vt

l
| ) for k = 1, k = 5, and k = 50. Larger w indicates less flat Gaussians, while smaller w represents flatter Gaussians. As k

increases, γk decreases more steeply as w rises. For k = 5, we observe a balanced behavior: γk approaches 1 for low w and 0 for high w,
providing a nuanced penalty adjustment across different Gaussian shapes.

where β and βt represent the oblateness of canonical and de-
formed 3D Gaussians, respectively. This is because flatter 3D
Gaussians tend to align more closely with the surface, mean-
ing their shortest axis becomes more aligned with the surface
normal, as shown in Fig. 3 (a). In such cases, less compensa-
tion from the normal residual is needed. Conversely, less flat
Gaussians require more compensation, as illustrated in Fig.
3 (b). We then obtain deformed normal residuals:

∆nt =
β

βt
Rt∆n. (8)

The final normal nt is computed by adding this residual to
the shortest axis and ensuring outward orientation:

nt = ∆nt + vt
s, nt =

{
nt if nt · ωt

o > 0,

−nt otherwise.
(9)

This approach adjusts for Gaussian flatness and ensures ac-
curate normal estimation.

3.4. Loss Functions
Normal regularization. To allow the normal residual to
correct the normal while not excessively influencing the
optimization of the shortest axis towards the surface normal,
we introduce a penalty term for the normal residual:

Lreg = γk∥∆n∥22 where γ =

√
1− |vt

s|2
|vt

l |2
. (10)

In our experiments, we set k = 5. When k = 5, less flatter
3D Gaussians have γk approaching 0. Their shortest axis
aligns poorly with the surface normal, requiring more nor-
mal residual correction and smaller penalties. Conversely,
flatter Gaussians have γk near 1. Their shortest axis aligns
better with the surface normal, needing less normal residual

correction and allowing larger penalties, as shown in Fig. 3
(c).
Total training loss. To refine all parameters in the dynamic
and specular stages, we employ the total training loss:

L = Lcolor + λnormalLnormal + Lreg, (11)

where Lcolor and Lnormal are obtained as described in Sec-
tion 3.2.1. In our experiments, we set λnormal = 0.01. Due
to space constraints, complete implementation details are
provided in the supplementary materials.

4. Experiments
4.1. Evaluation Results
We evaluate our method on two real-world datasets: NeRF-
DS dataset [48] and HyperNeRF dataset [32]. While Gaus-
sianShader [12] and GS-IR [23] are originally designed for
static scenes and are included here only as reference base-
lines, we train our method and all baseline approaches for
40,000 iterations to ensure fair comparison.
NeRF-DS dataset. The NeRF-DS dataset [48] is a monocu-
lar video dataset comprising seven real-world scenes from
daily life featuring various types of moving or deforming
specular objects. We compare our method with the most rele-
vant state-of-the-art approaches. As shown in Tab. 1 and Fig.
4, the quantitative results demonstrate that our method deci-
sively outperforms baselines in reconstructing and rendering
real-world highly reflective dynamic specular scenes.

The rendering speed is correlated with the quantity of
3D Gaussians. When the number of 3D Gaussians is below
178k, our method can achieve real-time rendering over 30
FPS on an NVIDIA RTX 4090.
HyperNeRF dataset. The HyperNeRF dataset contains real-
world dynamic scenes and does not include specular objects.
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Table 1. Quantitative comparison on the NeRF-DS [48] dataset. We report the average PSNR, SSIM, and LPIPS (VGG) of several
previous models on test images. The best , the second best , and third best results are denoted by red, orange, yellow.

As Basin Bell Cup

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Deformable 3DGS [49] 26.04 0.8805 0.1850 19.53 0.7855 0.1924 23.96 0.7945 0.2767 24.49 0.8822 0.1658
4DGS [46] 24.85 0.8632 0.2038 19.26 0.7670 0.2196 22.86 0.8015 0.2061 23.82 0.8695 0.1792
GaussianShader [12] 21.89 0.7739 0.3620 17.79 0.6670 0.4187 20.69 0.8169 0.3024 20.40 0.7437 0.3385
GS-IR [23] 21.58 0.8033 0.3033 18.06 0.7248 0.3135 20.66 0.7829 0.2603 20.34 0.8193 0.2719
NeRF-DS [48] 25.34 0.8803 0.2150 20.23 0.8053 0.2508 22.57 0.7811 0.2921 24.51 0.8802 0.1707
HyperNeRF [32] 17.59 0.8518 0.2390 22.58 0.8156 0.2497 19.80 0.7650 0.2999 15.45 0.8295 0.2302
Ours 26.80 0.8843 0.1761 19.75 0.7915 0.1896 25.46 0.8490 0.1600 24.65 0.8871 0.1588

Plate Press Sieve Mean

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Deformable 3DGS [49] 19.07 0.7352 0.3599 25.52 0.8594 0.1964 25.37 0.8616 0.1643 23.43 0.8284 0.2201
4DGS [46] 18.77 0.7709 0.2721 24.82 0.8355 0.2255 25.16 0.8566 0.1745 22.79 0.8235 0.2115
GaussianShader [12] 14.55 0.6423 0.4955 19.97 0.7244 0.4507 22.58 0.7862 0.3057 19.70 0.7363 0.3819
GS-IR [23] 15.98 0.6969 0.4200 22.28 0.8088 0.3067 22.84 0.8212 0.2236 20.25 0.7796 0.2999
NeRF-DS [48] 19.70 0.7813 0.2974 25.35 0.8703 0.2552 24.99 0.8705 0.2001 23.24 0.8384 0.2402
HyperNeRF [32] 21.22 0.7829 0.3166 16.54 0.8200 0.2810 19.92 0.8521 0.2142 19.01 0.8167 0.2615
Ours 20.84 0.8172 0.2198 26.49 0.8657 0.1889 25.22 0.8705 0.1513 24.17 0.8522 0.1778

NeRF-DSGaussianShader GS-IRDeformable 3DGS 4DGSOursGround truth

A
s

B
as

in
Pl

at
e

HyperNeRF

Figure 4. Qualitative comparison on the NeRF-DS [48] dataset.

Table 2. Quantitative comparison on the HyperNeRF [32]
dataset. We report the average PSNR, SSIM, and LPIPS (VGG)
of several previous models. The best , the second best , and
third best results are denoted by red, orange, yellow.

Method PSNR ↑ SSIM ↑ LPIPS ↓

Deformable 3DGS [49] 22.78 0.6201 0.3380
4DGS [46] 24.89 0.6781 0.3422
GaussianShader [12] 18.55 0.5452 0.4795
GS-IR [23] 19.87 0.5729 0.4498
NeRF-DS [48] 23.65 0.6405 0.3972
HyperNeRF [32] 23.11 0.6387 0.3968
Ours 22.22 0.6088 0.3295

As shown in Tab. 2 and Fig. 5, the results demonstrate that
we are on par with state-of-the-art techniques for rendering
novel views, and our method’s performance is not limited to

shiny scenes.
In Fig. 6, we compare our method’s normal maps with

those from Deformable 3DGS [49] and NeRF-DS [48]. For
Deformable 3DGS [49], we obtain the normals by using
the shortest axes of the deformed 3D Gaussians. As demon-
strated, our method produces significantly better quality nor-
mal maps compared to Deformable 3DGS [49] and NeRF-
DS [48].

4.2. Ablation Study
For a fair comparison, we train our method and all ablation
experiments for 40,000 iterations.
Different coarse to fine training strategy stages. As shown
in Tab. 3 and Fig. 7, each stage contributes effectively to the
model’s performance. The Dynamic stage enhances dynamic
object stability compared to the Static stage alone, while
the Specular stage improves reflection clarity beyond the
combined Static and Dynamic stages.
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Figure 5. Qualitative comparison on the HyperNeRF [32] dataset.

Deformable 3DGSOursGround truth

Pr
es

s
Pl

at
e

NeRF-DS

Figure 6. Qualitative comparison of normal maps between our
method, Deformable 3DGS, and NeRF-DS.

Table 3. Ablation studies on different coarse to fine training
strategy stages.

Stage PSNR ↑ SSIM ↑ LPIPS ↓

Static 20.26 0.7785 0.2953
St. + Dynamic 24.02 0.8508 0.1831
St. + Dy. + Specular 24.17 0.8522 0.1778

Static Static + Dynamic

Static + Dynamic + Specular Ground-truth

Figure 7. Qualitative comparison of each training stage in our
coarse-to-fine approach.

Ablation study on coarse-to-fine, and loss function. The
model’s performance was evaluated without key components:
the coarse-to-fine training strategy, normal loss Lnormal, nor-
mal regularization Lreg, and γk. Fig. 8 and Tab. 4 illustrate
the effects of these omissions. Without the coarse-to-fine

Table 4. Ablation studies on different coarse to fine training
strategy stages.

C2F Lnormal Lreg γk PSNR↑ SSIM↑ LPIPS↓

✓ ✓ ✓ 23.16 0.8294 0.2156
✓ 23.40 0.8277 0.2278
✓ ✓ 24.15 0.8510 0.1845
✓ ✓ ✓ 24.09 0.8515 0.1818
✓ ✓ ✓ ✓ 24.17 0.8522 0.1778

Table 5. Ablation studies on SH, Static and Deformable environ-
ment map.

PSNR ↑ SSIM ↑ LPIPS ↓

SH 23.63 0.8453 0.1844
Static Env. map 24.02 0.8508 0.1831
Deformable Env. map 24.17 0.8522 0.1778

approach, the model, trained directly at the specular stage,
produces incomplete scene geometry, affecting environment
map queries for specular color. Omitting normal loss Lnormal
removes direct supervision on normals and leads to inac-
curate reflection directions and less precise specular col-
ors. Removing normal regularization Lreg allows the normal
residual to dominate normal optimization, resulting in in-
sufficient optimization of the 3D Gaussians’ shortest axis
towards the correct normal, which in turn reduces the render-
ing quality. The normal residual decreases for non-flattened
and flat Gaussians without γk in normal regularization. This
particularly affects less flat 3D Gaussians whose shortest axis
significantly deviates from the surface normal. The insuffi-
cient normal residual correction causes these 3D Gaussians’
shortest axes to deviate greatly from their original direction
in an attempt to align with the surface normal, ultimately
reducing rendering quality.

Ablation study on SH, Static environment map, and De-
formable environment map. Fig. 9 and Tab. 5 demonstrate
the superiority of the deformable environment map over the
static environment map, which in turn outperforms Spherical
Harmonics (SH). SH struggles to accurately model high-
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Full model

w/o Coarse-to-fine w/o ℒ!"#$%& w/o ℒ#'( w/o 𝛾)

Full model Full model Full model

Figure 8. Qualitative comparison of ablation study without different components.

Static Env. map

Deformable Env. map (Full model) 

Spherical Harmonics (SH)

Ground-truth

Figure 9. Qualitative comparison of ablation study on SH, Static
environment map, and Deformable environment map.

Table 6. Ablation studies on 2DGS and without Physical Normal
Estimation.

PSNR ↑ SSIM ↑ LPIPS ↓

2DGS [10] 23.22 0.8219 0.2283
w/o N.E. 23.89 0.8490 0.1837
Full model 24.17 0.8522 0.1778

frequency specular colors. While the static environment map
can model high-frequency colors, it is best suited for static
lighting conditions. In contrast, the deformable environment
map models time-varying lighting, offering superior perfor-
mance for dynamic scenes.

Ablation study on 2DGS [10] and without Physical Nor-
mal Estimation. In Fig. 10 and Tab. 6, ”2DGS” represents
replacing our 3D Gaussian with 2D Gaussian representation.
Since 2DGS inherently includes normals, we omit physical
normal estimation. ”w/o N.E.” means skipping physical nor-

Full model

2DGS w/o N.E.

Full model

Figure 10. Qualitative comparison of ablation study on 2DGS
and without Physical Normal Estimation.

mal estimation and using the shortest axis of 3D Gaussians
as the normal. This causes the normal loss Lnormal to directly
supervise the shortest axes, making some axes deviate signif-
icantly to align with surface normals, resulting in degraded
rendering quality.

5. Conclusion
SpectroMotion enhances 3D Gaussian Splatting for dynamic
specular scenes by combining specular rendering with defor-
mation fields. Using normal residual correction, coarse-to-
fine training, and a deformable environment map, it achieves
superior accuracy and visual quality in novel view synthesis,
outperforming existing methods while maintaining geomet-
ric consistency.

Limitations. Though we stabilize the entire scene’s geome-
try using a coarse-to-fine training strategy, some failure cases
still occur. Please refer to the supplementary materials for
visual results of failure cases.
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