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Abstract

Diffusion Transformers have demonstrated remarkable
capabilities in image generation but often come with ex-
cessive parameterization, resulting in considerable infer-
ence overhead in real-world applications. In this work, we
present TinyFusion, a depth pruning method designed to re-
move redundant layers from diffusion transformers via end-
to-end learning. The core principle of our approach is to
create a pruned model with high recoverability, allowing it
to regain strong performance after fine-tuning. To accom-
plish this, we introduce a differentiable sampling technique
to make pruning learnable, paired with a co-optimized pa-
rameter to simulate future fine-tuning. While prior works
focus on minimizing loss or error after pruning, our method
explicitly models and optimizes the post-fine-tuning perfor-
mance of pruned models. Experimental results indicate
that this learnable paradigm offers substantial benefits for
layer pruning of diffusion transformers, surpassing exist-
ing importance-based and error-based methods. Addition-
ally, TinyFusion exhibits strong generalization across di-
verse architectures, such as DiTs, MARs, and SiTs. Ex-
periments with DiT-XL show that TinyFusion can craft a
shallow diffusion transformer at less than 7% of the pre-
training cost, achieving a 2× speedup with an FID score
of 2.86, outperforming competitors with comparable effi-
ciency. Code is available at https://github.com/
VainF/TinyFusion

1. Introduction
Diffusion Transformers have emerged as a cornerstone ar-
chitecture for generative tasks, achieving notable success
in areas such as image [11, 26, 40] and video synthe-
sis [25, 59]. This success has also led to the widespread
availability of high-quality pre-trained models on the Inter-
net, greatly accelerating and supporting the development of
various downstream applications [5, 16, 53, 55]. However,

*Equal contribution: Kunjun contributed equally to the method design,
analytical experiments, and manuscript preparation.

†Corresponding author

Transformer Layer

Transformer Layer

Transformer Layer

Transformer Layer

Differentiable Sampling of Layer Mask 𝖒 Recoverability Estimation with 𝚫𝚽 

1

0

1

0

Local Block

Joint
Opt.

Transformer Layer

Transformer Layer

Transformer Layer

Transformer Layer

Transformer Layer

Transformer Layer

𝚫𝚽 
(LoRA/Full)

𝐦𝐢𝐧𝖒,𝚫𝚽 𝓛(𝒙,𝚽 + 𝚫𝚽,𝖒)

𝝓𝟏

𝝓𝟐

𝝓𝟑

𝝓𝟒

Figure 1. This work presents a learnable approach for pruning the
depth of pre-trained diffusion transformers. Our method simulta-
neously optimizes a differentiable sampling process of layer masks
and a weight update to identify a highly recoverable solution, en-
suring that the pruned model maintains competitive performance
after fine-tuning.

pre-trained diffusion transformers usually come with con-
siderable inference costs due to the huge parameter scale,
which poses significant challenges for deployment. To re-
solve this problem, there has been growing interest from
both the research community and industry in developing
lightweight models [12, 23, 32, 58].

The efficiency of diffusion models is typically influ-
enced by various factors, including the number of sampling
steps [33, 43, 45, 46], operator design [7, 48, 52], compu-
tational precision [19, 30, 44], network width [3, 12] and
depth [6, 23, 36]. In this work, we focus on model compres-
sion through depth pruning [36, 54], which removes entire
layers from the network to reduce the latency. Depth prun-
ing offers a significant advantage in practice: it can achieve
a linear acceleration ratio relative to the compression rate
on both parallel and non-parallel devices. For example, as
will be demonstrated in this work, while 50% width prun-
ing [12] only yields a 1.6× speedup, pruning 50% of the
layers results in a 2× speedup. This makes depth pruning a
flexible and practical method for model compression.

This work follows a standard depth pruning frame-
work: unimportant layers are first removed, and the pruned
model is then fine-tuned for performance recovery. In
the literature, depth pruning techniques designed for dif-
fusion transformers or general transformers primarily fo-
cus on heuristic approaches, such as carefully designed
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importance scores [6, 36] or manually configured pruning
schemes [23, 54]. These methods adhere to a loss min-
imization principle [18, 37], aiming to identify solutions
that maintain low loss or error after pruning. This paper
investigates the effectiveness of this widely used principle
in the context of depth compression. Through experiments,
we examined the relationship between calibration loss ob-
served post-pruning and the performance after fine-tuning.
This is achieved by extensively sampling 100,000 models
via random pruning, exhibiting different levels of calibra-
tion loss in the searching space. Based on this, we analyzed
the effectiveness of existing pruning algorithms, such as the
feature similarity [6, 36] and sensitivity analysis [18], which
indeed achieve low calibration losses in the solution space.
However, the performance of all these models after fine-
tuning often falls short of expectations. This indicates that
the loss minimization principle may not be well-suited for
diffusion transformers.

Building on these insights, we reassessed the underly-
ing principles for effective layer pruning in diffusion trans-
formers. Fine-tuning diffusion transformers is an extremely
time-consuming process. Instead of searching for a model
that minimizes loss immediately after pruning, we propose
identifying candidate models with strong recoverability, en-
abling superior post-fine-tuning performance. Achieving
this goal is particularly challenging, as it requires the in-
tegration of two distinct processes, pruning and fine-tuning,
which involve non-differentiable operations and cannot be
directly optimized via gradient descent.

To this end, we propose a learnable depth pruning
method that effectively integrates pruning and fine-tuning.
As shown in Figure 1, we model the pruning and fine-
tuning of a diffusion transformer as a differentiable sam-
pling process of layer masks [13, 17, 22], combined with a
co-optimized weight update to simulate future fine-tuning.
Our objective is to iteratively refine this distribution so that
networks with higher recoverability are more likely to be
sampled. This is achieved through a straightforward strat-
egy: if a sampled pruning decision results in strong recover-
ability, similar pruning patterns will have an increased prob-
ability of being sampled. This approach promotes the ex-
ploration of potentially valuable solutions while disregard-
ing less effective ones. Additionally, the proposed method
is highly efficient, and we demonstrate that a suitable solu-
tion can emerge within a few training steps.

To evaluate the effectiveness of the proposed method,
we conduct extensive experiments on various transformer-
based diffusion models, including DiTs [40], MARs [29],
SiTs [34]. The learnable approach is highly efficient. It
is able to identify redundant layers in diffusion transform-
ers with 1-epoch training on the dataset, which effectively
crafts shallow diffusion transformers from pre-trained mod-
els with high recoverability. For instance, while the models

pruned by TinyFusion initially exhibit relatively high cal-
ibration loss after removing 50% of layers, they recover
quickly through fine-tuning, achieving a significantly more
competitive FID score (5.73 vs. 22.28) compared to base-
line methods that only minimize immediate loss, using just
1% of the pre-training cost. Additionally, we also ex-
plore the role of knowledge distillation in enhancing re-
coverability [20, 23] by introducing a MaskedKD variant.
MaskedKD mitigates the negative impact of the massive or
outlier activations [47] in hidden states, which can signifi-
cantly affect the performance and reliability of fine-tuning.
With MaskedKD, the FID score improves from 5.73 to 3.73
with only 1% of pre-training cost. Extending the training to
7% of the pre-training cost further reduces the FID to 2.86,
just 0.4 higher than the original model with doubled depth.

Therefore, the main contribution of this work lies in a
learnable method to craft shallow diffusion transformers
from pre-trained ones, which explicitly optimizes the re-
coverability of pruned models. The method is general for
various architectures, including DiTs, MARs and SiTs.

2. Related Works
Network Pruning and Depth Reduction. Network prun-
ing is a widely used approach for compressing pre-trained
diffusion models by eliminating redundant parameters [3,
12, 31, 51]. Diff-Pruning [12] introduces a gradient-
based technique to streamline the width of UNet, fol-
lowed by a simple fine-tuning to recover the performance.
SparseDM [51] applies sparsity to pre-trained diffusion
models via the Straight-Through Estimator (STE) [2],
achieving a 50% reduction in MACs with only a 1.22 in-
crease in FID on average. While width pruning and spar-
sity help reduce memory overhead, they often offer lim-
ited speed improvements, especially on parallel devices like
GPUs. Consequently, depth reduction has gained signifi-
cant attention in the past few years, as removing entire lay-
ers enables better speedup proportional to the pruning ra-
tio [24, 27, 28, 36, 54, 56, 58]. Adaptive depth reduction
techniques, such as MoD [41] and depth-aware transform-
ers [10], have also been proposed. Despite these advances,
most existing methods are still based on empirical or heuris-
tic strategies, such as carefully designed importance crite-
ria [36, 54], sensitivity analyses [18] or manually designed
schemes [23], which often do not yield strong performance
guarantee after fine-tuning.

Efficient Diffusion Transformers. Developing efficient
diffusion transformers has become an appealing focus
within the community, where significant efforts have been
made to enhance efficiency from various perspectives, in-
cluding linear attention mechanisms [15, 48, 52], compact
architectures [50], non-autoregressive transformers [4, 14,
38, 49], pruning [12, 23], quantization [19, 30, 44], feature
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Figure 2. The proposed TinyFusion method learns to perform a differentiable sampling of candidate solutions, jointly optimized with a
weight update to estimate recoverability. This approach aims to increase the likelihood of favorable solutions that ensure strong post-fine-
tuning performance. After training, local structures with the highest sampling probabilities are retained.

caching [35, 57], etc. In this work, we focus on compress-
ing the depth of pre-trained diffusion transformers and in-
troduce a learnable method that directly optimizes recover-
ability, which is able to achieve satisfactory results with low
re-training costs.

3. Method
3.1. Shallow Generative Transformers by Pruning

This work aims to derive a shallow diffusion transformer by
pruning a pre-trained model. For simplicity, all vectors in
this paper are column vectors. Consider a L-layer trans-
former, parameterized by ΦL×D = [ϕ1,ϕ2, · · · ,ϕL]

⊺,
where each element ϕi encompasses all learnable param-
eters of a transformer layer as a D-dim column vector,
which includes the weights of both attention layers and
MLPs. Depth pruning seeks to find a binary layer mask
mL×1 = [m1,m2, · · · ,mL]

⊺, that removes a layer by:

xi+1 = miϕi(xi) + (1−mi)xi =

{
ϕi(xi), if mi = 1,

xi, otherwise,
(1)

where the xi and ϕi(xi) refers to the input and output of
layer ϕi. To obtain the mask, a common paradigm in prior
work is to minimize the loss L after pruning, which can
be formulated as minm Ex [L(x,Φ,m)]. However, as we
will show in the experiments, this objective – though widely
adopted in discriminative tasks – may not be well-suited to
pruning diffusion transformers. Instead, we are more inter-
ested in the recoverability of pruned models. To achieve
this, we incorporate an additional weight update into the
optimization problem and extend the objective by:

min
m

min
∆Φ

Ex [L(x,Φ+∆Φ,m)]︸ ︷︷ ︸
Recoverability: Post-Fine-Tuning Performance

, (2)

where ∆Φ = {∆ϕ1,∆ϕ2, · · · ,∆ϕM} represents appro-
priate update from fine-tuning. The objective formulated by
Equation 2 poses two challenges: 1) The non-differentiable
nature of layer selection prevents direct optimization us-
ing gradient descent; 2) The inner optimization over the
retained layers makes it computationally intractable to ex-
plore the entire search space, as this process necessitates se-
lecting a candidate model and fine-tuning it for evaluation.
To address this, we propose TinyFusion that makes both the
pruning and recoverability optimizable.

3.2. TinyFusion: Learnable Depth Pruning

A Probabilistic Perspective. This work models Equa-
tion 2 from a probabilistic standpoint. We hypothesize that
the mask m produced by “ideal” pruning methods (might
be not unique) should follow a certain distribution. To
model this, it is intuitive to associate every possible mask
m with a probability value p(m), thus forming a categori-
cal distribution. Without any prior knowledge, the assess-
ment of pruning masks begins with a uniform distribution.
However, directly sampling from this initial distribution is
highly inefficient due to the vast search space. For in-
stance, pruning a 28-layer model by 50% involves evalu-
ating

(
28
14

)
= 40, 116, 600 possible solutions. To overcome

this challenge, this work introduces an advanced and learn-
able algorithm capable of using evaluation results as feed-
back to iteratively refine the mask distribution. The basic
idea is that if certain masks exhibit positive results, then
other masks with similar pattern may also be potential so-
lutions and thus should have a higher likelihood of sam-
pling in subsequent evaluations, allowing for a more fo-
cused search on promising solutions. However, the defi-
nition of “similarity pattern” is still unclear so far.
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Sampling Local Structures. In this work, we demon-
strate that local structures, as illustrated in Figure 2, can
serve as effective anchors for modeling the relationships
between different masks. If a pruning mask leads to cer-
tain local structures and yields competitive results after fine-
tuning, then other masks yielding the same local patterns are
also likely to be positive solutions. This can be achieved by
dividing the original model into K non-overlapping blocks,
represented as Φ = [Φ1,Φ2, · · · ,ΦK ]

⊺. For simplicity, we
assume each block Φk = [ϕk1, ϕk2, · · · , ϕkM ]

⊺ contains
exactly M layers, although they can have varied lengths.
Instead of performing global layer pruning, we propose an
N:M scheme for local layer pruning, where, for each block
Φk with M layers, N layers are retained. This results in a
set of local binary masks m = [m1,m2, . . . ,mK ]⊺. Simi-
larly, the distribution of a local mask mk is modeled using
a categorical distribution p(mk). We perform independent
sampling of local binary masks and combine them for prun-
ing, which presents the joint distribution:

p(m) = p(m1) · p(m2) · · · p(mK) (3)

If some local distributions p(mk) exhibit high confidence
in the corresponding blocks, the system will tend to sam-
ple those positive patterns frequently and keep active ex-
plorations in other local blocks. Based on this concept, we
introduce differential sampling to make the above process
learnable.

Differentiable Sampling. Considering the sampling pro-
cess of a local mask mk, which corresponds a local block
Φk and is modeled by a categorical distribution p(mk).
With the N:M scheme, there are

(
M
N

)
possible masks. We

construct a special matrix m̂
N :M to enumerate all possi-

ble masks. For example, 2:3 layer pruning will lead to the
candidate matrix m̂

2:3 = [[1, 1, 0] , [1, 0, 1] , [0, 1, 1]]. In
this case, each block will have three probabilities p(mk) =
[pk1, pk2, pk3]. For simplicity, we omit mk and k and use
pi to represent the probability of sampling i-th element in
m̂

N :M . A popular method to make a sampling process dif-
ferentiable is Gumbel-Softmax [13, 17, 22]:

y = one-hot

(
exp((gi + log pi)/τ)∑
j exp((gj + log pj)/τ)

)
. (4)

where gi is random noise drawn from the Gumbel distribu-
tion Gumbel(0, 1) and τ refers to the temperature term. The
output y is the index of the sampled mask. Here a Straight-
Through Estimator [2] is applied to the one-hot operation,
where the onehot operation is enabled during forward and
is treated as an identity function during backward. Leverag-
ing the one-hot index y and the candidate set m̂N :M , we can
draw a mask m ∼ p(m) through a simple index operation:

m = y⊺m̂ (5)

Pretrained 𝑊
A

r Identity f(x)=x

⨂𝑚𝑖 ⨂+ (1 − 𝑚𝑖)

𝑥𝑖

𝑥𝑖+1

B
𝑁 ×

Figure 3. An example of forward propagation with differentiable
pruning mask mi and LoRA for recoverability estimation.

Notably, when τ → 0, the STE gradients will approximate
the true gradients, yet with a higher variance which is neg-
ative for training [22]. Thus, a scheduler is typically em-
ployed to initiate training with a high temperature, gradu-
ally reducing it over time.

Joint Optimization with Recoverability. With differen-
tiable sampling, we are able to update the underlying prob-
ability using gradient descent. The training objective in this
work is to maximize the recoverability of sampled masks.
We reformulate the objective in Equation 2 by incorporat-
ing the learnable distribution:

min
{p(mk)}

min
∆Φ

Ex,{mk∼p(mk)} [L(x,Φ+∆Φ, {mk}]︸ ︷︷ ︸
Recoverability: Post-Fine-Tuning Performance

, (6)

where {p(mk)} = {p(m1), · · · , p(mK)} refer to the cat-
egorical distributions for different local blocks. Based on
this formulation, we further investigate how to incorporate
the fine-tuning information into the training. We propose
a joint optimization of the distribution and a weight update
∆Φ. Our key idea is to introduce a co-optimized update ∆Φ
for joint training. A straightforward way to craft the update
is to directly optimize the original network. However, the
parameter scale in a diffusion transformer is usually huge,
and a full optimization may make the training process costly
and not that efficient. To this end, we show that Parameter-
Efficient Fine-Tuning methods such as LoRA [21] can be a
good choice to obtain the required ∆Φ. For a single linear
matrix W in Φ, we simulate the fine-tuned weights as:

Wfine-tuned = W + α∆W = W + αBA, (7)

where α is a scalar hyperparameter that scales the contribu-
tion of ∆W. Using LoRA significantly reduces the num-
ber of parameters, facilitating efficient exploration of differ-
ent pruning decisions. As shown in Figure 3, we leverage
the sampled binary mask value mi as the gate and forward
the network with Equation 1, which suppresses the layer
outputs if the sampled mask is 0 for the current layer. In
addition, the previously mentioned STE will still provide
non-zero gradients to the pruned layer, allowing it to be fur-
ther updated. This is helpful in practice, since some layers
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Method Depth #Param Iters IS ↑ FID ↓ sFID ↓ Prec. ↑ Recall ↑ Sampling it/s ↑

DiT-XL/2 [40] 28 675 M 7,000 K 278.24 2.27 4.60 0.83 0.57 6.91
DiT-XL/2 [40] 28 675 M 2,000 K 240.22 2.73 4.46 0.83 0.55 6.91
DiT-XL/2 [40] 28 675 M 1,000 K 157.83 5.53 4.60 0.80 0.53 6.91
U-ViT-H/2 [1] 29 501 M 500 K 265.30 2.30 5.60 0.82 0.58 8.21
ShortGPT [36] 28⇒19 459 M 100 K 132.79 7.93 5.25 0.76 0.53 10.07
TinyDiT-D19 (KD) 28⇒19 459 M 100 K 242.29 2.90 4.63 0.84 0.54 10.07
TinyDiT-D19 (KD) 28⇒19 459 M 500 K 251.02 2.55 4.57 0.83 0.55 10.07

DiT-L/2 [40] 24 458 M 1,000 K 196.26 3.73 4.62 0.82 0.54 9.73
U-ViT-L [1] 21 287 M 300 K 221.29 3.44 6.58 0.83 0.52 13.48
U-DiT-L [50] 22 204 M 400 K 246.03 3.37 4.49 0.86 0.50 -
Diff-Pruning-50% [12] 28 338 M 100 K 186.02 3.85 4.92 0.82 0.54 10.43
Diff-Pruning-75% [12] 28 169 M 100 K 83.78 14.58 6.28 0.72 0.53 13.59
ShortGPT [36] 28⇒14 340 M 100 K 66.10 22.28 6.20 0.63 0.56 13.54
Flux-Lite [6] 28⇒14 340 M 100 K 54.54 25.92 5.98 0.62 0.55 13.54
Sensitivity Analysis [18] 28⇒14 340 M 100 K 70.36 21.15 6.22 0.63 0.57 13.54
Oracle (BK-SDM) [23] 28⇒14 340 M 100 K 141.18 7.43 6.09 0.75 0.55 13.54
TinyDiT-D14 28⇒14 340 M 100 K 151.88 5.73 4.91 0.80 0.55 13.54
TinyDiT-D14 28⇒14 340 M 500 K 198.85 3.92 5.69 0.78 0.58 13.54
TinyDiT-D14 (KD) 28⇒14 340 M 100 K 207.27 3.73 5.04 0.81 0.54 13.54
TinyDiT-D14 (KD) 28⇒14 340 M 500 K 234.50 2.86 4.75 0.82 0.55 13.54

DiT-B/2 [40] 12 130 M 1,000 K 119.63 10.12 5.39 0.73 0.55 28.30
U-DiT-B [50] 22 - 400 K 85.15 16.64 6.33 0.64 0.63 -
TinyDiT-D7 (KD) 14⇒7 173 M 500 K 166.91 5.87 5.43 0.78 0.53 26.81

Table 1. Layer pruning results for pre-trained DiT-XL/2. We focus on two settings: fast training with 100K optimization steps and sufficient
fine-tuning with 500K steps. Both fine-tuning and Masked Knowledge Distillation (a variant of KD, see Sec. 4.4) are used for recovery.

might not be competitive at the beginning, but may emerge
as competitive candidates with sufficient fine-tuning. Af-
ter training, we retain those local structures with the highest
probability and discard the additional update ∆Φ. Then,
standard fine-tuning techniques can be applied for recovery.

4. Experiments
4.1. Experimental Settings

Our experiments were mainly conducted on Diffusion
Transformers [40] for class-conditional image generation
on ImageNet 256 × 256 [8]. For evaluation, we fol-
low [9, 40] and report the Fréchet inception distance (FID),
Sliding Fréchet Inception Distance (sFID), Inception Scores
(IS), Precision and Recall using the official reference im-
ages [9]. Additionally, we also extend our methods to other
models, including MARs [29] and SiTs [34]. Experimental
details can be found in the following sections and appendix.

4.2. Results on Diffusion Transformers

DiT. This work focuses on the compression of DiTs [40].
We consider two primary strategies as baselines: the first in-
volves using manually crafted patterns to eliminate layers.
For instance, BK-SDM [23] employs heuristic assumptions
to determine the significance of specific layers, such as the
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Figure 4. Depth pruning closely aligns with the theoretical linear
speed-up relative to the compression ratio.

initial or final layers. The second strategy is based on sys-
tematically designed criteria to evaluate layer importance,
such as analyzing the similarity between block inputs and
outputs to determine redundancy [6, 36]; this approach typi-
cally aims to minimize performance degradation after prun-
ing. Table 1 presents representatives from both strategies,
including ShortGPT [36], Flux-Lite [6], Diff-Pruning [12],
Sensitivity Analysis [18] and BK-SDM [23], which serve
as baselines for comparison. Additionally, we compared
our method to other architectures, such as UViT [1], U-
DiT [50], and DTR [39], which have demonstrated im-
proved training efficiency over conventional DiTs.
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Method Depth Params Epochs FID IS

MAR-Large 32 479 M 400 1.78 296.0
MAR-Base 24 208 M 400 2.31 281.7
TinyMAR-D16 32⇒16 277 M 40 2.28 283.4

SiT-XL/2 28 675 M 1,400 2.06 277.5
TinySiT-D14 28⇒14 340 M 100 3.02 220.1

Table 2. Depth pruning results on MARs [29] and SiTs [34].

Table 1 presents our findings on compressing a pre-
trained DiT-XL/2 [40]. This model contains 28 transformer
layers structured with alternating Attention and MLP lay-
ers. The proposed method seeks to identify shallow trans-
formers with {7, 14, 19} sub-layers from these 28 layers,
to maximize the post-fine-tuning performance. With only
7% of the original training cost (500K steps compared to
7M steps), TinyDiT achieves competitive performance rela-
tive to both pruning-based methods and novel architectures.
For instance, a DiT-L model trained from scratch for 1M
steps achieves an FID score of 3.73 with 458M parameters.
In contrast, the compressed TinyDiT-D14 model, with only
340M parameters and a faster sampling speed (13.54 it/s vs.
9.73 it/s), yields a significantly improved FID of 2.86. On
parallel devices like GPUs, the primary bottleneck in trans-
formers arises from sequential operations within each layer,
which becomes more pronounced as the number of layers
increases. Depth pruning mitigates this bottleneck by re-
moving entire transformer layers, thereby reducing compu-
tational depth and optimizing the workload. By compar-
ison, width pruning only reduces the number of neurons
within each layer, limiting its speed-up potential. As shown
in Figure 4, depth pruning closely matches the theoretical
linear speed-up as the compression ratio increases, outper-
forming width pruning methods such as Diff-Pruning [12].

MAR & SiT. Masked Autoregressive (MAR) [29] mod-
els employ a diffusion loss-based autoregressive framework
in a continuous-valued space, achieving high-quality image
generation without the need for discrete tokenization. The
MAR-Large model, with 32 transformer blocks, serves as
the baseline for comparison. Applying our pruning method,
we reduced MAR to a 16-block variant, TinyMAR-D16,
achieving an FID of 2.28 and surpassing the performance
of the 24-block MAR-Base model with only 10% of the
original training cost (40 epochs vs. 400 epochs). Our ap-
proach also generalizes to Scalable Interpolant Transform-
ers (SiT) [34], an extension of the DiT architecture that
employs a flow-based interpolant framework to bridge data
and noise distributions. The SiT-XL/2 model, comprising
28 transformer blocks, was pruned by 50%, creating the
TinySiT-D14 model. This pruned model retains competi-
tive performance at only 7% of the original training cost
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Figure 5. Distribution of calibration loss through random sampling
of candidate models. The proposed learnable method achieves the
best post-fine-tuning FID yet has a relatively high initial loss com-
pared to other baselines.

Strategy Loss IS FID Prec. Recall

Max. Loss 37.69 NaN NaN NaN NaN
Med. Loss 0.99 149.51 6.45 0.78 0.53
Min. Loss 0.20 73.10 20.69 0.63 0.58
Sensitivity 0.21 70.36 21.15 0.63 0.57
ShortGPT [36] 0.20 66.10 22.28 0.63 0.56
Flux-Lite [6] 0.85 54.54 25.92 0.62 0.55
Oracle (BK-SDM) 1.28 141.18 7.43 0.75 0.55
Learnable 0.98 151.88 5.73 0.80 0.55

Table 3. Directly minimizing the calibration loss may lead to
non-optimal solutions. All pruned models are fine-tuned without
knowledge distillation (KD) for 100K steps. We evaluate the fol-
lowing baselines: (1) Loss – We randomly prune a DiT-XL model
to generate 100,000 models and select models with different cali-
bration losses for fine-tuning; (2) Metric-based Methods – such as
Sensitivity Analysis and ShortGPT; (3) Oracle – We retain the first
and last layers while uniformly pruning the intermediate layers fol-
lowing [23]; (4) Learnable – The proposed learnable method.

(100 epochs vs. 1400 epochs). As shown in Table 2, these
results demonstrate that our pruning method is adaptable
across different diffusion transformer variants, effectively
reducing the model size and training time while maintain-
ing strong performance.

4.3. Analytical Experiments

Is Calibration Loss the Primary Determinant? An es-
sential question in depth pruning is how to identify re-
dundant layers in pre-trained diffusion transformers. A
common approach involves minimizing the calibration loss,
based on the assumption that a model with lower calibra-
tion loss after pruning will exhibit superior performance.
However, we demonstrate in this section that this hypothesis
may not hold for diffusion transformers. We begin by ex-
amining the solution space through random depth pruning
at a 50% ratio, generating 100,000 candidate models with
calibration losses ranging from 0.195 to 37.694 (see Fig-
ure 5). From these candidates, we select models with the
highest and lowest calibration losses for fine-tuning. No-
tably, both models result in unfavorable outcomes, such as
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Pattern ∆W IS ↑ FID ↓ sFID ↓ Prec. ↑ Recall ↑
1:2 LoRA 54.75 33.39 29.56 0.56 0.62
2:4 LoRA 53.07 34.21 27.61 0.55 0.63
7:14 LoRA 34.97 49.41 28.48 0.46 0.56

1:2 Full 53.11 35.77 32.68 0.54 0.61
2:4 Full 53.63 34.41 29.93 0.55 0.62
7:14 Full 45.03 38.76 31.31 0.52 0.62

1:2 Frozen 45.08 39.56 31.13 0.52 0.60
2:4 Frozen 48.09 37.82 31.91 0.53 0.62
7:14 Frozen 34.09 49.75 31.06 0.46 0.56

Table 4. Performance comparison of TinyDiT-D14 models com-
pressed using various pruning schemes and recoverability estima-
tion strategies. All models are fine-tuned for 10,000 steps, and FID
scores are computed on 10,000 sampled images with 64 timesteps.

unstable training (NaN) or suboptimal FID scores (20.69),
as shown in Table 3. Additionally, we conduct a sensitiv-
ity analysis [18], a commonly used technique to identify
crucial layers by measuring loss disturbance upon layer re-
moval, which produces a model with a low calibration loss
of 0.21. However, this model’s FID score is similar to that
of the model with the lowest calibration loss. Approaches
like ShortGPT [36] and a recent approach for compressing
the Flux model [6], which estimate similarity or minimize
mean squared error (MSE) between input and output states,
reveal a similar trend. In contrast, methods with mod-
erate calibration losses, such as Oracle (often considered
less competitive) and one of the randomly pruned models,
achieve FID scores of 7.43 and 6.45, respectively, demon-
strating significantly better performance than models with
minimal calibration loss. These findings suggest that, while
calibration loss may influence post-fine-tuning performance
to some extent, it is not the primary determinant for diffu-
sion transformers. Instead, the model’s capacity for perfor-
mance recovery during fine-tuning, termed “recoverability,”
appears to be more critical. Notably, assessing recoverabil-
ity using traditional metrics is challenging, as it requires a
learning process across the entire dataset. This observation
also explains why the proposed method achieves superior
results (5.73) compared to baseline methods.

Learnable Modeling of Recoverability. To overcome
the limitations of traditional metric-based methods, this
study introduces a learnable approach to jointly optimize
pruning and model recoverability. Table 3 illustrates dif-
ferent configurations of the learnable method, including the
local pruning scheme and update strategies for recoverabil-
ity estimation. For a 28-layer DiT-XL/2 with a fixed 50%
layer pruning rate, we examine three splitting schemes:
1:2, 2:4, and 7:14. In the 1:2 scheme, for example, every
two transformer layers form a local block, with one layer
pruned. Larger blocks introduce greater diversity but sig-
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Figure 6. Visualization of the 2:4 decisions in the learnable prun-
ing, with the confidence level of each decision highlighted through
varying degrees of transparency. More visualization results for 1:2
and 7:14 schemes are available in the appendix.

nificantly expand the search space. For instance, the 7:14
scheme divides the model into two segments, each retain-
ing 7 layers, resulting in

(
14
7

)
× 2 = 6,864 possible solu-

tions. Conversely, smaller blocks significantly reduce op-
timization difficulty and offer greater flexibility. When the
distribution of one block converges, the learning on other
blocks can still progress. As shown in Table 3, the 1:2 con-
figuration achieves the optimal performance after 10K fine-
tuning iterations. Additionally, our empirical findings un-
derscore the effectiveness of recoverability estimation using
LoRA or full fine-tuning. Both methods yield positive post-
fine-tuning outcomes, with LoRA achieving superior results
(FID = 33.39) compared to full fine-tuning (FID = 35.77)
under the 1:2 scheme, as LoRA has fewer trainable parame-
ters (0.9% relative to full parameter training) and can adapt
more efficiently to the randomness of sampling.

Visualization of Learnable Decisions. To gain deeper in-
sights into the role of the learnable method in pruning, we
visualize the learning process in Figure 6. From bottom to
top, the i-th curve represents the i-th layer of the pruned
model, displaying its layer index in the original DiT-XL/2.
This visualization illustrates the dynamics of pruning de-
cisions over training iterations, where the transparency of
each data point indicates the probability of being sampled.
The learnable method shows its capacity to explore and
handle various layer combinations. Pruning decisions for
certain layers, such as the 7-th and 8-th in the compressed
model, are determined quickly and remain stable through-
out the process. In contrast, other layers, like the 0-th layer,
require additional fine-tuning to estimate their recoverabil-
ity. Notably, some decisions may change in the later stages
once these layers have been sufficiently optimized. The
training process ultimately concludes with high sampling
probabilities, suggesting a converged learning process with
distributions approaching a one-hot configuration.
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Figure 7. Images generated by TinyDiT-D14 on ImageNet 224×224, pruned and distilled from a DiT-XL/2.
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Figure 8. Visualization of massive activations [47] in DiTs. Both
teacher and student models display large activation values in their
hidden states. Directly distilling these massive activations may
result in excessively large losses and unstable training.

4.4. Knowledge Distillation for Recovery

In this work, we also explore Knowledge Distillation (KD)
as an enhanced fine-tuning method. As demonstrated in Ta-
ble 5, we first apply the vanilla knowledge distillation ap-
proach proposed by Hinton [20] to fine-tune the TinyDiT-
D14, supervised by the outputs of the DiT-XL/2, which ef-
fectively reduces the FID at 100K steps from 5.79 to 4.66.

Masked Knowledge Distillation. Further, we evaluate
representation distillation (RepKD) [23, 42] to transfer hid-
den states from the teacher to the student. It is important to
note that depth pruning does not alter the hidden dimension
of diffusion transformers, allowing for direct alignment of
intermediate hidden states. For practical implementation,
we use the block defined in Section 3.2 as the basic unit,
ensuring that the pruned local structure in the pruned DiT
aligns with the output of the original structure in the teacher
model. However, we encountered significant training dif-
ficulties with this straightforward RepKD approach due to
massive activations in the hidden states, where both teacher
and student models occasionally exhibit large activation
values, as shown in Figure 8. Directly distilling these ex-
treme activations can result in excessively high loss values,

fine-tuning Strategy Init. Distill. Loss FID @ 100K

fine-tuning - 5.79
Logits KD - 4.66

RepKD 2840.1 NaN
Masked KD (0.1σ) 15.4 NaN
Masked KD (2σ) 387.1 3.73
Masked KD (4σ) 391.4 3.75

Table 5. Evaluation of different fine-tuning strategies for recovery.
Masked RepKD ignores those massive activations (|x| > kσx) in
both teacher and student to enables effective knowledge transfer.

impairing the performance of the student model. This issue
has also been observed in other transformer-based genera-
tive models, such as certain LLMs [47]. To address this,
we propose a Masked RepKD variant that selectively ex-
cludes these massive activations during knowledge transfer.
We employ a simple thresholding method, |x− µx| < kσx,
which ignores the loss associated with these extreme acti-
vations. As shown in Table 5, the Masked RepKD approach
with moderate thresholds of 2σ and 4σ achieves satisfactory
results, demonstrating the robustness of our method.

Visualization of Generated Images. In Figure 7, We vi-
sualize the generated images of the learned TinyDiT-D14,
distilled from an off-the-shelf DiT-XL/2 model. More vi-
sualization results for SiTs and MARs can be found in the
supplementary materials.

5. Conclusions
This work introduces TinyFusion, a learnable method for
accelerating diffusion transformers by removing redundant
layers. It models the recoverability of pruned models as an
optimizable objective and incorporates differentiable sam-
pling for end-to-end training. Our method generalizes to
various architectures like DiTs, MARs and SiTs.
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pher Ré. Flashattention: Fast and memory-efficient exact at-
tention with io-awareness. Advances in Neural Information
Processing Systems, 35:16344–16359, 2022.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[9] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in neural informa-
tion processing systems, 34:8780–8794, 2021.

[10] Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael
Auli. Depth-adaptive transformer. arXiv preprint
arXiv:1910.10073, 2019.

[11] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim
Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik
Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling recti-
fied flow transformers for high-resolution image synthesis.
In Forty-first International Conference on Machine Learn-
ing, 2024.

[12] Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural
pruning for diffusion models. In Advances in Neural Infor-
mation Processing Systems, 2023.

[13] Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg
Heinrich, Jeff Pool, Jan Kautz, Pavlo Molchanov, and Xin-
chao Wang. Maskllm: Learnable semi-structured sparsity for
large language models. arXiv preprint arXiv:2409.17481,
2024.

[14] Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li,
and Junshi Huang. Scaling diffusion transformers to 16 bil-
lion parameters. arXiv preprint arXiv:2407.11633, 2024.

[15] Zhengcong Fei, Mingyuan Fan, Changqian Yu, Debang Li,
Youqiang Zhang, and Junshi Huang. Dimba: Transformer-
mamba diffusion models. arXiv preprint arXiv:2406.01159,
2024.

[16] Shanghua Gao, Zhijie Lin, Xingyu Xie, Pan Zhou, Ming-
Ming Cheng, and Shuicheng Yan. Editanything: Empower-
ing unparalleled flexibility in image editing and generation.
In Proceedings of the 31st ACM International Conference on
Multimedia, Demo track, 2023.

[17] Emil Julius Gumbel. Statistical theory of extreme values and
some practical applications: a series of lectures. US Gov-
ernment Printing Office, 1954.

[18] Song Han, Jeff Pool, John Tran, and William Dally. Learn-
ing both weights and connections for efficient neural net-
work. Advances in neural information processing systems,
28, 2015.

[19] Yefei He, Luping Liu, Jing Liu, Weijia Wu, Hong Zhou, and
Bohan Zhuang. Ptqd: Accurate post-training quantization
for diffusion models. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

[20] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

[21] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
LoRA: Low-rank adaptation of large language models. In In-
ternational Conference on Learning Representations, 2022.

[22] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

[23] Bo-Kyeong Kim, Hyoung-Kyu Song, Thibault Castells, and
Shinkook Choi. Bk-sdm: Architecturally compressed stable
diffusion for efficient text-to-image generation. In Workshop
on Efficient Systems for Foundation Models@ ICML2023,
2023.

[24] Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault
Castells, Shinkook Choi, Junho Shin, and Hyoung-Kyu
Song. Shortened llama: A simple depth pruning for large lan-
guage models. arXiv preprint arXiv:2402.02834, 11, 2024.

[25] PKU-Yuan Lab and Tuzhan AI etc. Open-sora-plan, 2024.
[26] Black Forest Labs. FLUX, 2024.
[27] Youngwan Lee, Yong-Ju Lee, and Sung Ju Hwang. Dit-

pruner: Pruning diffusion transformer models for text-to-
image synthesis using human preference scores.

[28] Youngwan Lee, Kwanyong Park, Yoorhim Cho, Yong-Ju
Lee, and Sung Ju Hwang. Koala: self-attention mat-
ters in knowledge distillation of latent diffusion models for
memory-efficient and fast image synthesis. arXiv e-prints,
pages arXiv–2312, 2023.

18152



[29] Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and
Kaiming He. Autoregressive image generation without vec-
tor quantization. arXiv preprint arXiv:2406.11838, 2024.

[30] Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen
Dong, Daniel Kang, Shanghang Zhang, and Kurt Keutzer.
Q-diffusion: Quantizing diffusion models. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 17535–17545, 2023.

[31] Yanyu Li, Huan Wang, Qing Jin, Ju Hu, Pavlo Chemerys,
Yun Fu, Yanzhi Wang, Sergey Tulyakov, and Jian Ren. Snap-
fusion: Text-to-image diffusion model on mobile devices
within two seconds. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

[32] Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-
lightning: Progressive adversarial diffusion distillation.
arXiv preprint arXiv:2402.13929, 2024.

[33] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion
probabilistic model sampling in around 10 steps. Advances
in Neural Information Processing Systems, 35:5775–5787,
2022.

[34] Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M
Boffi, Eric Vanden-Eijnden, and Saining Xie. Sit: Explor-
ing flow and diffusion-based generative models with scalable
interpolant transformers. arXiv preprint arXiv:2401.08740,
2024.

[35] Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao
Wang. Learning-to-cache: Accelerating diffusion trans-
former via layer caching, 2024.

[36] Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng Chen.
Shortgpt: Layers in large language models are more redun-
dant than you expect. arXiv preprint arXiv:2403.03853,
2024.

[37] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for re-
source efficient inference. arXiv preprint arXiv:1611.06440,
2016.

[38] Zanlin Ni, Yulin Wang, Renping Zhou, Jiayi Guo, Jinyi
Hu, Zhiyuan Liu, Shiji Song, Yuan Yao, and Gao Huang.
Revisiting non-autoregressive transformers for efficient im-
age synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7007–
7016, 2024.

[39] Byeongjun Park, Sangmin Woo, Hyojun Go, Jin-Young Kim,
and Changick Kim. Denoising task routing for diffusion
models. arXiv preprint arXiv:2310.07138, 2023.

[40] William Peebles and Saining Xie. Scalable diffusion models
with transformers. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 4195–4205,
2023.

[41] David Raposo, Sam Ritter, Blake Richards, Timothy
Lillicrap, Peter Conway Humphreys, and Adam San-
toro. Mixture-of-depths: Dynamically allocating com-
pute in transformer-based language models. arXiv preprint
arXiv:2404.02258, 2024.

[42] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:

Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014.

[43] Tim Salimans and Jonathan Ho. Progressive distillation
for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022.

[44] Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and
Yan Yan. Post-training quantization on diffusion models. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 1972–1981, 2023.

[45] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

[46] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

[47] Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu.
Massive activations in large language models. arXiv preprint
arXiv:2402.17762, 2024.

[48] Yao Teng, Yue Wu, Han Shi, Xuefei Ning, Guohao Dai, Yu
Wang, Zhenguo Li, and Xihui Liu. Dim: Diffusion mamba
for efficient high-resolution image synthesis. arXiv preprint
arXiv:2405.14224, 2024.

[49] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Li-
wei Wang. Visual autoregressive modeling: Scalable image
generation via next-scale prediction. 2024.

[50] Yuchuan Tian, Zhijun Tu, Hanting Chen, Jie Hu, Chao Xu,
and Yunhe Wang. U-dits: Downsample tokens in u-shaped
diffusion transformers. arXiv preprint arXiv:2405.02730,
2024.

[51] Kafeng Wang, Jianfei Chen, He Li, Zhenpeng Mi, and Jun
Zhu. Sparsedm: Toward sparse efficient diffusion models.
arXiv preprint arXiv:2404.10445, 2024.

[52] Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Yujun Lin,
Zhekai Zhang, Muyang Li, Yao Lu, and Song Han. Sana: Ef-
ficient high-resolution image synthesis with linear diffusion
transformers. arXiv preprint arXiv:2410.10629, 2024.

[53] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Run-
sheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, and Ming-
Hsuan Yang. Diffusion models: A comprehensive survey of
methods and applications. ACM Computing Surveys, 56(4):
1–39, 2023.

[54] Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu,
and Li Cui. Width & depth pruning for vision transformers.
In Conference on Artificial Intelligence (AAAI), 2022.

[55] Tao Yu, Runseng Feng, Ruoyu Feng, Jinming Liu, Xin
Jin, Wenjun Zeng, and Zhibo Chen. Inpaint anything:
Segment anything meets image inpainting. arXiv preprint
arXiv:2304.06790, 2023.

[56] Dingkun Zhang, Sijia Li, Chen Chen, Qingsong Xie, and
Haonan Lu. Laptop-diff: Layer pruning and normalized dis-
tillation for compressing diffusion models. arXiv preprint
arXiv:2404.11098, 2024.

[57] Xuanlei Zhao, Xiaolong Jin, Kai Wang, and Yang You.
Real-time video generation with pyramid attention broad-
cast. arXiv preprint arXiv:2408.12588, 2024.

[58] Yang Zhao, Yanwu Xu, Zhisheng Xiao, and Tingbo Hou.
Mobilediffusion: Subsecond text-to-image generation on
mobile devices. arXiv preprint arXiv:2311.16567, 2023.

18153



[59] Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen,
Shenggui Li, Hongxin Liu, Yukun Zhou, Tianyi Li, and Yang
You. Open-sora: Democratizing efficient video production
for all, 2024.

18154


	. Introduction
	. Related Works
	. Method
	. Shallow Generative Transformers by Pruning
	. TinyFusion: Learnable Depth Pruning

	. Experiments
	. Experimental Settings
	. Results on Diffusion Transformers
	. Analytical Experiments
	. Knowledge Distillation for Recovery

	. Conclusions

