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Abstract

Audio Descriptions (ADs) aim to provide a narration of a
movie in text form, describing non-dialogue-related narra-
tives, such as characters, actions, or scene establishment.
Automatic generation of ADs remains challenging due to: i)
the domain gap between movie-AD data and existing data
used to train vision-language models, and ii) the issue of
contextual redundancy arising from highly similar neigh-
boring visual clips in a long movie. In this work, we pro-
pose DistinctAD, a novel two-stage framework for gener-
ating ADs that emphasize distinctiveness to produce bet-
ter narratives. To address the domain gap, we introduce
a CLIP-AD adaptation strategy that does not require addi-
tional AD corpora, enabling more effective alignment be-
tween movie and AD modalities at both global and fine-
grained levels. In Stage-II, DistinctAD incorporates two key
innovations: (i) a Contextual Expectation-Maximization At-
tention (EMA) module that reduces redundancy by extract-
ing common bases from consecutive video clips, and (ii)
an explicit distinctive word prediction loss that filters out
repeated words in the context, ensuring the prediction of
unique terms specific to the current AD. Comprehensive
evaluations on MAD-Eval, CMD-AD, and TV-AD bench-
marks demonstrate the superiority of DistinctAD, with the
model consistently outperforming baselines, particularly
in Recall@k/N, highlighting its effectiveness in producing
high-quality, distinctive ADs.

1. Introduction
Audio description (AD) [20, 67] is a crucial accessibility
service that provides verbal narration of visual elements
in media content for individuals who are blind or have
low vision. By offering succinct and vivid descriptions,
ADs enable visually impaired audiences to fully compre-
hend and engage with non-dialogue-related narratives, e.g.,
characters, facial expressions, non-verbal actions, or scene
establishment. Recent studies also show ADs’ value for

VLM

❄

LLM

❄A
dapter

🔥

VLM
-AD

❄

LLM

❄A
dapter

🔥

D
istinct
M
odule

🔥

(a)

(b)
1 clip

N clips

Sara looks at 
someone.

Rebecca looks in 
the mirror.

Rebecca looks at 
someone.

Rebecca’s eyes 
widen.
Rebecca stares 
at her reflection 
in the mirror.
Sara helps her 
out of her dress.

😑

🤔

ℒ
!"#$

Figure 1. (a) Previous methods approach the AD task similar to
video captioning, using only a single video clip as input, which
leads to repetitive ADs due to highly similar neighboring clips. (b)
Our DistinctAD method generates distinctive ADs across N con-
secutive clips, with three key innovations: VLM-AD adaptation,
the Distinct Module, and explicit distinctive words prediction.

sighted viewers in supporting eye-free activities and facil-
itating child language development [31, 55], reinforcing its
pivotal role in fostering inclusivity by bridging the percep-
tual gap between visual and non-visual elements. Crafting
ADs requires careful attention to timing, language, and con-
text to integrate smoothly with dialogue [22]. However,
despite the availability of advanced AD platforms [9, 54],
human-annotated methods are costly and difficult to scale,
highlighting the need for automated generation systems, es-
pecially with the rise of user-generated content.

Advancements in Vision-Language Models (VLMs) and
Large-Language Models (LLMs) have led to growing in-
terest in automatic AD generation for media. Current ap-
proaches fall into two categories: (i) using powerful propri-
etary models like GPT-4 [3] or GPT-4V [53] in a training-
free manner [14, 39, 82, 86], and (ii) fine-tuning open-
source VLM components, such as visual-text adapters [5,
34, 42], for AD tasks [21–23, 40, 56, 74]. Both approaches
have limitations: (i) Training-free methods often perform
poorly and suffer from hallucinations due to the unique na-
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ture of AD (e.g., character names and narrative coherence),
which differs from the common text data LLMs are trained
on. (ii) Fine-tuning methods generally perform better but
are still limited by insufficient data to fully adapt to the
movie-AD domain and face the context-repetition issue.

Unlike video captioning [38, 62], ADs are generated
on consecutive intervals (visual clips) throughout long
videos [68], e.g., movies. The context-repetition issue arises
when models produce repetitive or similar descriptions for
consecutive visual clips, especially when using prior ADs
as prompts [21, 74]. This occurs because sequential clips
often comprise redundant scenes or characters (and therein
redundant visual features), leading models that only use the
current visual clip to repeat the same information from the
past, as shown in Fig. 1. However, audiences are more in-
terested in the unique and distinct events of the current clip,
rather than the common elements from the previous one.

In this paper, we propose DistinctAD, a two-stage
framework for generating distinctive ADs within contexts.
Given the domain gap between the movie-AD and VLM
training data, we first bridge this gap in Stage-I by adapt-
ing VLMs, such as CLIP [58], to the movie-AD domain.
Our adaptation strategy is inspired by a key observation (see
Appendix §A): AD sentences encoded by the CLIP text en-
coder can be effectively reconstructed using simple LLMs
like GPT-2 [57] with minimal fine-tuning, whereas AD re-
constructions using CLIP visual features from the corre-
sponding clips are often of poor quality. This suggests that
while CLIP’s multi-modal embedding space is rich enough
to represent AD information, its visual encoder is insuffi-
cient for extracting it. To mitigate this domain gap, we
adapt the CLIP vision encoder to better align with the frozen
CLIP text encoder using existing paired video-AD data.
The alignment involves global matching at video-sentence
level, similar to CLIP pre-training. A challenge arises be-
cause video clips are labeled with whole ADs, and words
may not appear in every frame but must be aggregated over
frames. Therefore, we propose fine-grained matching at
frame-word level for this multiple-instance setting.

For Stage-II, we propose a novel distinctive AD narrat-
ing pipeline based on the Expectation-Maximization Atten-
tion (EMA) [17] algorithm, which has demonstrated its effi-
cacy in tasks such as semantic segmentation [35], video ob-
ject segmentation [41], and text-video retrieval [27]. Differ-
ently, we apply EMA to contextual clips from long videos,
which often exhibit high redundancy due to recurring scenes
or characters. By extracting common bases from contex-
tual information, DistinctAD reduces redundancy and gen-
erates compact, discriminative representations that enable
the LLM decoder to produce more distinctive ADs. To
further emphasize distinctiveness explicitly, we introduce a
distinctive word prediction loss that filters out words that re-
peatedly appear in contexts, ensuring that the LLM decoder

focuses on predicting unique words specific to the current
AD. With these two designs, DistinctAD produces contex-
tually distinctive and engaging ADs that can provide better
narratives for the audience.

In summary, our contributions are three-fold:
• We propose a CLIP-AD adaptation strategy tailored

to movie-AD data, addressing the misalignment issue
caused by the domain gap. Our adapted vision encoder
can be seamlessly integrated into existing CLIP-based
AD methods and stands to benefit from future improve-
ments as more AD data becomes available.

• We introduce DistinctAD, which incorporates a Contex-
tual EMA module and a distinctive word prediction loss,
significantly enhancing the generation of distinctive ADs
from consecutive visual clips with similar contexts.

• Comprehensive evaluations on MAD-Eval [21], CMD-
AD [23], and TV-AD [82] highlight DistinctAD’s su-
periority. Our outstanding performance in Recall@k/N
demonstrates its effectiveness in generating high-quality
ADs with both distinctiveness and technical excellence.

2. Related Work
Dense video captioning. A task closely related to AD
is dense video captioning [29], which extends traditional
video captioning [38, 45, 62, 63] by both generating a sin-
gle caption for trimmed video segments as well as detect-
ing and describing multiple events with grounded times-
tamps. Initial dense video captioning utilize a 2-stage
pipeline [25, 26, 75, 79] by firstly performing localization
and then describing events. Recent works [13, 18, 36, 51,
59, 64, 65, 75, 80, 83, 89] focus on training localization
and captioning modules in an end-to-end manner to en-
hance inter-event associations. In contrast to these works,
AD generation specifically aims to narrate a coherent story,
maintain character-awareness, and complement the audio
track without interfering with existing dialogue.
AD generation. Early AD systems relied heavily on spe-
cialized authoring tools [9] and skilled human contribu-
tors. Platforms like Rescribe [54] and LiveDescribe [9]
have facilitated faster and more accurate AD creation;
however, these methods are costly and do not scale effi-
ciently for large volumes of visual content. Recent efforts
have developed audio segmentation and transcription sys-
tems [8, 10, 11] to create high-quality video datasets with
temporally aligned ADs [60, 61, 68, 69], advancing auto-
matic AD research.

In general, current automatic AD generation systems
can be categorized into two approaches: training-free and
partial-fine-tuning. Training-free methods [39] generate
ADs by leveraging proprietary models like GPT-4 [3] and
GPT-4V [53]. MM-Narrator [86] enhances AD perfor-
mance by multi-model in-context learning with memories.
LLM-AD [14] and AutoAD-Zero [82] use prompts com-
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prising visual frames with textual character names and col-
orful circles [66], enabling character-centric AD genera-
tion. However, training-free AD methods often suffer from
high evaluation costs at scale and relatively poor perfor-
mance due to domain-specific challenges and LLM hal-
lucinations. Partial-fine-tuning methods [21–23, 40, 74],
as well as our DistinctAD, only fine-tune a lightweight
adapter [5, 34] between the pre-trained vision and text
encoders. A representative example is the AutoAD se-
ries [21–23], which builds automatic AD systems and en-
riches them with character-aware prompts within different
vision-language frameworks. However, previous studies
tend to focus on constructing more accurate external char-
acter banks, whereas treating AD generation similarly to
video captioning, overlooks AD’s unique sequential struc-
ture of video clips. In contrast, our method emphasizes un-
derstanding the visual content within its temporal context,
leading to more distinctive AD generation.
Distinctive captioning in images aims to articulate unique
details that can help distinguishing targets from others. An
intuitive way to promoting distinctiveness is through con-
trastive learning [16, 43, 47, 73], where generated captions
are encouraged to align more closely with target images
rather than distractors. In [12, 76–78], group-based dis-
tinctive attention is introduced to capture distinctiveness by
comparing sets of similar images and re-weighting specific
caption words. A recent closely related field is difference
captioning [32, 33, 84], which aims to describe differences
between a single pair of images. VisDiff [19] scales differ-
ence captioning to sets containing thousands of images with
natural language. Our work differs from these distinctive
captioning works in that we are the first to explore distinc-
tiveness across dense, consecutive clips within hours-long
movies, thereby generating ADs with better narrative.

3. Method

3.1. Stage-I: CLIP-AD Adaptation

AD and the visual content it describes exhibit a significant
domain gap compared to typical large-scale web data. This
gap often causes misalignment in current partial-fine-tuning
techniques. Previous studies [21, 22, 74] try alleviating this
problem by pre-training LLMs on text-only AD corpus, e.g.
AudioVault [1]. However, misalignment persists at the ini-
tial stage of vision encoding, which is often neglected.

Inspired by our findings that AD sentences encoded by
the CLIP text encoder can be effectively recovered using the
GPT-2 language model (see §1 and Appendix §A), we iden-
tify that the primary issue of misalignment is caused by the
CLIP vision encoder, i.e., the discrepancy between visual
embeddings and AD embeddings within the joint CLIP fea-
ture space. To address this, we propose adapting the CLIP
vision encoder to the specific AD domain. However, due to
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Figure 2. Illustration of Stage-I: CLIP-AD Adaptation. This pro-
cess involves adapting the CLIP vision encoder to specific movie-
AD data through global-level video-AD matching (bottom right)
and fine-grained frame-AD matching (top right).

the unique multiple-instance learning setting for video-AD
pairs (see §1), we consider both global matching and fine-
grained frame-word matching in our adaptation method.
Global video-AD matching. A straightforward strat-
egy involves adopting classical CLIP-style fine-tuning with
video-AD pairs in large batches [46]. Formally, let
video clip Vi = [f1i ; · · · ; fni ] ∈ Rn×C be a collection
of n frame embeddings, and corresponding AD Ti =
[w0

i ;w
1
i ; · · · ;wm

i ] ∈ R(m+1)×C be a collection of m word
embeddings (wj

i ) and the [CLS] token (denoted as w0
i ),

where C is the number of channels in the embedding space.
We obtain the global video-level representation by aver-
aging all frame embeddings in Vi using mean pooling:
vi = 1

n

∑n
j=1 f

j
i . Following the standard CLIP, we use

the [CLS] token as the global textual AD representation
ti = w0

i . The global video→AD matching is performed
by maximizing the sum of the main diagonal of a B × B
similarity matrix, using the contrastive loss:

Lv→AD = − 1

B

B∑
i=1

log
exp(sim(vi, ti))∑B
j=1 exp(sim(vi, tj))

, (1)

where B is the batch size, and the similarity function sim(·)
is the vector inner product. This process is illustrated in the
bottom right of Fig. 2. Similarly, we drive the AD→video
loss LAD→v by maximizing the sum of the secondary di-
agonal (i.e., swapping the i and j indices in (1)). The final
global-level contrastive loss is then the sum of the losses in
both directions Lg = Lv→AD + LAD→v .
Fine-grained frame-AD matching. Matching global video
to AD sentence [CLS] (and vice versa) aids in joint feature
space alignment. However, this alignment is insufficient
for effective adaptation due to the specific multiple-instance
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Figure 3. Pipeline of Stage-II: Distinctive AD Narration. Stage-II processes N consecutive video clips using the CLIPAD vision encoder
from Stage-I. We generate contextual-distinctive ADs by two key innovations: i) a Contextual EMA module to learn compact and discrim-
inative visual representations for improved prompting of LLMs; ii) an extra distinctive word loss for predicting AD-specific terms.

setting of ADs, where only some words may correspond to
a particular frame, but all words will have correspondence
in aggregate. Thus, we propose a fine-grained matching loss
at the frame-level to address this issue.

Formally, given the frame embeddings Vi and the word
embeddings T′

i = [w1
i ; · · · ;wm

i ] ∈ Rm×C , we calculate
the weights of all words attending to each frame via softmax
attention, taking Vi as the query and T′

i as the key. By
then multiplying these attention weights by the value T′

i,
we obtain a frame-aware AD representation T̃i ∈ Rn×C :

T̃i = Softmax(ViT
′
i
T
/τ)T′

i = [t̃1i ; · · · ; t̃ni ], (2)

where for each frame, the words embeddings that are most
similar to the frame-level visual feature have been aggre-
gated (via softmax attention). The temperature parameter τ
controls the aggregation process, where smaller τ incorpo-
rates more textual information.

The goal of the fine-grained matching is to pull a frame
visual feature f ∈ Vi closer to the frame-aware AD rep-
resentations t̃ ∈ T̃i in (2), corresponding to the positive
set. To achieve this, we define the negative set T̃neg as the
frame-aware AD embeddings generated from other video
clips (in the batch), and then use a Multi-Instance Loss [49],

Lf = − 1

B

B∑
i=1

log

∑
t̃∈T̃i

exp(sim(f , t̃))∑
t̃∗∈{T̃i∪T̃neg} exp(sim(f , t̃∗))

, (3)

where f ∈ Vi is a sampled frame from Vi. This process is
illustrated in the top right of Fig. 2.
Summary for Stage-I. The final objective for Stage-I is
to minimize the sum of global and fine-grained aligning
losses, balanced by a trade-off coefficient, LI = γLg+(1−

γ)Lf . Note that during this adaptation process, the CLIP-
Text encoder model remains frozen, and only the CLIP-
Vision encoder is fine-tuned. Our fine-grained frame-AD
matching is entirely parameter-free, as only the vision en-
coder will be utilized in the subsequent stage.

3.2. Stage-II: Distinctive AD Narration

The motivation for generating distinctive ADs stems from
the observation that LLM often produce repetitive descrip-
tions for adjacent clips [56, 82, 86]. Despite improved char-
acter recognition, the visual representation itself is not dis-
criminative among neighboring (contextual) clips, leading
to uninteresting ADs. Our goal is to create contextual-
distinctive ADs that highlight current differences. We hy-
pothesize, as verified in Appendix §B , that sequential clips
from a long video often share redundant scenes or charac-
ters, leading similar visual features in contexts. Thus, we
propose Stage-II: distinctive AD narration.

As shown in Fig. 3, we prepare N consecutive video
clips (to be AD-described) {x1,x2, · · · ,xN}, each con-
taining T uniformly sampled frames {F1,F2, · · · ,FT }.
Following [21, 22, 74], we employ a learnable Perceiver
adapter [5] to resample T ′ prompt vectors for the T
frame embeddings encoded by our Stage-I vision encoder,
CLIPAD. This process is formulated as:

hxi = Perceiver({f1, f2, · · · , fT }) ∈ RT ′×C , (4)
fi = CLIPAD(Fi). (5)

We then introduce the Contextual EMA to capture compact,
discriminative visual features for distinctive AD generation.
Contextual EMA. Expectation-Maximization Attention
(EMA) [35] integrates the attention mechanism [81] into the
classical EM [17] algorithm, which comprises three steps to
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estimate a more compact set of bases: Responsibility Esti-
mation (RE), Likelihood Maximization (LM), and Data Re-
estimation (DR). Inspired by this, we propose Contextual
EMA to perform EMA on frames from N contextual clips,
aiming to eliminate redundancy, learn compact representa-
tions, and explore distinctiveness.

Let H = {hxi}Ni=1 ∈ RN×T ′×C represent N clip vec-
tors from the Perceiver, and M = {µk}Kk=1 ∈ RK×C de-
note the randomly initialized base features, where C,K in-
dicate the number of channel and bases. The RE step esti-
mates the hidden variable Z = {znk}N×T ′,K

n=1,k=1, where the re-
sponsibility znk represents the probability of the n-th frame
belonging to the k-th base:

znk =
exp(hnµ

T
k /τ)∑K

j=1 exp(hnµT
j /τ)

, (6)

where τ determines the shape (peakiness) of distribution Z .
Then, the LM step updates the bases M by applying the
weighted average on input H, formulating the k-th base as:

µk =

∑N×T ′

n=1 znkhn∑N×T ′

n=1 znk
. (7)

The RE (E-step) and LM (M-step) are iteratively performed
R times until convergence. Notably, since bases number K
is much smaller than the embedding number N × T ′, we
employ DR to reconstruct a compact version of H through:

Ĥ ≈ ZM. (8)

Here, Ĥ ∈ RN×T ′×C retains the same shape as H. We
combine H and Ĥ element-wise with a hyperparameter α.

To enhance representation distinctiveness, we introduce
an additional branch using cross-attention between raw H
(query) and bases M (key and value), formulated as:

H̃ = CrossAttention(H,M), (9)

where H̃ ∈ RN×T ′×C . Linear layers projecting queries,
keys, and values are omitted in Fig. 3 (see Appendix §C for
details). Through (9), we process the distributions of H to
attend on specific and informative bases, with improved lin-
ear separability (see Fig. 6). We combine H, Ĥ, H̃ elemen-
twise around Contextual EMA to construct the final refined
visual features. These features are then projected into the
LLM embedding space using a single-layer projector:

Hsum = Proj(H+ αĤ+ βH̃). (10)

Interleaved prompt as LLM’s input. Following previous
studies [22, 74, 82], we build our interleaved prompt en-
riched with character information, (see Fig. 3). To answer
the “who is who” question when more than two characters
are present, the corresponding actors’ portrait images are
projected as face tokens for reasoning. The <BOS> tag ap-
pended at the end indicates the beginning of AD generation.

Distinctive words highlighting. Our goal is to query a
frozen LLM for AD generation using a vision-conditioned
prompt. The typical supervision employs the commonly
used auto-regressive loss function:

Lauto = −
∑
n

logPθ(wn|prompt;w<n), (11)

where wn is the n-th token from the target AD. However,
Lauto does not emphasize the distinctiveness specific to the
current AD, which is our focus. To address this, we propose
a distinctive word set wd, created by filtering out duplicates,
such as character names, prepositions, and pronouns, from
the N context ADs of the target AD. During training, we ex-
plicitly encourage the LLM to predict the distinctive words
in wd by optimizing the distinctive loss Ldist:

Ldist = −
N∑

n=1

u∑
i=1

logPθ(wn = wi
d|prompt, w<n), (12)

where wi
d denotes the i-th distinctive word in wd and u is the

size of the set. The final complete loss function for Stage-II
is: LII = Lauto + Ldist.

4. Experiments
4.1. Experiment Setup

Datasets. We follow the AD generation benchmark es-
tablished in AutoAD [21], conducting experiments on the
denoised MAD-v2-Named [68] and evaluating on MAD-
Eval-Named split. Specifically, MAD-v2-Named includes
∼330k ADs from 488 movies for training and MAD-Eval
has 6,520 ADs crawled from 10 movies for evaluation. We
also evaluate on two recently introduced datasets. CMD-
AD [23] (where “CMD” stands for Condensed Movie
Dataset [7]) is a movie AD dataset that contains 101k ADs
for more than 1432 movies, with 100 movies split for CMD-
AD evaluation. TV-AD [82] is a recently proposed AD
dataset based on TVQA [30], which contains ∼31k ADs
for training and ∼3k ADs for evaluation.
Evaluation Metrics. Classic captioning metrics includ-
ing ROUGE-L [37], CIDEr [72] and SPICE [6] are re-
ported to evaluate the quality of generated ADs versus the
ground-truth. Besides, we also report Recall@k within N
Neighbours [22] (R@k/N), which calculates the average
value of Recall@k for each AD with its N temporally ad-
jacent GT texts, where BertScore [88] is used for text sim-
ilarity matching. The R@k/N metric is based on retriev-
ing the most similar ground-truth AD among N neighbors,
and thus highlights the distinctiveness of generated ADs di-
rectly. LLM-AD-eval [23] employs LLMs to assess the
quality of generated ADs, assigning scores from 1 (lowest)
to 5 (highest). We utilize the LLM prompt from the origi-
nal study [82] and apply open-source models LLaMA2-7B-
Chat [70] and LLaMA3-8B-Instruct [4] for this evaluation.
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Method Pub. VLM LLM ROUGE-L CIDEr SPICE R@5/16
Training-free
VLog [2] - - GPT-4 7.5 1.3 2.1 42.3
MM-Vid [39] ArXiv’23 GPT-4V - 9.8 6.1 3.8 46.1
MM-Narrator [86] CVPR’24 CLIP-L14 GPT-4 13.4 13.9 5.2 49.0
LLM-AD [14] ArXiv’24 GPT-4V - 13.5 20.5 - -
AutoAD-Zero [82] ACCV’24 VideoLLaMA2-7B LLaMA3-8B - 22.4 - -
Partial-fine-tuning
ClipCap [50] ArXiv’21 CLIP-B32 GPT-2 8.5 4.4 1.1 -
CapDec [52] ArXiv’22 - - 8.2 6.7 1.4 -
AutoAD-I [21] CVPR’23 CLIP-B32 GPT-2 11.9 14.3 4.4 42.1
AutoAD-II [22] ICCV’23 CLIP-B32 GPT-2 13.4 19.5 - 50.8
AutoAD-III [23] CVPR’24 EVA-CLIP OPT-2.7B - 22.8 - 52.0
AutoAD-III [23] CVPR’24 EVA-CLIP LLaMA2-7B - 24.0 - 52.8
MovieSeq [40] ECCV’24 CLIP-B16 LLaMA2-7B∗ 15.5 24.4 7.0 51.6
DistinctAD (Ours) CLIP-B32 GPT-2 15.4 24.5 6.7 49.8
DistinctAD (Ours) CLIPAD-B32 GPT-2 16.4 25.5 7.4 51.7
DistinctAD (Ours) CLIPAD-B16 LLaMA2-7B 17.2 27.0 8.2 55.6
DistinctAD (Ours) CLIPAD-B16 LLaMA3-8B 17.6 27.3 8.3 56.0

Table 1. Comparisons of AD performance on the MAD-Eval benchmark. ∗ indicates fine-tuning LLaMA2-7B model with LoRA [24].
CLIPAD is our CLIP vision encoder adapted using our Stage-I strategy.

Method CIDEr R@1/5 LLM-AD-eval
Video-BLIP2 [85] 4.8 22.0 1.89 | -
Video-LLaMA2 [87] 5.2 23.6 1.91 | -
AutoAD-II [22] 13.5 26.1 2.08 | -
AutoAD-III [23] 21.7 30.0 2.85 | -
AutoAD-Zero [82] 17.7 - 2.83 | 1.96
DistinctAD (LLaMA2) 22.3 32.9 2.89 | 2.00
DistinctAD (LLaMA3) 22.7 33.0 2.88 | 2.03
AutoAD-III† [23] 25.0 31.2 2.89 | 2.01

Table 2. Comparisons on CMD-AD. The LLM-AD-eval scores
are evaluated with LLaMA2-7B (left) and LLaMA3-8B (right). †
indicates pre-training on 3.4M HowTo-AD dataset [23, 48].

Method CIDEr R@1/5 LLM-AD-eval
AutoAD-III [23] 26.1 - 2.78 | 1.99
AutoAD-Zero [82] 22.6 30.6 2.94 | 2.00
DistinctAD (LLaMA2) 27.2 31.8 2.86 | 2.01
DistinctAD (LLaMA3) 27.4 32.1 2.89 | 2.00

Table 3. Comparisons on TV-AD. The LLM-AD-eval scores are
evaluated using LLaMA2-7B (left) and LLaMA3-8B (right).

Implementation Details. To facilitate CLIP-AD adaptation
in Stage-I, we collect the original raw movies from MAD
from platforms like Amazon Prime Video. See Appendix
F for details. We fine-tune the CLIP Vision encoder for 5
epochs with a fixed learning rate 5e-5 using the Adam opti-
mizer [28] in Stage-I, with a batch size of 512. In Stage-II,
we use a batch of 8 sequences, each containing 16 consec-
utive video AD-pairs from a movie. For each video clip,
8 frames are uniformly sampled. We use the AdamW [44]
optimizer to train our model for 10 epochs, with a cosine-
decayed learning rate and linear warm-up. The learning rate
is set to 10−4 for both GPT-2 and LLaMA models. For ex-
ternal character information, we directly use the inference
results from AutoAD-Zero [82] as it gives current best face

recognition performance. We use CLIP-B32 and GPT-2 on
MAD-Eval-Named for ablations unless specified otherwise.

4.2. Comparisons with previous methods

We conduct comprehensive comparisons using the widely-
adopted MAD-Eval benchmark [21] and two recently intro-
duced AD datasets, CMD-AD [23] and TV-AD [82].
Comparisons on MAD-Eval are shown in Tab. 1. We
primarily categorize previous studies into Training-free
and Partial-fine-tuning approaches, as described in §2.
Our method is a Partial-fine-tuning method. When us-
ing the same CLIP-B32 and GPT-2, our proposed Distinc-
tAD achieves a CIDEr score of 24.5, surpassing previous
AutoAD-I [21] (CIDEr 14.3) and AutoAD-II [22] (CIDEr
19.5). With our Stage-I adapted CLIP vision encoders (de-
noted as CLIPAD), we observe stable improvements across
all metrics, e.g. 25.5 vs. 24.5 on CIDEr and 51.7 vs. 49.8
on recall, validating the effectiveness of our Stage-I strat-
egy. Notably, DistinctAD with CLIPAD-B16 and LLaMA3-
8B [4] achieves state-of-the-arts with CIDEr 27.3 and Re-
call@5/16 56.0. Our outstanding performance on R@k/N
demonstrates DistinctAD’s ability to generate distinctive
ADs, well matching the uniqueness of the clip’s contents.

Looking at the training-free methods, despite the capa-
bilities of advanced proprietary VLMs, e.g. GPT-4V [53],
and LLMs, e.g. GPT-4 [3], the performance of training-free
methods remains inferior to those employing partial-fine-
tuning. This discrepancy likely arises from the unique char-
acteristics of AD and movie data, which exhibit a significant
domain gap from common vision language training data. As
such, these data types were not encountered during the pre-
training of proprietary large-scale models.
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Setting CIDEr R@5/16
None 6.7 34.0

Global Lg 8.2 36.6
Fine-grained Lf 7.7 35.2
γLg + (1− γ)Lf 8.6 36.9

(a) Stage-I components.

Coefficient γ CIDEr
0.1 8.0
0.3 8.5
0.5 8.6
0.7 7.7

(b) Impact of coefficient γ.

Prompt Stage-I CIDEr R@5/16

Contextual ADs [21]
✗ 12.6 (17.8) 39.8 (43.1)
✓ 14.1 (19.0) 39.9 (44.2)

Character [22]
✗ 22.0 45.6
✓ 23.1 46.2

(c) Impact of Stage-I w/ different prompts.

Table 4. Ablation studies for Stage-I. (a) Evaluation of global video-AD loss Lf and fine-grained frame-AD loss Lf on AD performance.
(b) Analysis of the the impact of the coefficient γ. Both (a) and (b) are conducted with pure visual prompts. (c) Impact of Stage-I
when combined with different prompts for the LLM decoder, including contextual ADs and character names. Performance in parentheses
indicates results with ground-truth contextual ADs as prompts.

1 2 3 4
23.7

25.5

C
ID

Er

(a) 
1 2 3 4

23.8

25.5

(b) 
24 8 16 32 64

23.5

25.5

(c) K
2 4 8 16 32

22.2

25.6

(d) N

Figure 4. Ablation studies for hyperparameter in Stage-II, with
final settings highlighted in orange. (a) Impact of α on the weight
of compact representation Ĥ. (b) Influence of β on cross-attended
feature H̃. (c) Impact of K, which denotes the number of clusters
in bases M. (d) Effect of sampling N consecutive video clips. We
switch to larger memory GPUs when N exceeds 16.

Ex# αĤ βH̃ Ldist CIDEr R@5/16
A0 ✗ ✗ ✗ 23.1 (27.4) 46.2
B1 ✓ ✗ ✗ 23.7 (29.3) 46.6
B2 ✗ ✓ ✗ 23.4 (29.1) 46.1
B3 ✓ ✓ ✗ 23.3 (28.1) 48.0
C0 ✗ ✗ ✓ 24.7 (29.4) 49.5
C1 ✓ ✗ ✓ 24.3 (29.4) 50.7
C2 ✗ ✓ ✓ 25.3 (30.4) 51.5
C3 ✓ ✓ ✓ 25.5 (29.8) 51.7

Table 5. Ablation studies for components in Stage-II. The
CIDEr column shows scores with AutoAD-Zero’s character [82]
as prompt by default. CIDEr in parentheses represent performance
with ground-truth character names.

Comparisons on CMD-AD and TV-AD. We further ver-
ify the generalizabilty of DistinctAD on the recently pro-
posed CMD-AD and TV-AD benchmarks, with results pre-
sented in Tables 2 and 3. Both evaluations use adapted
CLIPAD-B16 model. DistinctAD outperforms AutoAD-
Zero, AutoAD-II and AutoAD-III in terms of CIDEr and
R@1/5 on both benchmarks Meanwhile, DistinctAD ex-
hibits a lower CIDEr compared to AutoAD-III† on CMD-
AD, which we conjecture is primarily due to AutoAD-
III† pre-training on a very large-scale 3.4M transformed
HowTo-AD dataset [23, 48], which is currently publicly
unavailable. Despite this, DistinctAD achieves superior
R@1/5, underscoring its exceptional ability to generate dis-
tinctive and high-quality ADs. This is further corroborated
by its leading performance on the LLM-AD-eval metric.

4.3. Ablation studies

Effect of CLIP-AD Adaptation (I). Tab. 4a demonstrates
the benefit of our Stage-I strategy, i.e. adapting CLIP the vi-

Consecutive N? CIDEr R@5/16

✓ 25.5 51.7
✗ 23.8↓1.7 52.5↑0.8

Table 6. Impact of whether sampling N consecutive clips or not.

sion encoder to the movie-AD domain via global video-AD
matching Lg and fine-grained frame-AD matching Lf . In
Tab. 4b, the balancing coefficient γ performs best at 0.5. In
Tab. 4c, our Stage-I strategy consistently enhances perfor-
mance when combined with different prompts in the LLM
decoder, such as contextual ADs in AutoAD-I [21] or char-
acter names in AutoAD-II [22]. This indicates that our AD-
adapted CLIP vision encoder can integrate seamlessly into
previous methods, including those training-free models that
utilize CLIP-based visual extractors.
Effect of Distinctive AD narration (II). We evaluate the
effectiveness of Stage-II components in Tab. 5, based on the
default H (Perceiver’s output) and full AD auto-regressive
loss Lauto. The baseline (A0) outperforms AutoAD-II in
CIDEr (23.1 vs. 19.5), primarily due to more accurate char-
acter prompts from AutoAD-Zero and the adapted CLIP vi-
sion encoder from Stage-I. A0 with AutoAD-II’s charac-
ters achieves a CIDEr score of 20.6, close to AutoAD-II’s
performance. Incorporating reconstructed feature Ĥ brings
stable improvements on both CIDEr and recall (B1 & C1),
highlighting the importance of compact representations in
understanding visual semantics. Cross-attended feature H̃
works better together with distinctive word prediction loss
Ldist (C2 vs. B2, C3 vs. B3). We conjecture this is because
Ldist provides more definite supervision on re-weighting
distinctive words, which guides H̃ to attend on concept-
related bases. Overall, applying the full Stage-II pipeline
brings significant and robust performance (C3).
Effect of Hyper-parameters. Fig. 4 summarizes the ab-
lation studies on 4 hyper-parameters that potentially influ-
ence the results in Stage-II. Coefficient weights α and β
yield optimal results when set to 3 and 1, respectively. This
suggests the need to refine our final representations to be
more compact for generating ADs. Fig. 4(c) shows setting
bases number K to 32 yields best. A smaller K, e.g. 2, can
still achieve notable CIDEr, as the Contextual EMA module
does not significantly alter the final output Hsum. However,
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GT: Holding the room’s phone to his ear, the 
man on the bed regards him sympathetically.
AutoAD-Zero: He looks at something.
DistinctAD: He holds the phone to his ear.

GT: Stephen sees the pill bottles on a 
bedside table.
AutoAD-Zero: Stephen looks at something.
DistinctAD: In Stephen’s bedroom, a pill 
bottle sits on his nightstand.

GT: Later, Stephen steps back 
out into the rainy night.
AutoAD-Zero: Stephen looks 
around and at another character.
DistinctAD: As Stephen walks 
away, he glances over his shoulder.

GT: Moving with a stiff gait, Stephen 
marches across the parking lot to his car.
AutoAD-Zero: He looks out at the city.
DistinctAD: He looks up at the sky, then 
turns and heads back to the car.

GT: As Stephen gets in, rain patters heavily against 
his windshield.
AutoAD-Zero: Stephen looks at the women.
DistinctAD: In the car, Stephen stares out the window.

GT: The man on the bed sits in silhoue-
tte against the room’s soft lamp light.
AutoAD-Zero: He turns to leave, 
looking at him.
DistinctAD: The bed is empty.

1h12m53.6s 1h12m59.1s 1h13m14.5s

1h13m19.4s 1h13m23.1s 1h13m24.5s

<tt1124035>: The Ides of March (2011)

Figure 5. Qualitative results. We present ground-truth (GT) ADs, publicly released AutoAD-Zero outputs, and our DistinctAD predictions
for several temporally consecutive movie clips. Movie frames are taken from The Ides of March (2011) [15]. Zoom in for details.

unsuitable values of K, e.g. 8 or 64, can negatively impact
performance. Fig. 4(d) reveals that increasing the number of
consecutive clips N (with K set to 32) enhances the CIDEr
score, though this effect saturates when N exceeds 16. This
demonstrates that more bases should be created to effec-
tively summarize components with additional clips.
Do the N clips to be consecutive? Tab. 6 presents the
results of sampling non-consecutive N clips during train-
ing. When using non-continuous clips, we observe a de-
crease in the CIDEr metric by 1.7 (25.5 vs. 23.8) because
the Contextual EMA module struggles with unrelated con-
texts. However, the R@5/16 improves by 0.8, which in-
dicates enhancement of the distinctiveness (uniqueness) of
the generated AD when using more diverse visual contents.
Visualizations. To better understand what Contextual EMA
learns, we show the t-SNE [71] visualizations of H, Ĥ and
H̃ (from §3.2) in Fig. 6, using the same perplexity value
across all visualizations. With Contextual EMA, Ĥ exhibits
more compact features compared to raw H, Fig. 6(b). Inter-
estingly in Fig. 6(c), cross-attention between H and bases
M produces strip-like feature distributions pointing to spe-
cific base centers, enhancing contextual distinctiveness with
improved linear separability and interpretability.

4.4. Qualitative results

Fig. 5 presents qualitative examples of our model. We
compare the predictions of DistinctAD (using LLaMA3-
8B) with ground-truth captions (GT) and publicly available
AutoAD-Zero [82] outputs. Note that clips are sampled
consecutively in time. Previous studies often struggle with
similar contextual clips, such as those featuring closely-
related scenes and characters, by repeating correct yet in-

bases

(a) ℋ (b) ℋ" (c) ℋ#

Figure 6. Visualizations of Contextual EMA. (a) A set of ran-
domly generated 3D data H, sampled from N types of samples.
(b) Compact features Ĥ obtained via Data Re-estimation (DR). (c)
Cross-attention outputs H̃ between H and bases M.

significant action words, e.g. “look”. In contrast, our Dis-
tinctAD effectively generates more engaging ADs by identi-
fying distinctive objects in adjacent clips, e.g. “phone”, “pill
bottle”, and “car”, along with corresponding more specific
behaviors. More examples can be found in Appendix §E.

5. Conclusion
This paper proposes DistinctAD, a two-stage framework for
generating distinctive audio descriptions for better narra-
tive. By addressing the domain gap between movie-AD data
with a CLIP-AD adaptation strategy, and introducing a Con-
textual EMA module and a distinctive word prediction loss,
our approach significantly improves the quality of AD gen-
eration. The effectiveness of DistinctAD is demonstrated
through comprehensive evaluations on multiple benchmark
datasets and ablations studies. Despite these promising re-
sults, DistinctAD is still limited by requiring numbers of
parameters and the quality of the generated ADs still falls
short of human annotations. Overall, automatic AD gener-
ation still remains a challenging task, and there is consider-
able scope for future advancements in this field.
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[10] Hervé Bredin and Antoine Laurent. End-to-end speaker seg-
mentation for overlap-aware resegmentation. In Interspeech,
2021. 2
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