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Abstract

Motion expression video segmentation aims to segment ob-
jects based on input motion descriptions. Compared with
traditional referring video object segmentation, it focuses
on motion and multi-object expressions and is more chal-
lenging. Previous works achieved it by simply injecting
text information into the video instance segmentation (VIS)
model. However, this requires retraining the entire model
and optimization is difficult. In this work, we propose
DMVS, a simple framework constructed on the existing
query-based VIS model, emphasizing decoupling the task
into video instance segmentation and motion expression un-
derstanding. Firstly, we use a frozen video instance seg-
menter to extract object-specific contexts and convert them
into frame-level and video-level queries. Secondly, we in-
teract two levels of queries with static and motion cues, re-
spectively, to further encode visually enhanced motion ex-
pressions. Furthermore, we propose a novel query initial-
ization strategy that uses video queries guided by classifica-
tion priors to initialize motion queries, greatly reducing the
difficulty of optimization. Without bells and whistles, DMVS
achieves state-of-the-art performance on the MeViS dataset
at a lower training cost. Extensive experiments verify the
effectiveness and efficiency of our framework.

1. Introduction
Referring Video Object Segmentation (RVOS) is a multi-
modal video task, which aims to segment the target object
that is specified by a provided language description across
the entire video. Existing RVOS datasets [15, 21, 38] typi-
cally consist of videos where the objects are salient and pos-
sess distinct and unchanging features. Therefore, referring
image segmentation methods [1, 9, 21, 25] can achieve good
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Figure 1. Comparisons of previous framework and our DMVS
framework. (a) Previous methods inject textual information into
the video instance segmenter, which required retraining the over-
all framework. (b) Our DMVS decouples the task into video in-
stance segmentation and motion expression understanding, video
instance segmenter freezes during the training process.

results on these datasets. To alleviate this limitation, Mo-
tion Expression Video Segmentation (MEVS) is recently
proposed [10], which highlights the importance of the tem-
poral motion characteristics of videos. The new dataset for
the task, MeViS [10], contains a large number of motion
expressions to indicate objects in intricate environments,
and one expression may refer to multiple target objects.
The current methods [2, 11, 38, 44] designed for traditional
RVOS datasets encounter significant performance degrada-
tion.

Due to the multi-object and inter-frame motion correla-
tion features of the dataset, researchers attempted to inject
textual information into the video instance segmentation
(VIS) model to address this new task, as shown in Fig. 1 (a).
The VIS task aims to simultaneously detect, segment, and
track all object instances in videos [48]. A major challenge
in MEVS is the precise capture and alignment of cross-
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temporal motion, therefore offline VIS methods [7, 19, 41]
are mainly favored. LMPM [10] use language queries in-
stead of conventional object queries and selects matching
object trajectories through threshold, simply converting the
VIS model VITA [19] to the MEVS model. Also based
on VITA, DsHmp [18] employs Mask2Former [8] to seg-
ment possible objects according to static cues, and then de-
signs modules to use motion cues to segment specified ob-
jects. However, this framework has several intrinsic issues.
Mask2Fomer is expected to use static cues to segment as
many candidates as possible, but we do not have the ground
truth for all objects specified by static cues. For example,
DsHmp trains Mask2Former to first find all the birds, but in
reality, only the bird that flies away is supervised. This is
inconsistent with the author’s motivation to decouple refer-
ring video segmentation into static perception and motion
perception. In addition, training the entire framework from
scratch also leads to higher computational costs. As a result,
the question arises: How to truly decouple motion expres-
sion video segmentation?

In this work, we introduce Decoupled Motion Expres-
sion Video Segmentation (DMVS), a simple framework
constructed on the existing query-based VIS model, em-
phasizing decoupling the task into video instance segmen-
tation and motion expression understanding. As shown in
Fig. 1 (b), it first uses frozen video instance segmenter to
track and segment all candidates, and then recognizes the
specified object based on the motion expression, requir-
ing only training the DMVS module with fewer parame-
ters. Firstly, we fully utilize object representation output by
the VIS model to design our DMVS module. As with pre-
vious works [10, 18], we choose VITA [19] as our video
instance segmenter, which accomplishes video-level under-
standing by associating frame-level object queries. Through
VITA, we obtain frame queries that independently represent
the object information of each frame and video queries that
uniformly represent the entire video. Therefore, we con-
duct motion expression understanding by associating video
queries and frame queries without using spatio-temporal
backbone features.

To further encode visually enhanced text information, we
propose motion expression encoder module. Inspired by
DsHmp [18], we decouple motion expressions to static cues
and motion cues. The object categories of frame queries
mainly come from the category set defined by the VIS
dataset. Frame queries interact with static cues to focus on
potential candidates of a specified category. Video queries
uniformly represent the target object of the entire video clip,
including the overall contextual information of the video
scene. Video queries interact with motion cues to focus
on the target of a specific motion in a category indepen-
dent manner. The fusion of sentence embedding with frame
queries for static perception and video queries for motion

perception completes the final encoding of text information.
Due to the lack of additional information, the object

queries are mainly initialized randomly in the VIS model.
In RVOS, ReferFormer [44] first regards the language in-
formation as a set of queries, so subsequent RVOS meth-
ods also follow this paradigm. However, regardless of the
method, there is a certain degree of optimization difficulty
because there is a significant gap from the final decoded out-
put queries. In an ideal scenario, RVOS essentially selects
VIS output based on textual information. Naturally, we pro-
pose using video queries to initialize motion queries. We
select object queries based on the classification score Top K
to eliminate the interference of background queries. Finally,
motion queries are interactively decoded with enhanced text
features to generate masks and classification results.

The contributions can be summarized as follows:
• We propose DMVS, a simple yet effective framework

constructed on the existing query-based VIS model, em-
phasizing decoupling motion expression video segmenta-
tion into video instance segmentation and motion expres-
sion understanding.

• We suggest interacting two levels of queries with static
and motion cues, respectively, to further encode visually
enhanced motion expressions. We propose a novel query
initialization strategy that uses video queries guided by
classification priors to initialize motion queries, greatly
reducing the difficulty of optimization.

• We conduct experiments on the recently released MeViS
dataset, and our methods demonstrate significant superi-
ority over the existing methods. Meanwhile, extensive ab-
lation validates the methods effectiveness and efficiency.

2. Related Work
Video Instance Segmentation. The VIS task is designed to
detect, segment, and track all object instances within videos
concurrently [48]. Generally speaking, the existing VIS
techniques can be categorized into two main types: online
and offline methods. Online methods [13, 20, 24, 45, 48, 50]
handle video instance segmentation frame by frame. They
then implement post-processing procedures to explicitly es-
tablish the association of instances across different frames.
As an illustration, MinVIS [20] and IDOL [45] utilize
distinctive instance queries to achieve matching between
frames. On the contrary, offline methods [7, 14, 19, 41, 43,
53, 54] accept a video clip as the input and produce a se-
quence of instances in an end-to-end manner. For example,
Seqformer [43] and VITA [19] first localize the instances in
every single frame and subsequently learn a highly effective
representation of video-level instance queries.
Referring Video Object Segmentation. The RVOS task
aims to segment the target object that is specified by a
provided language description across the entire video [15].
The current methods can be divided into two types: multi-
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Figure 2. The overall framework of DMVS. We decouple motion expression video segmentation into video instance segmentation and
motion expression understanding. We first use frozen VITA as a video instance segmenter to identify, segment, and track all objects. Then
based on the frame queries Qf and video queries Qv generated by VITA, a Motion Expression Encoder is employed to interact with motion
cues Fm and static cues Fs to generate visual information enhanced motion expression features Fme. Finally, we use video queries guided
by classification priors to initialize motion queries Qm, and then use Motion Query Decoder to decode layer by layer for target object
recognition and mask predictions.

stage and one-stage methods. The multi-stage methods [1,
21, 23, 38] handle each frame of the video clip indepen-
dently using an image-level model [4–6]. In URVOS [38],
the process starts with an initial mask prediction carried
out by an image-level model. Subsequently, the mask is
propagated across frames via semi-supervised VOS meth-
ods [12, 16, 30, 35]. Inspired by DETR [3], one-stage meth-
ods [2, 31, 44, 47] of Transformer [40] structure have been
extensively proposed. Compared to rely on complicated
pipelines, MTTR[2] and Referformer[44] initially formu-
late the task as a sequence prediction problem by an end-to-
end framework, which significantly streamlines the overall
pipeline. SOC[31] and MUTR[47] attain remarkable per-
formance by effectively aggregating both the information
within a single frame and between different frames.
Motion Expressions Video Segmentation. Compared to
traditional RVOS task, this task focuses on segmenting
objects according to motion description of the objects in
video. Most existing RVOS benchmarks, including Ref-
YouTube-VOS [38] and Ref-DAVIS 2017 [21], primar-
ily focus on single salient objects and static attributes.
MeViS [10] is a new large-scale video dataset, ontains
a large number of motion expressions to indicate objects
in intricate environments, and one expression may refer
to multiple target objects. The current RVOS methods
have encountered significant difficulties, and researchers
are trying to draw on the VIS model to address this new
task. LMPM [10] replaces randomly initialized queries with
language-conditional queries and selects matching object

trajectories through threshold, simply converting the VIS
model VITA [19] to RVOS model. Based on LMPM [10],
DsHmp [18] decouples static and hierarchical motion per-
ception and employs contrastive learning to differentiate the
motions of objects that appear visually alike.

3. Method

In this section, we first give a brief overview of VITA [19],
a video instance segmenter for DMVS. Then, we introduce
the architecture of our proposed DMVS, which is built on
top of VITA, as shown in Fig. 2.

3.1. Video Instance Segmenter
In this paper, we adopt VITA [19] for the video instance
segmenter, which is an offline VIS method that is con-
structed upon an existing Transformer-based image instance
segmentation model. VITA achieves a comprehensive un-
derstanding at the video level by establishing associations
among the object tokens at the frame level. Given an
input video of T frames of resolution H × W , VITA
first uses Mask2Former [8] to process each frame in a
complete frame-independent manner, generating 1) frame
queries Qf ∈ RT×Nf×C which hold object-centric infor-
mation, where Nf is the number of object queries and C
is the number of channels; and 2) mask features Fmask ∈
RT×H

S ×W
S ×C from the pixel decoder, where S is the stride

of the feature map. Then, Object Encoder builds tempo-
ral communication on frame queries by employing self-
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attention along the temporal axis. Finally, Object Decoder
aggregates information from frame queries Qf to video
queries Qv ∈ RNv×C , which are eventually used for pre-
dicting categories and masks of objects in videos at once.

3.2. DMVS

We now propose the novel motion expression video seg-
mentation method DMVS, which can be largely divided
into three phases ( Fig. 2). We first use frozen VITA as
a video instance segmenter to identify, segment, and track
all objects. Then based on the frame queries Qf and video
queries Qv generated by VITA, a Motion Expression En-
coder is employed to interact with motion cues Fm and
static cues Fs to generate visual information enhanced mo-
tion expression features Fme. We use video queries guided
by classification priors to initialize motion queries Qm, and
then use Motion Query Decoder to decode motion queries
layer by layer. Finally, the predicted masks are obtained by
multiplying motion queries Qm and mask features Fmask,
and these with class scores higher than a threshold are se-
lected as output.
Motion Expression Encoder. Extensive referring
works [26, 46] have confirmed that the interaction between
text and visual features before query decoding can help en-
hance the information of each mode. We believe that frame
queries and video queries can provide sufficient object-
specific visual information without interacting with dense
backbone features, as RVOS methods did before. There-
fore, the challenge now is how to integrate object queries of
the two levels with the text information.

Frame queries independently represent all the objects
of each frame, and static information is required to deter-
mine the object category. Video queries integrate global
context information, which is more suitable for interaction
with motion information across time domain. Inspired by
DsHmp [18], we introduce a decoupling of the given ex-
pression into static and motion words, serve as cues for
static perception of frame queries and motion perception of
video queries.

As shown in Fig. 2, given the sentence Cat turning
around and playing with toy, we first use text encoder [27]
to extract word features Fw ∈ RKw×C , where Kw repre-
sents the longest word number of sentences in the dataset.
We employ text decoupler [37] to detect adjectives, prepo-
sitions and nouns within the sentence, obtaining static cues
such as cat, toy. At the same time, we draw out adverbs
and verbs, obtaining motion cues like turning around, play-
ing with. Consequently, we obtain static word features as
Fs ∈ RKs×C and motion word features as Fm ∈ RKm×C

, where Ks and Km denote the lengths of static words
and motion words respectively. And we also acquire the
sentence-level feature Fse ∈ RC through the operation of
pooling the features of every single word.

We first use decoupled static cues and motion cues to en-
hance the object queries respectively. Specifically, we em-
ploy cross-attention to inject static cues into frame queries:

Q′
f = Qf + softmax

(
QfF

T
s√

C

)
Fs, (1)

where Q′
f ∈ RT×Nf×C is frame queries enhanced by static

cues. Similarly, we employ cross-attention to inject motion
cues into video queries:

Q′
v = Qv + softmax

(
QvF

T
m√

C

)
Fm, (2)

where Q′
v ∈ RNv×C is video queries enhanced by motion

cues. Dshmp [18] only allows static cues and motion cues to
interact with object queries when they are initialized at the
beginning. The randomly initialized queries do not contain
any object cues and cannot extract valid text information. In
essence, it relies on the combination of all text features in
the decoding stage to establish modal associations. We use
frame and video queries that already contain all object in-
formation to fuse with static and motion cues, respectively,
fully leveraging the important role of decoupled text fea-
tures.

Next, we use object queries containing specific cues to
enhance sentence-level feature. Specifically, we use serial
cross-attention to gradually encode sentence embedding:

F ′
se = Fse + softmax

(
FseQ

′
f
T

√
C

)
Q′

f , (3)

Fme = F ′
se + softmax

(
F ′
seQ

′
v
T

√
C

)
Q′

v, (4)

where F ′
se ∈ RC is a sentence embedding that integrates

frame-level static object information. Fme ∈ RC is a sen-
tence embedding that integrates video-level motion object
information, and it is also the final encoded motion expres-
sion used in the subsequent decoding process.
Motion Query Decoder. The premise of Motion Query
Decoder is to initialize the motion query. Due to the lack
of additional information, the object queries are mainly ini-
tialized randomly in the VIS model:

Qm ∼ N (0, 1), (5)

where Qm ∈ RNm×C is motion queries sampled from a
normal distribution with a mean of 0 and a variance of 1,
Nm is the number of motion queries.

In RVOS methods, ReferFormer [44] first views the lan-
guage embedding as queries, so subsequent RVOS methods
also follow this paradigm. For example, LMPM [10] re-
peates sentence embedding to initialize object queries:

Qm = repeat(Fse, Nm), (6)
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Figure 3. Architecture of the proposed Motion Expression Encoder and Motion Query Decoder. We decouple motion expressions to static
cues and motion cues and interact them separately with frame queries and video queries. The fusion of sentence embedding with frame
queries for static perception and video queries for motion perception completes the encoding of text information. Motion queries are
obtained through video queries TopK and interact with encoded text information to obtain the final decoded query embeddings.

where Qm ∈ RNv×C is motion queries initialized by re-
peating sentence embedding.

However, regardless of the method, there is a certain de-
gree of optimization difficulty because there is a significant
gap from the final decoded output queries. In an ideal sce-
nario, RVOS essentially selects VIS output based on textual
information. Naturally, we propose using video queries to
initialize motion queries. The default number of queries in
VIS is relatively large, we select object queries based on
the classification score Top K to eliminate the interference
of background queries:

Qm = TopK(Qv, Sv, Nm), (7)

where Sv ∈ RNv is the classification score corresponding to
each video query output by VIS model, TopK represents se-
lecting Nm queries with the highest classification scores in
Qv . Through this initialization method, motion queries al-
most contain queries corresponding to all instances, and the
decoding process changes from identifying and segmenting
objects from scratch to matching the most suitable objects
from all instances and refining them. This allows the op-
timization process to focus on referring subtask, reducing
optimization difficulty and training costs.

Next, we suggest Motion Query Decoder which extracts
information from motion expression features, not frame
queries or video queries. Specifically, motion queries use
cross-attention to interact with word features, extract the
most primitive word-level information, and determine the
importance of each word. Then use cross-attention to inter-
act with visually enhanced sentence embedding to extract
the overall motion expression representation:

Q′
m = Decoder(Qm, Fw, Fme), (8)

where Q′
m ∈ RNm×C is the decoded motion queries used

for final classification and mask prediction. One decoder
consists of two cross-attention layers, a self-attention layer
and a ffn layer. Motion Query Decoder effectively captures
video contexts and aggregates motion expression informa-
tion into the motion queries. As a result, Motion Query De-
coder shows fast convergence speed while achieving high
accuracy, and significantly reduces training memory com-
pared to previous RVOS methods.

3.3. Training and Inference
Finally, the output motion queries Q′

m from Motion Query
Decoder are passed into the classification head Hc and the
mask generation head Hm:

S = Hc(Q
′
m), (9)

where S ∈ RNm is a binary classification score, Hc is a
single linear layer.

M = Fmask · Hm(Q′
m), (10)

where M ∈ RT×Nm×H
S ×W

S is mask predictions, Hm is
three MLP layers to generate mask embeddings, · denotes
dot product operation.

We attach the proposed module DMVS on top of video
instance segmenter, and the entire model get trained end-to-
end. Note that frame-level outputs of Mask2Former [8] and
video-level outputs of VITA [19] are not used for loss com-
putation. Only the loss of video-level outputs of DMVS is
considered. The total loss for model learning is as follows:

Ltotal = Lmask + λclsLcls, (11)

where Lmask is mask loss, consisting of the binary cross-
entropy loss and the dice loss [34]. Lcls is the classification
loss.
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Table 1. Comparison with state-of-the-art models on MeViS val and valu datasets.

Methods Reference Val Valu

J&F J F J&F J F
URVOS [38] ECCV’2020 27.8 25.7 29.9 - - -
LBDT [11] CVPR’2022 29.3 27.8 30.8 - - -
MTTR [2] CVPR’2022 30.0 28.8 31.2 - - -
ReferFormer [44] CVPR’2022 31.0 29.8 32.2 - - -
VLT+TC [9] TPAMI’2022 35.5 33.6 37.3 - - -
LMPM [10] ICCV’2023 37.2 34.2 40.2 40.2 36.5 43.9
DsHmp [18] CVPR’2024 46.4 43.0 49.8 55.3 51.0 60.4
DMVS (Ours) CVPR’2025 48.6 44.2 52.9 58.3 52.6 63.9

We use the entire video as input in the inference pro-
cess, and DMVS learns motion queries that represent re-
ferring instances of the entire video. For traditional RVOS
datasets with single-object expressions [21, 38], we select
the mask with the highest prediction score as the final pre-
diction result. For MeViS dataset [10] with multi-object ex-
pressions, we select the masks with prediction confidence
scores greater than the confidence threshold σ as the final
prediction results.

4. Experiments
4.1. Datasets and Metrics
Dataset. We conduct experiments on motion expres-
sion video segmentation dataset MeViS [10] and tradi-
tional RVOS datasets: Ref-YouTube-VOS [38] and Ref-
DAVIS17 [21]. MeViS [10] is a novel dataset designed
for motion description analysis, featuring 2,006 video clips
and 443,000 high-quality object segmentation masks. It in-
cludes 28,570 descriptive sentences referencing 8,171 ob-
jects in complex scenarios. The dataset is partitioned into
1,662 training videos, 190 validation videos, and 154 test
videos. Ref-YouTube-VOS [38] contains 3,471 training
videos annotated with 12,913 expressions and 507 valida-
tion videos with 2,096 expressions. Ref-DAVIS17 [21] of-
fers 90 videos accompanied by 1,544 expressions.
Evaluation Metrics. we utilize region similarity J (aver-
age IoU), contour accuracy F (mean boundary similarity),
and their average J&F as our evaluation indicators.

4.2. Implementation Details
MeViS. We use frozen VITA [19] as the video instance
segmenter, and the default weight of VITA is trained on
the OVIS [36] dataset using Swin Transformer [28] as the
image backbone. The training process is conducted over
40,000 iterations, utilizing the AdamW optimizer [29] with
a learning rate set to 5e-5. During training, we randomly ex-
tract clips of T = 10 frames per video, resizing the shorter
side of each frame to 360 pixels and the longer side to 640

pixels. Motion Query Decoder employs 6 layers, the num-
ber of queries Nf , Nv and Nm are set to 100, 100 and 20.
The coefficient for loss is set as λcls = 2.0. Threshold σ is
set to 0.7. We use RoBERTa [27] as the text encoder that is
frozen all the time.
Ref-Youtube-VOS and Ref-DAVIS17. Follow VITA [19],
we process images from Ref-COCO/+/g [32, 51] to gener-
ate pseudo-videos for joint training with Ref-Youtube-VOS.
The implementation details are consistent with MeViS.
In addition, we directly use the weights trained on Ref-
Youtube-VOS to test Ref-DAVIS17.

4.3. Main Results
MeViS. In Tab. 1, we evaluate the proposed approach
DMVS on MeViS [10] dataset. DMVS achieves supe-
rior performance compared to other state-of-the-art meth-
ods. DMVS achieves 48.6% J&F , 44.2% J and 52.9%
F on MeViS val set, outperforming the leading method
DsHmp [18] by 2.2% J&F , 1.2% J and 3.1% F , respec-
tively. On the MeViS valu set, DMVS surpasses DsHmp
by a remarkable 3% J&F . These results demonstrate the
effectiveness of decoupling motion expression video seg-
mentation into video instance segmentation and motion ex-
pression understanding.
Ref-Youtube-VOS and Ref-DAVIS17. We compare our
method to previous models on Ref-YouTube-VOS [38] and
Ref-DAVIS17 [21] datasets in Tab. 2. On Ref-YouTube-
VOS, DMVS achieves 64.3 % J&F , which is 0.7 % higher
than the previous state-of-the-art DsHmp [18]. On Ref-
DAVIS17, DMVS achieves 65.2 % J&F and surpasses
DsHmp [18] by 1.2 %. The improvement on Ref-YouTube-
VOS is not significant, mainly because the dataset mainly
focuses on static expressions, lacks motion expressions, and
has less dependence on temporal information.

4.4. Ablation Study
Since the main focus of this paper on decoupling motion
expression video segmentation, we conduct ablation study
on MeViS [10] val set to demonstrate the effectiveness of
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Table 2. Comparison with state-of-the-art models on Ref-Youtube-VOS and Ref-DAVIS17 datasets.

Methods Reference Ref-Youtube-VOS Ref-DAVIS17
J&F J F J&F J F

MTTR [2] CVPR’2022 55.3 54.0 56.6 - - -
ReferFormer [44] CVPR’2022 59.4 58.0 60.9 59.6 56.5 62.7
OnlineRefer [42] ICCV’2023 62.9 61.0 64.7 62.4 59.1 65.6
HTML [17] ICCV’2023 61.2 59.5 63.0 - - -
R2VOS [22] ICCV’2023 61.3 59.6 63.1 - - -
SgMg [33] ICCV’2023 62.0 60.4 63.5 61.9 59.0 64.8
TempCD [39] ICCV’2023 62.3 60.5 64.0 62.2 59.3 65.0
SOC [31] NeurIPS’2023 62.4 61.1 63.7 63.5 60.2 66.7
LoSh [52] CVPR’2024 63.7 62.0 65.4 62.9 60.1 65.7
DsHmp [18] CVPR’2024 63.6 61.8 65.4 64.0 60.8 67.2
DMVS (Ours) CVPR’2025 64.3 62.4 66.2 65.2 62.2 68.2

Table 3. Ablation study of main components of DMVS.

Model J&F J F

VITA-ROVS 39.7 36.6 42.8
Baseline 44.2 40.7 47.7
Baseline+MQI 46.3 42.4 50.2
Baseline+MQI+MEE 48.6 44.2 52.9

each component and the impact of different configurations.
Effectiveness of main components. In Tab. 3, we conduct
experiments to verify the effectiveness of each key compo-
nent in of our framework. VITA-ROVS is essentially a re-
production of LMPM [10], which is the fundamental model
for using VITA for RVOS tasks. Baseline is a simple im-
plementation of DMVS that uses randomly initialized mo-
tion queries to interact with text features and video queries.
Baseline achieves 44.2 % J&F , an improvement of 4.5 %
J&F compared to VITA-RVOS, which fully demonstrates
the effectiveness of decoupling motion expression video
segmentation into video instance segmentation and motion
expression understanding. MQI is Motion Query Initializa-
tion through video queries with classification priors. MQI
improves the performance by 2.1% J&F , emphasizing that
the query initialization method has a significant impact on
performance. Next, we present Motion Expression Encoder
(MEE) to integrate video contextual object information and
text features. Utilizing MEE improves the J&F by 2.3%.
Effectiveness of motion expression encoder. In Tab. 4,
we conduct ablation experiments to evaluate the effective-
ness of motion expression encoder. The sentence embed-
ding directly interacts with the frame and video queries out-
put by VITA, resulting in 0.8% J&F improvement. After
enhancing frame queries with static clues and video queries
with motion clues, model continues to increase by 0.5% and
0.7% J&F , respectively. The experimental results demon-

Table 4. Ablation study of motion expression encoder.

Qf/v Q′
f Q′

v J&F J F

✗ ✗ ✗ 46.3 42.4 50.2
✓ ✗ ✗ 47.1 42.9 51.3
✓ ✓ ✗ 47.6 43.3 51.9
✓ ✗ ✓ 47.8 43.5 52.1
✓ ✓ ✓ 48.6 44.2 52.9

Table 5. Ablation study of motion query initialization method.

Initialization J&F J F

Random 46.5 41.8 51.2
Text 46.8 42.6 51.0
Video 48.6 44.2 52.9

strate that by decoupling motion perception and interacting
with object queries of different level, understanding of mo-
tion expression is effectively improved.
Motion query initialization method. Tab. 5 shows the im-
pact of different motion query initialization methods. Ran-
dom is Eq. (5), Text is Eq. (6), both motion queries require
interaction with text features and video queries in the mo-
tion query decoder. Video is Eq. (7), the video queries
TopK guided by classification prior brings rich object infor-
mation to motion queries, resulting in 2% J&F improve-
ment.
Number of motion queries Nm. Tab. 6 shows results ob-
tained with varying numbers of motion queries Nm. The
number of video queries Nv = 100, so the maximum num-
ber of motion queries Nm = 100. When Nm = 10, the per-
formance reduces by 0.8% J&F due to missing queries
with instances. When Nm = 50 or 100, there is a signifi-
cant decrease in performance due to the introduction of too
many background queries, which increases the difficulty of
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Figure 4. Qualitative comparison of our method to the main counterpart DsHmp [18] on the MeViS [10] val set.

Table 6. Ablation study of number of motion queries Nm.

Nm J&F J F

10 47.8 43.2 52.4
20 48.6 44.2 52.9
50 47.3 42.9 51.7
100 46.2 41.6 50.8

Table 7. Ablation study of VITA weights pretrained on different
VIS datasets.

Dataset J&F J F

YouTube-VIS 2019 [48] 45.4 42.2 48.6
YouTube-VIS 2021 [49] 46.7 43.1 50.3
OVIS [36] 48.6 44.2 52.9

Table 8. Efficiency comparison with the state-of-the-art method.

Method
Learnable

params
GPU

memory
Training

time

DsHmp [18] 102.3M 22G 17 hours
DMVS (Ours) 12.7M 6G 7 hours

optimization.
Pretrained weights of VITA. As shown in Tab. 7, we
demonstrate the impact of different pretrained weights of
VITA [19]. MeViS is a long video dataset, and OVIS [36] is
also a long video instance segmentation dataset, so the pre-
trained weight of OVIS achieves the highest performance.
YouTube-VIS 2019 [48] mainly focuses on short videos,
while YouTube-VIS 2021 [49] improves its performance to
some extent due to the addition of some long videos in the
training set.
Efficiency of DMVS. In Tab. 8, we compare the training

efficiency with the previous state-of-the-art DsHmp [18].
Thanks to freezing the entire video instance segmenter, our
model’s learnable parameters are only 12.4% of DsHmp.
When training a video clip on each GPU (video length T
= 8), our model only occupies 6G memory, which provides
the possibility for high batchsize training with fewer GPUs.
Our model also has a significant advantage in training time
compared to DsHmp.

4.5. Qualitative Results
As shown in Fig. 4, we present some visualization results
on MeViS [10]. DsHmp [18] does not truly understand mo-
tion expressions and tends to segment all instances in the
video. On the contrary, DMVS can understand the motion
expressions ”was pinned down by” and ”moving around”,
correctly segmenting the specified objects ”the bear” and
”baby horse”. Moreover, the segmentation results have
good temporal consistency, without errors due to the move-
ment of the objects. The qualitative results further demon-
strate the effectiveness of DMVS.

5. Conclusion
In this paper, we propose DMVS, a simple and efficient
referring video segmentation framework, emphasizing de-
coupling motion expression video segmentation into video
instance segmentation and motion expression understand-
ing. The frozen video instance segmenter extracts high-
quality frame-level and video-level object queries. Addi-
tionally, our motion expression encoder interacts two levels
of queries with static and motion cues, respectively, to fur-
ther encode visually enhanced motion expressions. Further-
more, we use video queries guided by classification priors
to initialize motion queries, greatly reducing optimization
difficulty and training costs. Extensive experiments demon-
strate the effectiveness and efficiency of our framework.
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