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Low-light and Blurry (↓Noise) RetinexFormer [3] fails with Blur DarkIR (Ours)

Low-light and Noisy (↓Blur) LEDNet [65] fails with Noise DarkIR (Ours)

Figure 1. Previous Low-light Image Enhancement (LLIE) and restoration methods are not robust to blur and illumination changes. Our
multi-task model is able to restore real low-light images under varying illumination, noise and blur conditions. Zoom-in to see details.

Abstract

Photography during night or in dark conditions typi-
cally suffers from noise, low-light and blurring issues due
to the dim environment and the common use of long expo-
sure. Although Deblurring and Low-light Image Enhance-
ment (LLIE) are related under these conditions, most ap-
proaches to image restoration solve these tasks separately.
In this paper, we present an efficient and robust neural net-
work for multi-task low-light image restoration. Instead of
following the current tendency of Transformer-based mod-
els, we propose new attention mechanisms to enhance the
receptive field of efficient CNNs. Our method reduces the
computational costs in terms of parameters and MAC oper-
ations compared to previous methods. Our model, DarkIR,
achieves new state-of-the-art results on the popular LOL-
Blur, LOLv2 and Real-LOLBlur datasets, being able to gen-
eralize on real-world night and dark images.

1. Introduction
During night or low-light conditions, we can define the im-
age formation process as follows

y= γ (x⊗ k) + n, (1)

where y is the observed dim image, x the unperturbed
captured scene, k represents the lens (point-spread func-
tion) PSF blurring kernel, n is the additive sensor noise,
and γ is a function to control the dynamic range and pixel
saturation. We use ⊗ to represent the convolution operator.

In comparison with daytime conditions, at low-light, the
noise (shot and read) is substantially higher. During night
photography, cameras usually use long exposure (slow shut-
ter speed) to allow more available light to illuminate the
image. However, long exposure could lead to ghosting and
blurring artifacts. These image degradations are more no-
table on smartphones, since these have a fixed aperture and
limited optics. For these reasons, joint low-light enhance-
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ment and deblurring is paramount for mobile computational
photography [12, 65] — see Figure 1 samples.

Under any circumstances, the captured image will
present certain levels of noise and blur [13]. Using a tripod
to capture steady images, we can notably reduce the blur.
Moreover, if we use proper illumination, noise can also be
reduced [1, 20].

However, nowadays most photographs are captured us-
ing (handheld) smartphones. Due to the limited sensor size
and optics, these employ more complex Image Signal Pro-
cessors (ISPs) [10, 12] in comparison to DSLM (Digital
Single-Lens Mirrorless) cameras. Smartphone photogra-
phy is still far from DSLM quality standards, however, re-
cent research in low-level computer vision and computa-
tional photography allows to close the gap. Low-light im-
age enhancement (LLIE) [3, 14, 30, 31, 45, 64], image de-
blurring [21, 25, 38, 40] and night photography enhance-
ment [42, 65] are popular tasks.

For instance, avoiding the presence of blur due to hand
tremor (hand shaking) has been well-studied, even in low-
light scenarios [29, 62]. However, in most cases, these tasks
are solved individually, thus, the state-of-the-art methods
for image deblurring do not generalize to nighttime images,
and the best methods for low-light enhancement cannot re-
duce the notable blur. This presents a clear limitation, since
multiple task-specific models need to be fine-tuned, stored
and applied in sequence, which limits their applications in
real-world cases.

To the best of our knowledge, very few works aim to
solve these tasks (denoising, deblurring and LLIE) in a
jointly end-to-end manner [6, 33, 63, 65], being LED-
Net [65] the most notable work. We focus on this research
direction since exploiting the correlation between the degra-
dations allows us to achieve the best performance in terms
of image reconstruction, usability and efficiency.

Our contribution We propose a convolutional neural net-
work (CNN) that operates in both the spatial and frequency
domains. In the spatial domain, we focus on solving the
noise n and the non-uniform blur k, we achieve this by us-
ing large receptive field spatial attention. On the other hand,
in the Fourier domain, we are able to enhance the low-light
conditions easily [28, 44], due to the global nature of the
task. We can summarize our contributions as:
1. We design a lightweight neural network with frequency

attention, and large receptive field attention, combining
spatial and frequency information.

2. Our model, DarkIR, achieves state-of-the-art results on
the popular LOLBlur and Real-LOLBlur datasets [65],
improving +1dB in PSNR over LEDNet [65], while hav-
ing less computational cost.

3. DarkIR represents a new baseline for multi-task
night/dark image enhancement.

2. Related Work

Image Deblurring We can see decades of research on re-
constructing sharp scenes. Reducing the blur in an image is
divided into blind and non-blind methods. While the non-
blind methods consider the blurring kernel k (or PSF) to
process the image, the blind methods do not have any prior
knowledge about the blur degradation.

In recent years, multiple deep learning-based approaches
have been proposed for blind and non-blind deblurring [25,
38], surpassing traditional methods in both scenarios. The
non-blind approaches offer a great solution, considering
that only blurry-sharp image pairs are required for training
such models, and we do not require PSF estimation or any
information about the sensor. Most of these approaches are
sensor-agnostic i.e., they can enhance sRGB images cap-
tured from different cameras.

Nowadays, a big part of these methods are based on con-
volutional neural networks (CNNs) [4, 25, 37, 57]. In De-
blurGAN [25], the authors use Generative Adversarial Net-
works (GANs) to solve this problem. More recently, the
authors of [24] implemented an efficient frequency domain
based transformer for deblurring. We also find iterative
methods and diffusion models [33, 49].

Low-Light Image Enhancement (LLIE) The first
methods used to consider image statistics or prior informa-
tion [2, 18], being most of them based on the well-known
Retinex Theory [26].

Following the deep learning tendency, nowadays LLIE
methods are based on Convolutional Neural Networks
(CNNs) such as RetinexNet [48] (and the corresponding
LOL dataset), ZeroDCE [16] and SCI [35]. Recent meth-
ods explore the power of transformers in this task, such as
in the case of RetinexFormer [3], or use Fourier frequency
information to enhance the amplitude of the image, like in
FourLLIE [44].

Low-Light Blur Enhancement. Even though image de-
blurring and low-light enhancement are tasks that capture
great attention, solving both tasks at the same time is a
challenging task, and very few works in the literature tackle
it [6, 33, 63, 65]. NBDN [6] proposes a non-blind network
to enhance night saturated images. When deconvolving the
image to its sharp version, the presence of noise or saturated
regions needs to be kept in mind by the algorithm. With this
work, the authors proved that previous methods had issues
in solving this specific task.

On the other hand, with LEDNet [65], the authors try
to solve the problem of low-light enhancement considering
that the images are also blurry. This is a realistic assump-
tion, since smartphones need long exposure times for low-
light environments. They developed an encoder-decoder
network to solve this problem and introduced the popular
LOLBlur and Real-LOLBlur datasets.
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Figure 2. General diagram of DarkIR. The neural network follows an encoder-decoder architecture. We use different blocks for encoding
and decoding that follow the Metaformer structure [56]. The encoder focuses on the low-light illumination issues using Fourier information.
Thus, the encoder produces a low-resolution reconstructed image x̂↓8 with corrected illumination. The decoder focuses on upscaling and
reducing the blur using the prior illumination-enhanced encoded features. To achieve this, the decoder uses large receptive field spatial
attention. This design allows our lightweight model to have less parameters and FLOPs than previous methods.

3. Method

We follow Metaformer [56] to design our neural network.
This design simplifies transformer-based architectures into
simple blocks with 2 components: global attention (e.g., to-
ken mixer), and a feed-forward network (FFN, MLP). The
typical formulation for these blocks is:

z1 = Attention(LayerNorm(z)) + z (2)
z2 = FFN(LayerNorm(z1)) + z1 (3)

where z are the input features and z2 the output features
of the block. Most popular image restoration models, such
as NAFNet [7], use the same structure and adapt the Atten-
tion module to different tasks.

We improve the metaformer structure by developing
LLIE and deblurring specific blocks. Furthermore, we use
simple gates (SG) and simplified channel attention (SCA)
instead of activations as [7].

Low-light Enhancement can be solved efficiently in the
frequency domain.

Many works [28, 44] proved that the low-light conditions
are highly correlated with the amplitude of the image in the
Fourier domain. Thus, by enhancing just the amplitude of
an image (without touching the phase), we can substantially
correct the illumination of the image. Moreover, this prop-
erty stands at different resolutions [28]. Therefore, we can
estimate an illumination-enhanced image at low-resolution
and upscale it.

Sharpening and Reducing Blur usually require large re-
ceptive fields, this could be achieved by extracting deep
features while downsampling the image – NAFNet’s ap-
proach [7]. An alternative would be to use large ker-
nels [32], however, this could lead to more computational
complexity and memory requirements.

DarkIR Model In Figure 2, we illustrate our model. Un-
like most previous methods, we use two different blocks for
the encoder and decoder. The idea behind this asymme-
try is to perform low-light enhancement at low-resolution
in the encoder, and reduce the blur in the decoder, follow-
ing a similar strategy as LEDNet [65]. The decoder will
use illumination-enhanced features from the encoder, and
shall focus on upsampling and improving the sharpness of
the already enhanced low-resolution reconstruction x̂↓8.

For the encoder block, and to restore the low-light con-
ditions, we work in the Fourier domain [28, 44]. The de-
coding block focuses on the spatial domain by incorporat-
ing dilated convolutions with large receptive field. By us-
ing task-specific blocks, we are able to use fewer blocks.
This design allows to reduce notably the number of param-
eters and computational cost in terms of MACs (Multiply-
Accumulate Operations) and FLOPs (Floating-point Oper-
ations per second).

How can we make sure the Encoder is performing low-
light enhancement? As shown in Figure 2, the encoded
features are linearly combined using a convolutional layer
to produce an intermediate image representation x̂↓8. We
will use this to regularize our model using an additional
loss function. By producing a good low-resolution repre-
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sentation, we can ensure that the amplitude in the Fourier
domain has been properly enhanced.

3.1. Low-light Enhancement Encoder
We design the encoder blocks (EBlock) to enhance the low-
light conditions of the image using Fourier information, and
following the Metaformer [56] (and NAFBlock [7]) struc-
ture. The block has two components: the spatial atten-
tion module (SpAM) and a feed-forward network in the fre-
quency domain (FreMLP).

The spatial attention module resembles the NAF-
Block [7] with an inverted residual block followed by sim-
plified channel attention (SCA). Instead of using activa-
tions, we use a simple gating mechanism, allowing our
model to extract meaningful spatial information for en-
hancement in the frequency domain.

As suggested by other works [33, 44] the information re-
lated to the light conditions of the image depends mainly on
the amplitude in the frequency domain. To enhance this, we
apply the Fast Fourier Transform (FFT) and operate only
over its amplitude. After this operation, we transform again
to the space domain with the Inverse Fast Fourier Trans-
form (IFFT). The Fre-MLP serves as an additional atten-
tion mechanism. In this context, the MLP operating in the
amplitude has better benefits than operating in the spatial
domain (e.g., channel MLP [56]).

The encoder uses strided convolutions to downsample
the features. After each level, the features have half of their
original spatial resolution, which implies that more encoder
blocks can be used in the deep levels without significantly
increasing the number of operations.

Finally, the encoder will provide illumination-enhanced
features to the decoder, and already a low-resolution estima-
tion of the clean image x. This low-resolution image is x̂↓8
estimated as a combination of the encoded deep features, it
has a resolution 8× lower than the original one. Although
it is a small estimation, the illumination (and amplitude) are
consistent across scales [28].

3.2. Deblurring Decoder
The decoder block (DBlock) focuses on spatial transforma-
tions. The input of the decoder is a deep representation
of x̂↓8, thus we can assume: (1) the decoder should focus
on upsampling such an initial estimation, (2) the decoder
should focus on reducing the blur and improving sharpness,
since the illumination has been corrected by the encoder. In
this block, we also maintain the metaformer structure [56]:

z1 = Di-SpAM(LayerNorm(z)) + z (4)
z2 = GatedFFN(LayerNorm(z1)) + z1 (5)

Inspired by Large Kernel Attention (LKA) [17], we cre-
ated the Dilated-Spatial Attention Module (Di-SpAM). Un-

like LKA [17], we use features at 3 different levels, us-
ing three dilated depth-wise convolutions with expand (di-
lation) factors 1,4,9. The attributes from the three branches
are combined together, then we apply simplified channel at-
tention to further enhance the features. Finally, we use an
MLP with simple gates instead of activations [7].

3.3. Loss Function
Besides the new block designs, the loss function helped to
maximize the potential of our approach. We use a com-
bination of distortion losses and perceptual losses to opti-
mize our model f . First, to ensure high-fidelity (low distor-
tion), we use Lpixel defined as: Lpixel = ∥x − x̂∥1, where
f(y) = x̂ and x are, respectively, the enhanced and the
ground-truth (clean) images. Thus, Lpixel is the L1 loss.

To ensure high-fidelity, we use l1 norm loss and for per-
ceptual similarity we incorporate loss Lpercep. For the last
one, we use LPIPS [60] based on VGG19 [43] to calculate
the distance between features of our images:

Lpercep = LPIPS (x, x̂). (6)

Using this loss, we make sure that the network will pro-
duce a pleasant image, close to the clean reference. Follow-
ing [41], we also incorporate the gradient (∇) edge loss:

Ledge = ∥∇x−∇x̂∥22 , (7)

that enforces consistency and accuracy in the reconstruc-
tion of the edges (high-frequencies).

Finally, similar to LEDNet [65], we included Llol an ar-
chitecture guiding loss to assert that the encoder focuses on
the low-light enhancing. This loss works over the upsam-
pled output of the encoder x̂↑8,

Llol = ∥x− x̂↑8∥1 + LPIPS(x, x̂↑8) (8)

comparing it with the reference x. Note that ↑ 8 indi-
cates an 8× resolution upsampling of the encoder output,
obtained by bilinear interpolation.

The complete loss function is then:

L = λp · Ll1 + λpe · Lpercep + λed · Ledge + Llol (9)

The constants λp, λpe, and λed are loss weights empiri-
cally set to 1, 1e−2, and 50 respectively.

4. Experimental Results
4.1. Datasets
To train our model and evaluate its ability to reconstruct
low-light blurred images, we use the LOLBlur dataset [65].
Although there are other datasets for this task such as
NBDN [6], LOLBlur offers a large-scale synthetic dataset
produced using a sophisticated pipeline.
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Table 1. Quantitative evaluation on the LOLBlur dataset. DarkIR achieves new state-of-the-art results in distortion and perceptual
metrics. Moreover, we have 55% less parameters than LEDNet[65] and 88% less than Restormer [57], which is key in memory-constrained
devices. This table –specially numbers for previous methods retrained in LOLBlur– recovers results on previous analysis [65] and adds
new retrained ones. Best and second best results are bolded and underlined, respectively.

KinD++[61] DRBN[54] DeblurGAN-v2[25] MIMO[8] NAFNet[9] LEDNet[65] RetinexFormer[3] Restormer[57] DarkIR-m (Ours) DarkIR-l (Ours)

PSNR (dB) ↑ 21.26 21.78 22.30 22.41 25.36 25.74 26.02 26.72 27.00 27.30
SSIM ↑ 0.753 0.768 0.745 0.835 0.882 0.850 0.887 0.902 0.883 0.898
LPIPS ↓ 0.359 0.325 0.356 0.262 0.158 0.224 0.181 0.133 0.162 0.137
Params (M) ↓ 1.2 0.6 60.9 6.8 12.05 7.4 1.61 26.13 3.31 12.96
MACs (G) ↓ 34.99 48.61 - 67.25 12.3 38.65 15.57 144.25 7.25 27.19

LEDNet RetinexFormerInput NAFNet Restormer Ours-m Ours-l GT

Figure 3. Qualitative comparisons on the LOLBlur dataset (synthetic samples from the testset).

LOLBlur has 10200 training pairs, and 1800 testing
pairs. Note that this is a synthetic dataset, although gener-
ated in a realistic manner [65]: the data is generated by av-
eraging frames to synthesize blur and darkening the normal-
light images with EC-Zero-DCE (a variant of Zero-DCE
[16]). We use the dataset variant that includes real sensor
noise, which makes our model more effective in challeng-
ing conditions and real scenarios.

Real-LOLBlur is a real-world test dataset, that con-
tains 482 real-world night blurry images selected from Re-
alBlur [40] to verify the generalization of the proposed
method. Note that these images do not have a ground-truth
since these were captured in the wild.

LOLv2 (real) is a real-world dataset that includes 689
low/high paired images for training and 100 low/high paired
images for testing. Note that LOLv2-Real [55] is the ex-
tended version of LOL[47], thus we use the v2 version di-
rectly. We also use LOLv2-Synthetic that includes 900 pairs
of low/high images for training and 100 validation ones.

LSRW includes images from a DSLM Nikon camera and
a Huawei smartphone. The LSRW-Nikon dataset is com-
posed of 3150 training image pairs and 20 testing image
pairs. The LSRW-Huawei dataset contains 2450 pairs of
images and 30 pairs for training and validation, respectively.

4.2. Results
We quantitatively and qualitatively evaluate the proposed
DarkIR on the LOLBlur Dataset [65]. Implementations de-

tails can be found in the supplementary. We retrained some
general purpose state-of-the-art methods in LOLBlur and
compare them with LEDNet [65] and our proposed net-
work.We follow the baseline methods analyzed in previous
works: (1,2) zero-shot methods trained for real-world cases,
and (3) fine-tuned methods for this particular task.

1. LLIE → Deblurring. We consider Zero-DCE [16],
RUAS [30] and RetinexFormer [3] as LLIE models, fol-
lowed by a deblurring network like MIMO-UNet [8] or
NAFNet [7].

2. Deblurring → LLIE. For deblurring, we include pop-
ular baselines such as DeblurGAN-v2 [25] trained on the
RealBlur [40] dataset, and MIMO-UNet [8] or NAFNet [7]
trained on the GoPro [38] dataset. We employ Zero-
DCE [16] and RetinexFormer [3] for light enhancement.

3. End-to-end training on the LOLBlur dataset.
We consider the following LLIE models retrained on
the LOLBlur dataset: KinD++ [61], DRBN [54] and
RetinexFormer[3]. In addition, we consider four deblur-
ring networks: DeblurGAN-v2 [25], NAFNet[9], MIMO-
UNet [8] and Restormer[57].

Evaluation Metrics. We employ traditional quality (dis-
tortion) metrics PSNR and SSIM for evaluation on the syn-
thetic LOLBlur dataset. To evaluate the perceptual qual-
ity of the restored images, we use the perceptual metric
LPIPS [60] between the reference and reconstructed image.

Quantitative and Qualitative Results In Table 1 we
compare with fine-tuned methods for this task. We improve
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Table 2. Additional quantitative evaluation on LOLBlur dataset with enhancement pipelines (Deblurring + LLIE).

1. LLIE → Deblurring 2. Deblurring → LLIE

Zero-DCE [16] RUAS [30] RetinexFormer [3] Chen [5] DeblurGAN-v2 [25] MIMO [8] NAFNet [7] DarkIR-m (Ours)
→ MIMO [8] → MIMO [8] → NAFNet [7] → Zero-DCE [16] → Zero-DCE [16] → Zero-DCE [16] → RetinexFormer [3] End-to-End

PSNR (dB) ↑ 17.68 17.81 17.16 17.02 18.33 17.52 14.66 27.00
SSIM ↑ 0.542 0.569 0.673 0.502 0.589 0.57 0.500 0.883
LPIPS ↓ 0.510 0.523 0.392 0.516 0.476 0.498 0.465 0.162

DarkIR (ours)MIMO-UNetDeblurGAN-v2 Ground TruthDRBN

Input RUAS → MIMO-UNet Chen’s Oid → MIMO-UNet DeblurGAN-v2 → Zero-DCE MIMO-UNet → Zero-DCE 

Figure 4. Additional visual comparisons on the LOLBlur [65] dataset with 2-step pipelines. DarkIR generates much sharper images with
visually pleasing results. (Zoom in for best view).

the previous state-of-the-art LEDNet [65] by +1db in terms
of PSNR, and reduce LPIPS by half. Table 1 also showcases
that DarkIR performs better than most of the other general
purpose methods, while reducing parameters and comput-
ing cost. Figure 3 qualitatively supports these results.

In Table 2 we compare with 2-step (zero-shot) pipelines,
with a clear dominance of DarkIR. Figure 4 compares
DarkIR with 2-step pipelines, where it shows more detail
and sharpness. We provide more results in the appendix.

Multi-Task Results. We also trained our model for prac-
tical low-light restoration purposes, combining LOLBlur,
LOLv2-Real, LOLv2-Synthetic and LSRW datasets (as all-
in-one restoration methods [11, 27, 39, 59]). Results can
be seen in Table 3 and Table 4. As a multi-task method,
DarkIR-mt outperforms previous LLIE methods, while be-
ing also robust to blur (previous methods are only robust
to illumination and noise). However, the performance in
LOLBlur is 26.62 dB, suffering a slight -0.4dB loss in
PSNR. Figures 5 and 6 showcase these results in LSRW
and LOLv2-Real datasets, respectively. We provide addi-
tional details in the supplementary.

4.3. Evaluation on Real Data
We use the Real-LOLBlur [65] to evaluate the robustness
of our method in real-world cases. Since there is no ground-
truth for the test images, we use well-known blind quality

Table 3. Metrics on the LSRW dataset (50 test images from
Huawei and Nikon) [19]. All the values are adopted from [35, 53].

RetinexNet FIDE DRBN KinD STAR
[47] [51] [54] [61] [50]

PSNR ↑ 15.906 17.669 16.149 16.472 14.608
SSIM ↑ 0.3725 0.5485 0.5422 0.4929 0.5039

EnGAN ZDCE RUAS SCI DarkIR-mt
[22] [16] [30] [35] (Ours)

PSNR ↑ 16.311 15.834 14.437 15.017 18.93
SSIM ↑ 0.4697 0.4664 0.4276 0.4846 0.583

assessment metrics. We present results in other real-world
(unpaired) LLIE datasets in the appendix.
Evaluation Metrics. We employ recent image qual-
ity assessment methods: MUSIQ [23], NRQM [34] and
NIQE [36] as our perceptual metrics. Following previ-
ous works, we choose the MUSIQ model trained on the
KonIQ-10k dataset, which focuses more on color contrast
and sharpness assessment – quite suitable for our task. We
use the pyiqa 1 implementation of these metrics.
Quantitative Evaluations. As shown in Table 5, the
proposed DarkIR achieves competitive perceptual quality
scores in terms of the three perceptual metrics, indicating
that our method performs in tune with human perception.

1https://pypi.org/project/pyiqa/
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Input KinD DRBN EnGAN DarkIR-m Ground Truth

Figure 5. Qualitative results on the real-world dataset LSRW-Huawei [19]. We provide more samples in the supplementary.

Input RetinexFormer [3] DarkIR-m Ground Truth

Figure 6. Qualitative results compared with state of the art method RetinexFormer [3] on LOLv2-Real.

Table 4. Results on LOLv2-Real [55] and LOLv2-Synthetic [55].
Our multi-task model (DarkIR-mt) obtains new SOTA results by
leveraging all-in-one training, and including low-light deblurring,
which proves the efficacy of the architecture. Table based on [3,
44]. MACs were calculated on 256× 256× 3 inputs.

Methods Complexity LOLv2-Real LOLv2-Syn
MACs (G)↓ Params (M)↓ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

UFormer [46] 12.00 5.29 18.82 0.771 19.66 0.871
RetinexNet [47] 587.47 0.84 15.47 0.567 17.13 0.798

EnGAN [22] 61.01 114.35 18.23 0.617 16.57 0.734
RUAS [30] 0.83 0.003 18.37 0.723 16.55 0.652
FIDE [51] 28.51 8.62 16.85 0.678 15.20 0.612

DRBN [54] 48.61 5.27 20.29 0.831 23.22 0.927
KinD [61] 34.99 8.02 14.74 0.641 13.29 0.578

Restormer [57] 144.25 26.13 19.94 0.827 21.41 0.830
MIRNet [58] 785 31.76 20.02 0.820 21.94 0.876

SNR-Net [52] 26.35 4.01 21.48 0.849 24.14 0.928
FourLLIE [44] 5.8 0.120 21.60 0.847 24.17 0.917

Retinexformer [3] 15.57 1.61 22.80 0.840 25.67 0.930

DarkIR-mt (Ours) 7.25 3.31 23.87 0.880 25.54 0.934

Table 5. Perceptual quality metrics on Real-LOLBlur [65].

RUAS MIMO RetinexFormer NAFNet LEDNet Restormer DarkIR-m DarkIR-l
→ MIMO → Zero-DCE

MUSIQ↑ 34.39 28.36 45.30 50.22 39.11 46.6 48.36 48.79

NRQM↑ 3.322 3.697 5.281 4.940 5.643 4.627 4.983 4.917

NIQE↓ 6.812 6.892 4.576 5.123 4.764 5.268 4.998 5.051

Qualitative Evaluations. Figure 7 presents visual com-
parisons on real-world night blurry image from Real-
LOLBlur [65]. These samples showcase the robustness of
our approach in real cases with handheld motion blur, sen-

sor noise, saturated pixels and low illumination.

4.4. Ablation Study

In addition to our results, we include three ablation studies
on model design and training.

In Table 6 we compare results obtained using differ-
ent block configurations, such as NAFBlock, EBlock or
DBlock. The description states which changes are applied
to the network, and everything else is kept exactly as in
the proposed model. We can clearly see how our model
achieves the best results. Unlike the final proposed model,
all the models in this study were trained using crops of
256px instead of 384px, which explains the lower results in
general. We also studied the decoder block spatial attention
in Table 7, where the well-known Large Kernel Attention
(LKA) mechanism is compared with our Dilated-spatial At-
tention Module (Di-SpAM). Our approach performs better
and requires less parameters and operations.

In Table 8 we also explore the scalability of our model
by changing its channel embedding. As expected, by in-
creasing the embedding size, the performance raises. In as-
cending order of parameters, we have channel embeddings
of 16, 32, and 64. We find the best efficiency/performance
balance in the 32 channels embedding (DarkIR-m).

In the supplementary material, we present additional
studies on the development of the architecture.
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Figure 7. Qualitative comparison on real night scenes from the RealBlurLOL dataset. (Zoom in for best view).

Table 6. Network blocks ablation study. Combination of EBlocks
and DBlocks achieves the best performance.

Params↓ (M) MACs↓ (G) PSNR↑ SSIM↑ LPIPS↓
EBlock is NAFBlock 3.12 7.69 26.51 0.8764 0.169
EBlock has also Phase Transform 4.08 8.38 26.30 0.871 0.179
All DBlock 3.2 8.19 26.68 0.876 0.170
All EBlock 3.44 6.46 26.17 0.863 0.187
All NAFBlock [7] 3.04 7.29 26.24 0.868 0.178
DBlock is NAFBlock 3.24 6.84 26.23 0.864 0.185
DBlock w/o Extra Depthwise 3.27 6.99 26.63 0.875 0.174

DarkIR-m 3.31 7.25 26.90 0.874 0.175

Table 7. Spatial Attention ablation study. We compare LKA (large
kernel attention) [17] with our proposed Di-SpAM for the decoder
blocks. MACs were calculated considering an input of 256px.

Params↓ (M) MACs↓ (G) PSNR↑ SSIM↑ LPIPS↓
LKA [17] 4.06 9.14 26.45 0.876 0.172

Di-SpAM (DarkIR-m) 3.31 7.25 27.00 0.883 0.162

Table 8. Ablation study scaling the channel depth dimensions.
We can appreciate how our model scales properly, which allows
adaptation depending on memory or runtime requirements.

Params↓ (M) MACs↓ (G) PSNR↑ SSIM↑ LPIPS↓
DarkIR-s (16) 0.872 2.04 26.15 0.857 0.206

DarkIR-m (32) 3.31 7.25 27.00 0.883 0.162

DarkIR-l (64) 12.96 27.19 27.30 0.898 0.137

4.5. Efficiency Discussion
Using EBlock and DBlock we are able to greatly reduce
the number of parameters of the network, getting an out-
standing 55% less parameters than LEDNet [65] (previ-
ous state-of-the-art) and 88% less than Restormer [57] (sec-
ond best method). This reduction is also accompanied by
a reduction in the number of operations needed to enhance
the input image. Considering an image of 256px -as previ-
ous works [7]-, LEDNet uses 33.74 GMACs and Restormer
141.24 GMACs, while DarkIR only uses 7.25 GMACs –

note that 1 MAC is roughly 2 FLOPs. This means a re-
duction of 4× the number of operations with the previous
state-of-the-art method and almost 20× to the second best
one.

Therefore, DarkIR, while being state-of-the-art in low-
light deblurring, is also lighter in all aspects, representing
an advancement towards deploying this kind of models on
devices with low computational power.

5. Limitations
Although we are able to reduce the computational require-
ments of the target device for running our model, we have
done this by using depth-wise convolutions, which are not
necessarily optimal in certain GPU architectures, as they
lack of arithmetic intensity [15]. Due to this, the model’s in-
ference times are not drastically and proportionally reduced
with the reduction in operations. In future work, we will
propose new methods that can combine low computational
requirements with notably faster inference times.

6. Conclusion
We propose a robust model for multi-task low-light en-
hancement and restoration. Our model, DarkIR, is an ef-
ficient and robust neural network that performs denoising,
deblurring and low-light enhancement on dark and night
scenes. DarkIR achieves new state-of-the-art results on the
popular LOLBlur, LOLv2 and Real-LOLBlur datasets, be-
ing able to generalize on real-world night blurry images
while being more efficient than previous methods.
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