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Abstract

Multimodal Emotion Recognition (MER) aims to predict
human emotions by leveraging multiple modalities, such as
vision, acoustics, and language. However, due to the het-
erogeneity of these modalities, MER faces two key chal-
lenges: modality balance dilemma and modality special-
ization disappearance. Existing methods often overlook
the varying importance of modalities across samples in
tackling the modality balance dilemma. Moreover, main-
stream decoupling methods, while preserving modality-
specific information, often neglect the predictive capability
of unimodal data. To address these, we propose a novel
model, Modality-Specific Enhanced Dynamic Emotion Ex-
perts (EMOE), consisting of: (1) Mixture of Modality Ex-
perts for dynamically adjusting modality importance based
on sample features, and (2) Unimodal Distillation to re-
tain single-modality predictive ability within fused features.
EMOE enables adaptive fusion by learning a unique modal-
ity weight distribution for each sample, enhancing multi-
modal predictions with single-modality predictions to bal-
ance invariant and specific features in emotion recogni-
tion. Experimental results on benchmark datasets show that
EMOE achieves superior or comparable performance to
state-of-the-art methods. Additionally, we extend EMOE to
Multimodal Intent Recognition (MIR), further demonstrat-
ing its effectiveness and versatility.

1. Introduction

Multimodal Emotion Recognition (MER) is a critical task
in affective computing that aims to predict human emotions
by leveraging multiple data modalities, including vision,
acoustics, and language. Compared to a single modality,
different modalities provide unique and complementary in-
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Figure 1. Illustration of modality importance examples and multi-
modal fusion process in MER. (a) illustrates a phenomenon where
the modality content in different samples affects the varying im-
portance of each modality during fusion. (In this paper, sample
refers to the inputs from all modalities for a single instance.) (b)
shows that during fusion, the model emphasizes multimodal in-
variant features while disregarding unimodal ability.

formation [54], which can enhance the prediction of emo-
tional behaviors. With the development of deep learning
[1, 19, 20, 59], MER has emerged as a rapidly expanding re-
search field in affective computing [40], offering numerous
applications, like intelligent tutoring systems [38], product
feedback assessment [33], and robotics [31].

For MER, different modalities within the same video
segment are often complementary, providing additional
cues for semantic and emotional disambiguation. How-
ever, due to differences in how each modality captures and
expresses information, as well as the varying amounts of
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information each modality contains across different video
segments, there arises modality balance dilemma in multi-
modal learning. Additionally, when different modalities are
fused, there tends to be a focus on invariant features [30],
which often leads to the neglect of modality-specific as-
pects, resulting in modality specialization disappearance.

Existing relative methods primarily focus on naively in-
corporating different modality information through popular
combination techniques [36, 69], such as simple concatena-
tion [14, 35], tensor fusion [63] and so on. Although pre-
vious work has attempted to address the modality balance
dilemma using approaches such as modality imbalance reg-
ularization [11], multimodal contrastive learning[9], and hi-
erarchical modality fusion [22, 53], these methods employ a
unified fusion paradigm to process all samples, which fails
to account for ❶ the varying importance of different modal-
ities for distinct samples. In fact, the differences between
modalities in conveying information are more pronounced
in emotion recognition compared to other multimodal learn-
ing tasks. As shown in Fig. 1(a), individuals express emo-
tions inconsistently across different samples using all three
modalities. For instance, one person may express emotions
more through text and tone, while another might use facial
expressions more predominantly. Consequently, different
modalities possess varying abilities to predict emotions, and
the significance of each modality during fusion fluctuates
based on the specific input. On the other hand, to address
modality specialization disappearance, related methodolo-
gies introduce various modality decoupling solutions to pre-
serve modality-specific information [14, 29, 55], separating
each modality into invariant and specific spaces before fu-
sion. However, these methods often ❷ overlook the predic-
tive capability of unimodal data, as illustrated in Fig. 1(b).
Although unimodal data may be less comprehensive, its sta-
bility and reliability can exceed that of multimodal data in
certain contexts [16–18, 48]. This makes it a valuable addi-
tion to complex tasks, improving model robustness.

In this paper, we propose Modality-Specific Enhanced
Dynamic Emotion Experts (EMOE), which consists of two
primary components. First, due to ❶, we consider design-
ing a method that allows the model to autonomously learn
the modality importance distribution for each sample. In-
spired by the Mixture of Experts [3, 6], we introduce Mix-
ture of Modality Experts. Here, a Router Network assesses
the importance of each modality based on input features,
treating each modality channel as an expert rather than a
single network. Additionally, the dominant modalities tend
to steer the learning process during model training, resulting
in insufficient training of other modalities [36, 46, 47, 51]
and an overestimation of the dominant modality’s weight.
Therefore, we also propose an experts balancing mecha-
nism based on router entropy loss to optimize the weight
distribution and address modality dominance. Second, we

propose Unimodal Distillation with Router Selection to ad-
dress ❷. In this approach, we incorporate a single-modality
classification head into the model and calculate the predic-
tion loss to ensure that the unimodal features possess predic-
tive capabilities. Subsequently, we implement one-way dis-
tillation [10, 12, 15, 34] by aligning the multimodal predic-
tive features with the unimodal features, weighted by their
importance. This method allows the modality-specific fea-
tures to guide the learning of multimodal features, ensuring
that the prediction results consider both modality-invariant
and modality-specific aspects.

We conducted relevant experiments to validate this ap-
proach. Given the similarities between Multimodal Intent
Recognition (MIR) and MER [43, 57, 58], we applied our
method to the MIR task. The main contributions of this
work can be summarized as follows:
• We tackle the challenge of modality importance varying

across samples in fusion. Using Mixture of Modality Ex-
perts, we derive a distinct weight distribution per sample,
facilitating adaptive multimodal fusion.

• Recognizing that modality fusion often neglects single
modality predictive ability, we propose Unimodal Distil-
lation with Router Selection. This method uses the pre-
dictive information of each modality to guide the fused
features, preserving modality-specific characteristics in
the multimodal fusion.

• We conduct experiments on various datasets, including
CMU-MOSI [62], CMU-MOSEI [65], and MIntRec [66],
and achieve superior or comparable results to state-of-the-
art methods. We also extend our approach from MER to
MIR, validating the effectiveness of our method.

2. Related Works

2.1. Multimodal Emotion Recognition

Multimodal emotion recognition (MER) aims to leverage
multiple data sources—such as visual, acoustic, and text
modalities—to more accurately identify and classify human
emotions. Previous work in MER [4, 56, 67, 69] can gen-
erally be categorized into two main directions: optimizing
modality fusion and enhancing feature representation.

The first direction focuses on improving the integration
of different modalities to ensure effective combination of
complementary information [69]. Early fusion techniques
primarily relied on simple operations like feature concate-
nation [35]. Zadeh et al. [63] later introduced tensor fu-
sion, which enhanced performance by using trilinear tensor
decomposition to capture high-order interaction features.
More recently, the focus has shifted toward neural network-
based methods, such as MulT [44], which proposes a mul-
timodal transformer incorporating a cross-modal attention
mechanism to effectively learn the underlying adaptations
and correlations between different modalities. However,
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these methods typically apply the same paradigm to all in-
put samples, neglecting the fact that the importance of each
modality can vary depending on the specific sample. In a
different line of research, Hazarika et al. [14] proposed
decomposing multimodal features into modality-invariant
and modality-specific components, enabling the learning
of refined multimodal representations. Subsequent ap-
proaches addressing modality heterogeneity have primarily
followed modality decoupling strategies. However, these
methods often neglect individual modality strengths, while
adding channels may cause conflicts and redundancies. Our
method tackles this by dynamically weighting modalities
and using single modalities to guide fused features, ensur-
ing a balanced multimodal emotion prediction.

2.2. Imbalanced multimodal learning
Recent studies have highlighted the issue of imbalanced
multimodal learning, where models tend to favor certain
modalities over others, negatively impacting overall perfor-
mance [21, 36]. Various strategies have been proposed to
address this challenge, with the aim of balancing the op-
timization of individual modalities [8, 27, 49, 50]. Peng
et al. [36] introduced a gradient modulation strategy that
dynamically adjusts the contributions of different modali-
ties during training, thereby reducing the influence of dom-
inant modalities. However, in this approach, modalities
with weaker expressive capabilities often hinder the learn-
ing process of stronger modalities. In response, Wei et al.
[51] proposed ”Diagnosing and Re-learning,” adaptively re-
training weaker modalities for better balance. In contrast,
we tackle the issue from the sample level, recognizing im-
balances across modalities for specific samples. When a
dominant modality drives learning, it risks inaccurate pre-
dictions due to information bias. To solve this, we propose a
dynamic modality weighting approach to optimize modality
weights during training, preventing over-reliance on domi-
nant modalities and preserving the predictive power of each
modality, thus improving predictions.

2.3. Mixture-of-Experts
Mixture-of-Experts (MoE) replicates certain components
of a network into multiple instances, known as experts
[5, 23, 24]. Initially proposed to enhance model prediction
performance, MoE leverages the cooperation and compe-
tition between multiple expert models. However, activat-
ing all experts increases computational costs. Sparse MoE
(SMoE) [26, 28, 42, 70, 71] addresses this by activating
only some experts, enhancing efficiency. SMoE is used
in multi-task learning [6] for task-specific expert activation
and in model compression [28] to cut computational de-
mands. In multimodal learning, recent efforts replace dense
layers with MoE structures to lower costs [68] or manage
missing modalities [61]. Inspired by prior studies, we treat

networks for different modalities as experts and use a router
network to learn their importance weights, enhancing data-
level personalization in multimodal learning.

3. The Proposed Method
3.1. Preliminaries
Following the typical multimodal emotion recognition [14,
44], our goal is to detect sentiments in videos by leveraging
multimodal signals. For a given utterance U , the input con-
tains three sequences of low-level features corresponding to
language (l), visual (v), and acoustic (a) modalities. These
sequences are represented as Ul ∈ RTl×dl , Uv ∈ RTv×dv ,
Ua ∈ RTa×da . Here Tm represents the length of the utter-
ance in modality m (e.g., Tl denotes the number of tokens
in the language modality), and dm corresponds to the di-
mensionality of the features for each modality. Given these
sequences Um, m ∈ {l, v, a}, the primary task is to predict
the affective orientation of the utterance U . The prediction
is either from a predefined set of C categories (y ∈ RC) or
as a continuous intensity variable (y ∈ R).

3.2. Mixture of Modality Experts
We consider three modalities: language (L), visual (V), and
acoustic (A). Initially, three distinct 1D temporal convo-
lutional layers are used to capture temporal patterns and
extract raw features for each modality, denoted as Xm ∈
RTm×dm , where m ∈ {l, v, a}. After this, each modality
obtains a shallow tensor representation, and a simple en-
coder fm = Em(Xm) is used to extract the feature infor-
mation of each modality. Here, fm represents the low-level
features of the modality, facilitating subsequent learning in
the router network and modality fusion.
Router network. In order to obtain importance weights
for various samples across each modality, we design an ad-
vanced router network that outputs a refined set of weights
conditioned on the input. Formally,

f = [fl, fv, fa],

W = G(f ; θ) = σ

(
αi hi(f) ·

1

t

)
,

(1)

where [·, ·] denotes feature concatenation, σ means scal-
ing function (e.g., softmax) and G represents the router
network, parameterized by θ, composed of multiple linear
layers interleaved with batch normalization and activation
functions such. Here, W = {wt, wv, wa} represents the
weights associated with each modality, dynamically learned
to capture modality-specific contributions. We introduce
a temperature value t in the router network to control the
magnitude of the weights and to allow fine-grained adjust-
ments for sharper or softer weight distributions. Of par-
ticular note, in contrast to other MoE models that employ
single networks as experts, we consider each modality as a
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Figure 2. Architecture illustration of EMOE. ❶ After the encoder, Mixture of Modality Experts passes the features through a router
network that learns sample-specific weights. These weights guide the fusion of modalities within the multimodal embedding, forming the
final multimodal feature (Sec. 3.2). ❷ The weights also highlight the significance of each modality, allowing features in the unimodal
embedding to be prioritized accordingly. Through Unimodal Distillation, critical unimodal feature information is transferred to the multi-
modal feature, helping retain modality-specific traits (Sec. 3.3).

distinct expert and compute weights accordingly, enabling
more specialized and powerful capabilities.
Dynamic fusion strategy. After obtaining the corre-
sponding modality weights, fusing the features from differ-
ent modalities becomes crucial. We design a corresponding
transformer on the low-level features to extract their high-
level features f ′

m, m ∈ {l, v, a}, while also addressing the
issue of unaligned sequence lengths across different modal-
ities. Next, we focus the modality fusion methods, illus-
trated in Fig. 3. As we introduce the importance weights,
weighted summation is the most intuitive form of fusion:

fc = F(f ′,W )

= wl × f ′
l + wv × f ′

v + wa × f ′
a,

(2)

where fc means fused feature. Meanwhile, as many exist-
ing models rely on concatenation for modality fusion, we
additionally design an alternative fusion method based on
feature concatenation to ensure compatibility and enhance
the generality of our approach:

fc = F(f ′,W )

= [wl × f ′
l , wv × f ′

v, wa × f ′
a].

(3)

This paper adopts summation as the default fusion method
due to its superior overall performance; further details will
be discussed in Sec. 4.2. Based on the fused features ob-
tained in Eq. (2) and Eq. (3), we further use the fused modal-
ity prediction head to obtain the prediction result ŷ and com-
pute the loss function using the true result y:

Lmulti =
1

n

n∑
i=1

|yi − ŷi|. (4)

Experts balancing mechanism. Although Mixture of
Modality Experts learns the basic modal importance capa-
bilities, there still remains some bias in the learned modal
weights during specific tests due to the highly individual-
ized nature of the importance distribution across samples.
Therefore, we add a single-modality prediction head, to
calculate the importance of each modality for each sample
based on the prediction results, which can be formulated as:

cm = (yi − ỹi,m)2,

I = softmax(
1

cm + ϵ
),

(5)

where ỹ represents the predicted value for the correspond-
ing single modality, ϵ denotes a very small positive num-
ber and I refers to the importance coefficients for the three
modalities. Since varying modality weights W is designed
to best fit the importance of different modalities, we com-
pare it here with the similarity in modality importance:

Lsim =
∑

m∈{l,v,a}

S(wm, Im), (6)

where S means similarity function. The computed Weight-
Important Similarity assists in learning the classification ca-
pabilities of individual modalities, thereby supplementing
the modality importance information.

Furthermore, the dynamically weighted fusion approach
introduces a new problem. In multimodal learning, there is
often a dominant modality that is more effective at convey-
ing information and typically performs better in the early
stages of training. However, due to the weighted fusion, the
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Figure 3. Fusion Methods Comparison (Sec. 3.2). left depicts
the process of summing multimodal features with varying weights;
right illustrates concatenating features with distinct weights.

model tends to focus excessively on this dominant modal-
ity, neglecting the learning of other modalities, which re-
sults in an overestimation of its importance. To address
this issue, we implement a router entropy loss to discour-
age the model from over-relying on the dominant modal-
ity, thereby preserving its ability to autonomously activate
modality-specific experts, as shown below:

Lentropy = N
∑

m∈{l,v,a}

wm × log(wm + ϵ), (7)

where N represents the number of modality experts, and
Wm denotes the weight of the corresponding modality ex-
pert. Finally, we combine it with the similarity between
modality importance and the weights mentioned to derive
the MoME balance loss:

Lbalance = Lentropy + αLsim, (8)

where α is the scaling factor.

3.3. Unimodal Distillation with Router Selection
Owing to the fact that the aforementioned modality fusion
primarily focuses on the homogeneity of the modalities, the
modality-specific components may also contain valuable in-
formation. Therefore, we leverage the predictive capabil-
ities of single modalities to guide the learning of multi-
modal features, ensuring that they retain a level of shared
commonality while simultaneously capturing the predictive
strengths of modality-specific characteristics.

As mentioned in Sec 3.2, we introduce a single-modality
prediction head into the model. Since the multimodal ap-
proach still relies on the information from each modality,
we compute the loss function for single modalities to en-
sure that they also have predictive capabilities:

Lm =
1

n

n∑
i=1

|yi − ỹi,m|, m ∈ {l, v, a},

Luni = (Ll + Lv + La) / 3,

(9)

where Lm means the prediction loss for each modality, ỹ
and y represent the unimodal prediction and the truth value.

To learn the specific information in each single modal-
ity, we propose a unidirectional knowledge distillation [15]
from the multimodal to the unimodal. However, this ap-
proach may introduce noise from less significant modal-
ities in certain samples, potentially misguiding the multi-
modal feature learning. To mitigate this issue, we leverage
the modality importance weights W learned by the router
network mentioned in Sec 3.2 to weight different unimodal
information, emphasizing the modality information that is
more relevant to the current sample.

zuni = C(zl, zv, za,W ) (10)

where zuni serves as a combining logit, zm represents uni-
modal logits, and C refers to combine function. The specific
form of combination (either summation or concatenation) is
determined by the preceding multimodal fusion method. In
this way, the strengthened modality effectively takes a lead-
ing role in the knowledge distillation:

Lud = D(zmulti → zuni), (11)

zmulti means multimodal logits, D represents one-way dis-
tillation, → is distillation direction. Thus, the multimodal
prediction results effectively incorporate modality-specific
information, drawing on the abilities of unimodal.

3.4. Objective optimization
We integrate the above losses to reach the full objective:

Ltotal = Ltask + λ1Lbalance + λ2Lud, (12)

where Ltask = Lmulti +Luni means the primary task loss, λ1

control the magnitude of the router network, and λ2 regulate
the importance of modality-specific components.

4. Experiments
Datasets. Considering the generality of our approach for
both MER and MIR tasks, we evaluate EMOE on the fol-
lowing three datasets: CMU-MOSI [62], CMU-MOSEI
[65] and MIntRec [66]. CMU-MOSI consists of 2,199
monologue video samples, with 1,284 for training, 229 for
validation, and 686 for testing. Acoustic and visual features
are sampled at 12.5 Hz and 15 Hz, respectively. CMU-
MOSEI includes 22,856 YouTube movie review clips, with
16,326 for training, 1,871 for validation, and 4,659 for test-
ing. Acoustic and visual features are sampled at 20 Hz and
15 Hz. Both datasets have sentiment labels ranging from -3
(highly negative) to 3 (highly positive). MIntRec contains
2,224 samples, including 1,334 for training, 445 for valida-
tion, and 445 for testing. It comprises 11 intent types related
to emotions or attitudes and 9 related to goal achievement.
Evaluation Metric. For CMU-MOSI and CMU-MOSEI,
we follow the previous works [14, 29] to evaluate EMOE
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Methods Setting ACC7 ↑ ACC2 ↑ F1 ↑ MAE ↓
EF-LSTM [52]

Aligned

33.7 75.3 75.2 1.386
LF-DNN [52] 31.5 78.4 78.3 0.972

TFN [63] 31.9 78.8 78.9 0.953
LMF [32] 36.9 78.7 78.7 0.931
MFN [64] 35.6 78.4 78.4 0.964

Graph-MFN [65] 31.5 78.1 78.1 0.970
MCTN [39] 33.1 79.3 80.0 0.963
MulT [44] 35.1 80.0 80.1 0.936

MISA [14] ∗ 41.8 84.2 84.2 0.754
Self-MM [60] ∗ 45.3 84.9 84.9 0.738
MMIM [13] ∗ 45.8 84.6 84.5 0.717
DMD [29] ∗ 46.2 83.2 83.2 0.721

EMOE (Ours)∗ 47.7 85.4 85.4 0.710
EF-LSTM [52]

Unaligned

31.0 73.6 74.5 1.420
LF-DNN [52] 32.5 78.2 78.3 0.987

TFN [63] 35.3 76.5 76.6 0.995
LMF [32] 31.1 79.1 79.1 0.963
MFN [64] 34.7 80.0 80.1 0.971

Graph-MFN [65] 34.4 79.4 79.2 0.930
MCTN [39] 31.9 77.1 77.3 1.033
MulT [44] 33.2 80.3 80.3 0.933

MISA [14] ∗ 43.6 83.8 83.9 0.742
Self-MM [60] ∗ 45.7 83.4 83.6 0.724
MMIM [13] ∗ 45.9 83.4 83.4 0.777
DMD [29] ∗ 46.7 84.0 84.0 0.721

EMOE (Ours)∗ 47.8 85.4 85.3 0.697
Table 1. Comparison on CMU-MOSI dataset. Bold is the best.
ACC7, ACC2 and F1 values are shown as percentages. * indicates
BERT-based language features. See details in Sec. 4.1.

by using the metrics: 7-class Accuracy (ACC-7), Binary
Accuracy (ACC-2), F1-score (F1), and Mean-absolute Er-
ror (MAE). For MIntRec, we follow the standard protocol
from the previous work [43, 66], evaluating the results via
the following metrics: Accuracy (ACC), F1-score (F1), Pre-
cision (P), and Recall (R) for the intent recognition.
Implementation details. For CMU-MOSI and CMU-
MOSEI, we utilize 300-dimensional GloVe language fea-
tures [37] and 768-dimensional BERT-base-uncased hidden
states [25]. Facet [2] provides 35 facial action unit visual
features, and COVAREP [7] offers 74-dimensional acous-
tic features. On MIntRec, dimensions for text, visual, and
acoustic features are 768, 256, and 768, respectively. The
experimental results are obtained by selecting the peak val-
ues under the same conditions. Optimal values for α, λ1,
and λ2 are set to 0.1, with a fixed temperature of 0.1 based
on validation performance. Experiments are conducted on
a PyTorch framework using an RTX 4090 GPU with 24GB
memory, with a batch size of 16 and training for 50 epochs.

4.1. Comparison with the state-of-the-art

Results on the MER dataset. We compare EMOE with
the current state-of-the-art MER methods under the same
dataset settings (unaligned or aligned). Tab. 1 and Tab. 2 il-
lustrate the comparison on CMU-MOSI and CMU-MOSEI
datasets, respectively. Obviously, our proposed EMOE

Methods Setting ACC7 ↑ ACC2 ↑ F1 ↑ MAE ↓
EF-LSTM [52]

Aligned

47.4 78.2 77.9 0.620
LF-DNN [52] 51.7 83.5 83.1 0.568

TFN [63] 50.9 80.4 80.7 0.574
LMF [32] 52.3 84.7 84.5 0.564
MFN [64] 50.8 84.0 84.0 0.574

Graph-MFN [65] 51.6 84.6 84.5 0.553
MFM [45] 49.4 83.5 83.4 0.590
MulT [44] 52.3 82.7 82.8 0.572

MISA [14] ∗ 52.3 85.3 85.1 0.543
Self-MM [60] ∗ 53.2 84.5 84.3 0.540
MMIN [13] ∗ 50.1 83.6 83.5 0.580
DMD [29] ∗ 52.4 84.8 84.7 0.546

EMOE (Ours)∗ 54.1 85.3 85.3 0.536
EF-LSTM [52]

Unaligned

46.3 76.1 75.9 0.594
LF-DNN [52] 52.3 83.7 83.2 0.561

TFN [63] 50.2 84.2 84.0 0.573
LMF [32] 51.9 83.8 83.9 0.565
MFN [64] 51.3 83.2 83.3 0.567

Graph-MFN [65] 51.8 84.2 84.2 0.568
MFM [45] 52.0 82.3 82.5 0.572
MulT [44] 53.2 84.0 84.0 0.556

MISA [14] ∗ 51.0 84.8 84.8 0.557
Self-MM [60] ∗ 52.9 85.3 84.8 0.535
MMIN [13] ∗ 52.6 81.5 81.3 0.578
DMD [29] ∗ 53.1 84.7 84.7 0.536

EMOE (Ours)∗ 53.9 85.5 85.5 0.530
Table 2. Comparison on CMU-MOSEI dataset. Bold is the best.
ACC7, ACC2 and F1 values are shown as percentages. * indicates
BERT-based language features. See details in Sec. 4.1.

Methods ACC ↑ F1 ↑ P ↑ R ↑
MAG-BERT [41] 70.34 68.19 68.31 69.36

MulT [44] 72.58 69.36 70.73 69.47
MISA [14] 72.36 70.57 71.24 70.41

EMOE (Ours) 72.58 70.73 72.08 70.86
Table 3. Comparison on MIntRec dataset. Bold is the best. ACC,
F1, P and R values are shown as percentages. Refer to Sec. 4.1.

achieves better accuracy than other MER methods under
both unaligned and aligned settings. It is worth high-
lighting that EMOE exhibits significant improvements in
ACC7, achieving 1.5% increase over DMD [29] (47.7% vs.
46.2%) in the aligned setting and a 1.1% increase (47.8%
vs. 46.7%) in the unaligned setting on the CMU-MOSI
dataset. Likewise, other metrics also demonstrate varying
degrees of improvement. For example, the F1 score in-
creased by 0.5% (85.4% vs. 84.9%) compared to Self-MM
[60]. Such improvements are also observed on the CMU-
MOSEI dataset. Compare with these state-of-the-art meth-
ods that adopt a unified fusion paradigm (such as tensor
fusion, graph convolutional networks, and gating mecha-
nisms), the proposed EMOE efficiently learns the impor-
tance of different modalities for each sample and performs
dynamic modality fusion accordingly. Further, we also re-
tain the predictive capability of unimodal models by lever-
aging unimodal guidance for multimodal feature learning,
which ensures that multimodal learning accounts for both
the homogeneity and heterogeneity of the modalities.
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Figure 4. Sensitivity analysis on MER datasets. The results are obtained by varying the value of the corresponding hyperparameter, while
fixing the other hyper-parameters to the values adopted in the experiments. Refer to Sec. 4.2.

MoME UD ACC7 ACC2 F1 MAE
43.0 84.3 84.4 0.751

✓ 46.2 85.2 85.1 0.716
✓ 45.0 84.8 84.7 0.748

✓ ✓ 47.7 85.4 85.4 0.710
Table 4. Ablation study of the key components in EMOE on MOSI
dataset. Please see Sec. 4.2 for details.

Methods ACC7 ACC2 F1
Ours (w/o RE) 45.3 85.1 85.1

Ours (w/o WIS) 46.8 85.3 85.3
Ours 47.8 85.4 85.4

Table 5. Ablation study of the balancing mechanism in EMOE
on MOSI dataset. RE is router entropy loss, and WIS is weight-
importance similarity loss. Please see Sec. 4.2 for details.

Methods Setting ACC7 ACC2 F1
Sum Aligned 47.7 85.4 85.4

Concat 45.9 85.5 85.5
Sum Unaligned 47.8 85.4 85.3

Concat 47.4 85.4 85.4
Table 6. Fusion methods comparison on MOSI dataset. Sum is
summation and concat is concatenation. See Sec. 4.2 for details.

Results on the MIR dataset. To further validate the per-
formance of EMOE, we evaluate the effectiveness on the
MIntRec dataset and report the results in Tab. 3. Com-
pare with MISA [14], EMOE demonstrates superior perfor-
mance, particularly with Precision improving from 71.24%
to 72.08%. Other metrics also show varying degrees of im-
provement. Actually, similar to MER, MIR involves the
classification of human intentions. The complexity of the
human mental world results in varying sample-level im-
portance across different modalities (language, visual, and
acoustic) when expressing intentions. Therefore, the pro-
posed EMOE also achieves outstanding performance when
applied to the MIR task, outperforming other methods.

4.2. Ablation study
Quantitative analysis. We evaluate the effects of EMOE’s
key components on MOSI dataset, including Mixture of
Modality Expert (MoME), Unimodal Distillation (UD). The
results are shown in Tab. 4. Our observations are as follows.

Firstly, MoME significantly improves the performance

of MER, indicating that dynamically fusing features from
different modalities based on their importance at the sam-
ple level enables the model to better utilize useful infor-
mation from each modality for multimodal information fu-
sion. We also conduct ablation experiments on the expert
balance mechanism in MoME. As illustrated in Tab. 5, the
weight and contribution similarity loss, along with the rout-
ing entropy loss, significantly improve the model’s perfor-
mance. Secondly, we observe that incorporating UD into
the model yields notable improvements, particularly in the
ACC7 (47.7% vs. 46.2%) for coarse-grained classification.
This suggests that during modal fusion, there is often a
focus on the homogeneity between modalities, which can
lead to the neglect of valuable coarse-grained classification
information provided by individual modalities. UD effec-
tively supplements this modality-specific information, fill-
ing in the gaps left by fusion alone. Thirdly, to further
demonstrate the generality of MoME, we conduct compar-
ative experiments with different fusion strategies (summa-
tion and concatenation), as shown in Tab. 6. The results of
different fusion strategies are fairly close, suggesting that
weighted concatenation can still capture the importance of
different modalities, achieving dynamic fusion. Therefore,
our approach can serve, to some extent, as a paradigm for
solving such problems, with broad applicability.

Sensitivity analysis. To demonstrate the EMOE’s ro-
bustness, we conduct the sensitivity analysis for hyper-
parameters. Since the focus is on the model’s overall per-
formance, we test multiple settings of the loss parameters α,
λ1, and λ2, as well as the temperature value t of the routing
network, under both aligned and unaligned configurations
on the MOSI and MOSEI datasets. In particular, the sensi-
tivity analysis is conducted by varying the value of the cor-
responding hyper-parameter, while fixing the other hyper-
parameters to the values adopted in the experiments. Fig. 4
presents the averaged results of different parameters across
various datasets, illustrating that the overall metrics remain
relatively stable. Notably, when the temperature value t is
too low, it causes a catastrophic disproportion in the initial
weights of the router network, so we excluded those ex-
treme outliers from the analysis. Overall, it is evident that
the performance of the proposed approach is not sensitive
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(a) EMOE (w/o MoME., UD.) (b) EMOE (w/o UD.) (c) EMOE

Figure 5. T-SNE visualization of feature distribution on MOSI. The lighter the color, the more positive the emotion. EMOE demonstrates
promising performance in the emotion category. Please refer to Sec. 4.2.
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Figure 6. Visualization of modality importance and modality
weight on MOSI. The ones with frames represent the maximum
values in each column. Please refer to Sec. 4.2.

to the values of the hyper-parameters.
Visualization of feature distribution. To prove the ef-
fectiveness of the method, we visualize the feature distri-
butions of EMOE, EMOE (w/o MoME., UD.), and EMOE
(w/o UD.) in Fig. 5 for a quantitative comparison. Here,
EMOE (w/o MoME., UD.) refers to the baseline without
MoME and UD, while EMOE (w/o UD.) represents EMOE
with only MoME included. To visualize the feature distri-
bution, we use the test set of the CMU-MOSI dataset as our
sample. t-SNE projects selected sample features into 2D
space. Under EMOE (w/o MoME., UD.), the distribution
is irregular. EMOE (w/o UD.) improves it slightly, while
EMOE results show a more compact and consistent distri-
bution aligned with emotional intensity. It is important to
note that since this is a regression task, the ideal outcome
is a gradient-like distribution, not clustering. Therefore, our
results indicate that EMOE enhances feature distinctiveness
and better predicts emotions.
Visualization of the modality weight. To demonstrate
the effectiveness of MoME, we visualize modality impor-
tance and the modality weights across different samples,
as shown in Fig. 6. We select some samples from the
MOSI dataset and measured each modality’s importance

during fusion based on its single-modality prediction capa-
bility. We then compare these contributions to the modal-
ity weights obtained through training. Darker color blocks
indicate a higher proportion. The results indicate that the
predictive efficiency of different weights vary across sam-
ples, underscoring the importance of MoME. Additionally,
we observe a strong correlation between the learned modal-
ity weights and their respective predictive efficiency. This
alignment suggests that the model effectively captures and
utilizes the relevance of each modality, further demonstrat-
ing the efficiency and versatility of our proposed method.

5. Conclusion

In this paper, we explore the issue of inconsistent modal-
ity importance across different input samples in the mul-
timodal emotion recognition task. Our work introduces
a simple yet effective method for dynamic modality fu-
sion, namely Modality-Specific Enhanced Dynamic Emo-
tion Experts (EMOE). We utilize the Mixture of Modality
Experts to calculate the importance weights of each modal-
ity, achieving sample-level dynamic fusion. Additionally,
we guide multimodal learning through single-modal feature
distillation, endowing the prediction results with modality-
specific information. The effectiveness of EMOE has been
thoroughly validated against numerous popular counter-
parts across various MER and MIR tasks. We hope this
work will serve as a multimodal fusion paradigm, paving
the way for future research on related problems.
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