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Figure 1. Various ultra-high definition style transfers of a Gaussian splatting 3D scene. SGSST transfers a very large set of global

style statistics of an image to a 3DGS scene by minimizing a tailored multiscale SOS loss, yielding 3D style transfer of superior quality

and at unprecedented high resolution (images have size 5187×3361).

Abstract

Applying style transfer to a full 3D environment is a chal-

lenging task that has seen many developments since the ad-

vent of neural rendering. 3D Gaussian splatting (3DGS)

has recently pushed further many limits of neural render-

ing in terms of training speed and reconstruction quality.

This work introduces SGSST: Scaling Gaussian Splatting

Style Transfer, an optimization-based method to apply style

transfer to pretrained 3DGS scenes. We demonstrate that

a new multiscale loss based on global neural statistics, that

we name SOS for Simultaneously Optimized Scales, enables

style transfer to ultra-high resolution 3D scenes. Not only

SGSST pioneers 3D scene style transfer at such high image

resolutions, it also produces superior visual quality as as-

sessed by thorough qualitative, quantitative and perceptual

comparisons.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction

Dealing with ultra-high resolution (UHR) rendering is cap-

ital for AR/VR applications. Indeed, when navigating in a

3D environment the user only sees a partial field of view

of the environment. This adds challenging issues for apply-

ing style transfer to 3D environments, that is, transferring

the visual characteristics of an image such as a painting to

a 3D scene. Indeed, while the general scene should convey

the global color palette of the style painting, when getting

closer to objects in a stylized environment the user should

expect to see fine painting patterns such as brushstrokes.

However, in the current state of the art, the user quickly

encounters resolution-limited content in the form of blurry

interpolated features.

Ever since the seminal work of Mildenhall et al. [28],

neural radiance fields (NeRF) have seen many improve-

ments. Several 3D scene representations have been pro-

posed for improving the quality and resolution of the re-

constructed scenes as well as easing the training, e.g. [2,

3, 9, 29]. The recent 3D Gaussian splatting (3DGS) [20]

has introduced an efficient high-resolution (HR) scene rep-

resentation which has stirred much interest [45]. Both

frameworks have stirred attempts to 3D style transfer algo-

rithms [6, 16, 22, 25, 26, 33, 46, 48], but these methods have

so far produced medium resolution outputs. They do not

faithfully transport high resolution multiscale textures such

as those present in paintings. Motivated by a recent neu-

ral style transfer (NST) [11] contribution tailored for UHR

images [10], i.e. with resolution larger than 4k images, we

show that 3DGS can be leveraged for UHR style transfer.

The contributions of this work are the following:

• We introduce SOS, a Simultaneously Optimized Scales

loss expressed in a single parameterless and explainable

formula.

• By solely optimizing the SOS loss, we reach UHR for

3DGS style transfer and we scale Gaussian Splatting

Style Transfer by a four times resolution gain.

• Superior quality transfer: By transferring a very large set

of global style statistics, we obtain superior style transfer

quality even at HR resolution, as confirmed by a compar-

ative perceptual study.

In short, our approach is the first method that allows

UHR style transfer directly to 3DGS. It produces high vi-

sual quality results and relies on optimizing a single multi-

scale loss. The simplicity of our approach ensures its repro-

ducibility. Being optimization-based, SGSST’s main limi-

tation is a fairly large training time that is two to eight times

longer than the initial 3DGS training depending on the im-

age resolution. Yet, considering the high quality of the re-

sults and their reproducibility, this contribution is valuable

for AR/VR applications that require high visual quality for

their user experience.

2. Related work

Neural style transfer In the seminal work of Gatys et

al. [11] NST is formulated as an optimization problem min-

imizing the distances between Gram matrices of VGG [37]

features. Even though other VGG statistics have been con-

sidered, almost all subsequent style transfer and texture syn-

thesis methods rely on VGG [8, 13, 14, 27, 32, 35, 42]. To

accelerate style transfer, several methods [18, 40, 41] have

attempted to train feed-forward networks approximately

minimizing the Gram loss [11]. However, these approxi-

mate methods require learning a new model for each style

type. This latter limitation has been addressed by fast Uni-

versal Style Transfer (UST) approaches [4, 7, 15, 23, 24, 30,

36] that use VGG feature decoders.

For HR images, coarse-to-fine multiscale strategies [12,

13, 38] have proved effective, but still face limitations due

the high GPU memory usage of VGG statistics. Fast HR

alternatives [1, 5, 39, 43, 44] do exist but generally suffer

from artifacts and struggle to capture the full style com-

plexity. Recently, SPST [10] proposed an implementation

of the Gatys et al. method adapted to UHR (larger that 4k)

images. The visual quality of SPST’s results is superior, at

the cost of a long optimization time.

Style transfer for neural radiance fields NeRFs [28]

have completely redefined the field of 3D scene model-

ing and novel view synthesis. Editing the visual aspect

of NeRFs via style transfer has quickly been addressed

[6, 16, 25, 48], usually by fine tuning a pretrained NeRF

representation using a style transfer loss, or training an

additional fast style transfer module. ARF [48] is a no-

table exception: It uses Nearest Neighbor Feature Matching

(NNFM) for fine tuning a plenoxel radiance field [9], pro-

duces high-quality results at moderate resolution, and is the

base model for other methods [19, 47]. While these works

paved the way for radiance field style transfer, they are all

limited in input and output image resolution.

Style transfer for Gaussian splatting A few recent con-

tributions show that 3DGS is a promising framework for

3D scene style transfer. Saroha et al [33] propose a so-

lution for universal style transfer of a given 3DGS scene.

The method processes the colors of Gaussians with a tiny

MLP trained using fast AdaIN [15] and relying on a multi-

resolution hash grid representation [29]. StyleGaussian [26]

is a concurrent approach that relies on transferring encoding

of VGG features to each Gaussian and applying AdaIN to

these features. The new Gaussian features are then decoded

into an RGB color by processing the K-nearest neighbors

of the Gaussians. After training, both methods allow for

instantaneous stylization with any style image, but the vi-

sual quality of the results is quite low, since high-resolution
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details such as brushstroke patterns are not transferred.

StylizedGS [46] is an optimization-based method that

extends ARF [48] to 3DGS. It uses a training loss made

of six terms combined with a color transfer preprocessing,

the loss being designed to minimize changes in the 3DGS

geometry while letting the style evolve via VGG NN match-

ing. G-Style [22] also is an optimization based approach

that further uses a CLIP-based loss [31]. While these ap-

proaches produce slightly better results than ARF [48], both

methods are limited in content and style resolution due to

the use of nearest-neighbor matching of VGG features.

None of the current state of the art deals with HR style

transfer. The stylization is either fast but very approximate

due to AdaIn [26, 33] or unable to use HR style images

due to NNFM [22, 46, 48]. To the best of our knowledge,

SGSST is the first procedure allowing high-quality transfer

for 3DGS that is trained and rendered at UHR.

3. Preliminaries

3.1. Gaussian splatting representation

Starting from a multiview training set of images {ui}
Nviews

i=1

of a static scene accompanied with corresponding cali-

brated cameras {Ci}
Nviews

i=1 computed by structure from mo-

tion [34], the 3DGS algorithm [20] trains a set of colored

3D Gaussians {Gj}
NGaussians

j=1 so that they represent the 3D

scene from any camera position. Each Gaussian Gj is rep-

resented by a finite set of features: a center position µj , a

covariance matrix Σj (encoded by a scaling diagonal matrix

and a rotation matrix), an opacity αj and a view-dependent

color function cj . These parameters are used in a volumetric

renderer that determines the color by summing the contri-

bution of each Gaussian that intersects a ray with direction

(θ, φ) via α-blending (see e.g. [28]). The contribution of

a Gaussian is its color cj(θ, φ) multiplied by an opacity σj

defined as the maximal opacity αj times the unnormalized

Gaussian density at the ray position [20]. Thus, the result-

ing color C for the ray is

  C = \sum _{j=1}^N c_j(\theta , \varphi ) \sigma _j \prod _{k=1}^{j-1} (1-\sigma _k) 













  (1)

where the sum is over all Gaussians intersecting the ray.

The color function cj(θ, φ) associated with a Gaussian de-

pends on the spherical direction (θ, φ) through an order 3

spherical harmonics polynomial function given by

  c_j(\theta , \varphi ) = c_{j,0} + \sum _{\ell =1}^3 \sum _{m=1}^{2\ell +1} c_{j,\ell , m} Y_{\ell , m}(\theta , \varphi )    











  (2)

where the vectors cj,0 and cj,ℓ,m are in R
3 and the Yℓ,m

form a basis of the spherical harmonics polynomials of de-

gree ℓ. In short, cj,0 ∈ R
3 is the main color and the ad-

ditional coefficients cj,ℓ,m encode smooth variations of this

color when the viewing angle changes.

Like for NeRF, the key ingredient of the 3DGS

parametrization is the differentiable rendering func-

tion R(C; Θ) that renders a view of the scene for

any camera C given the scene parameters Θ =
{(µj ,Σj , αj , cj,0, (cj,ℓ,m)ℓ,m)}NGaussians

j=1 . This differen-

tiable rendering function allows to train the Gaussian pa-

rameters to minimize the reconstruction error

  \min _{\Theta }\frac {1}{N_{\mathrm {views}}} \sum _{i=1}^{N_{\mathrm {views}}} E_{\mathrm {reconstruction}} (\mathcal {R}(\mathcal {C}_i; \Theta ); u_i) \label {eq:min_reconstruction_3dgs} 











  (3)

where Ereconstruction is a 2D image comparison error (such

as a combination of mean square error and SSIM [20]). The

minimization is conducted using Adam [21] for 30k itera-

tions by randomly picking one view at each iteration.

3.2. Style transfer loss for UHR images

Our approach relies on optimizing VGG19 [37] feature

statistics as initially proposed by Gatys et al. [11]. Con-

tent consistency is loosely monitored by preservation of the

feature layer Lc = ReLU 4 2 while style transfer is imposed

by matching spatial statistics of five VGG19 layers, namely

the set Ls = {ReLU k 1, k ∈ {1, 2, 3, 4, 5}}. The statistics

of interest of the feature response V L(w) of an image w at

some layer L ∈ Ls having nL
c feature channels are its Gram

matrix Gram(V L(w)) ∈ R
nL

c
×nL

c , its spatial mean vector

mean(V L(w)) ∈ R
nL

c , and its standard deviation vector

std(V L(w)) ∈ R
nL

c . Given a content image u and a style

image v, we consider the loss function

  E_{\mathrm {transfer}}(x;u,v) = E_{\mathrm {content}}(x;u) + E_{\mathrm {style}}(x;v) \label {eq:gatys_loss_texture_transfer}        (4)

where Econtent(x;u) = λc

∥

∥V Lc(x)− V Lc(u)
∥

∥

2
, with

λc > 0 and the style loss is defined by

  E_{\mathrm {style}}(x;v) = \sum _{L \in \mathcal {L}_\mathrm {s}} E_{\mathrm {style}}^L(x;v) \label {eq:style_loss}.  





  (5)

where EL
style(x; v) is a linear combination of the mean

square error between the VGG19 statistics of V L(x) and the

one of the style features V L(v) [10]. While only the Gram

matrices were originally used [11], it has been shown that

adding control for the mean and standard deviation corrects

some style transfer color artefacts [10] previously identified

in the literature [14, 32, 35].

To obtain high-quality style transfer for HR images one

needs to optimize the style transfer loss using several scales

and a coarse-to-fine approach [12]. Indeed, if one applies

style transfer on the highest resolution only, the changes

within the content image are limited to local texture and the

results does not convey a painting aspect. Due to the use of
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Figure 2. Overview of SGSST. Starting from a pretrained realistic 3DGS scene [20], we optimize the colors of each Gaussian using the

new multiscale SOS loss (involving ns = 3 scales in the illustration). Computing the gradient w.r.t. the loss is feasible for UHR images

thanks to the SPST partition-based implementation [10]. Multiscale gradient stacking is used at the node of the rendered image to perform

only one backpropagation per iteration through the 3DGS rendering pipeline.

VGG19 features, computing the loss Etransfer(x;u, v) and

its gradient with respect to (w.r.t.) x via backpropagation

is memory prohibiting for UHR images. However, using a

grid partition and local loss backpropagation based on pre-

computed global statistics, SPST [10] allows for the exact

evaluation of this gradient.

4. Scaling Gaussian splatting style transfer

A complete overview of our SGSST algorithm is given

in Figure 2. Starting from a realistic 3DGS representa-

tion [20], we optimize the colors of each Gaussian using

a multiscale style transfer loss.

4.1. Stylizing the 3DGS representation

By changing the reconstruction loss of Equation (3) with

a style transfer loss for the input style image v, one can

hope to stylize a realistic 3DGS. However, given the com-

plexity of the 3DGS representation and the many inter-

acting parameters, it is not such an easy task to alter the

3DGS aspects without loosing the content geometry. Our

solution is to only optimize for the constant color compo-

nents Θcolor = {cj,0}
NGaussians

j=1 of the Gaussians and simply

freeze all the other parameters Θinit. given by the initial re-

alistic 3DGS training.

We experimentally found that this robust approach en-

sures a rich style transfer and fully preserves the 3D geom-

etry. Indeed, fixing all the Gaussian parameters except for

the main color component cj,0 preserves the scene geome-

try, as the location and size of the Gaussians are being kept

(see Section 5.3 for ablation experiments).

4.2. Multiscale Style Transfer Loss

We introduce the Simultaneously Optimized Scales (SOS)

loss defined as

  E_{\mathrm {SOS}}(x;u,v) = \frac {1}{n_{\mathrm {s}}} \sum _{s=0}^{n_{\mathrm {s}}-1} E_{\mathrm {transfer}}(x^{\downarrow 2^s};u^{\downarrow 2^s},v^{\downarrow 2^s}) \label {eq:multiscale_loss}  










  



 (6)

where ns ≥ 1 is the number of considered scales and u↓2s

denotes an image u downscaled by a 2s factor. This SOS

loss (6) enables style transfer simultaneously at all scales.

A somewhat similar approach was proposed for 2D tex-

ture synthesis [38] but, as already mentioned, multiscale 2D

style transfer is generally conducted using a coarse-to-fine

strategy [12]. However, for 3DGS we observed that the ini-

tial configuration had only little influence on the final result,

making the coarse-to-fine strategy ineffective for multiscale

style transfer (See Section 5.3).

In the end, as illustrated by Figure 2, the stylization of

UHR 3DGS is conducted by solving for

  \min _{\Theta _{\mathrm {color}}} \frac {1}{N_{\mathrm {views}}} \sum _{i=1}^{N_{\mathrm {views}}} E_{\mathrm {SOS}}( \mathcal {R}(\mathcal {C}_i ; \Theta ); u_i, v), \label {eq:min_multiscale_loss_3dgs} 











   (7)

where Θ stands for the 3DGS parameters obtained by re-

placing the color components of Θinit. by the values of the
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Figure 3. UHR 3DGS style transfer. SGSST allows for the multiscale style transfer of 3DGS scenes at UHR. From left to right: Style

image, one UHR stylized view, three magnified details, and evolution of the SOS loss and each style transfer loss that contributes to it. We

first optimize the transfer loss for the coarsest scale (yellow curve) for 10k iterations and then optimize for another 10k iterations the SOS

loss (light blue curve), namely the mean of the four transfer losses. Images sizes are 5187×3361 for content and 4230×3361 for style.

optimization variable Θcolor.

4.3. Implementation details

Multiscale gradient stacking The 2D SPST

method [10] provides the gradient of each term

Etransfer(x
↓2s ;u↓2s , v↓2

s

) w.r.t. to the input

x↓2s = R(Ci; Θ)↓2
s

. We first backpropagate each of these

gradients through the downscaling operator and stack them

at the level of the rendered image R(Ci; Θ). When each

of the ns scales has been treated, the stacked gradient is

equal to the gradient of the full loss ESOS(R(Ci; Θ);ui, v)
w.r.t. to the rendered image R(Ci; Θ). This gradient is then

backpropagated through the Gaussian rendering pipeline

to obtain the gradient w.r.t. the Gaussian colors Θcolor

(see both orange arrows in Figure 2). Using this strategy

we only backpropagate one time per iteration through the

3DGS rendering pipeline instead of ns times.

Color transfer via style transfer at the coarsest scale

To speed up the color transfer, we first optimize for 10k

Adam iterations with the loss restricted to the coarsest scale

Etransfer(R(Ci; Θ)↓2
s

;u↓2s

i , v↓2
s

) with s = ns − 1, then

optimize the SOS loss for another 10k Adam iterations.

Number of scales ns is set automatically to use all avail-

able scales, the coarsest resolution having sides larger than

256 for VGG19 statistics to be reliable.

Reproducibility All our experiments have been con-

ducted using the same SOS loss and training procedure,

making our approach parameterless and fully reproducible.

Our public PyTorch implementation is based on the public

source codes1 for 3DGS [20] training and SPST [10]. Our

code and videos of our results are available online2.

1https://github.com/graphdeco-inria/gaussian-

splatting; https://github.com/bgalerne/scaling_

painting_style_transfer
2Code: https://github.com/JianlingWANG2021/SGSST;

Videos: https://www.idpoisson.fr/galerne/sgsst/

5. Experiments

5.1. Ultra­high resolution results

Our multiscale stylization algorithm is able to transfer style

details at UHR for both the content image resolution and the

style image resolution. This results in unprecedentedly rich

style transfer, as illustrated by Figure 3. As can be observed,

minimizing the SOS loss indeed allows to decrease the style

transfer loss for all scales (Figure 3 right). The approach is

especially relevant when transferring the style of an UHR

painting presenting style features at several scales, ranging

from a specific color palette to a main curve style and to

fine brushstrokes or canvas texture (see close-up views of

Figure 3 and the first two lines of Figure 1). To obtain such

results, combining style transfer at the largest possible num-

ber of scales is critical (see ablation in supp. mat. Figure

9). In addition, the approach is also efficient to transfer the

style of a medium resolution style image to an UHR scene,

as shown in the last row of Figure 1.

To the best of our knowledge, our approach is the first

to work at UHR resolution for neural style transfer of neu-

rally rendered 3D scenes. One of the main advantages of the

Gram-based loss is that it does not depend on the style res-

olution and, when both the content and style images grow

in O(N), its complexity scales in O(N) while NNFM used

in ARF [48] scales in O(N2).

Yet, applying style transfer at such resolutions remains

computationally heavy: for the garden image of size

5187×3361 (Figures 1 and 3) the style transfer takes 25.5

hours (VS 3 hours to train the initial 3DGS model), that

is an 8.5 overhead factor. For an image of moderate size

(Figure 4 left and middle) the style transfer and the initial

3DGS training take respectively 22 and 10 minutes, that is,

the overhead factor is only 2.2. These time values were ob-

tained using a single A100 GPU with 80 GB of memory and

could be accelerated by adapting the SOS loss implementa-

tion to a multi-GPU setting. Note that high computation

times are inherent to UHR style transfer: Running the 2D

SPST method for the 185 garden training images takes 27
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Figure 4. Comparison of SGSST (ours, top) with StyleGaussian [26] (middle) and ARF [48] (bottom). From left to right the content

resolutions are 980×545 (train), 979×546 (truck), and 3115×2076 (counter). For the first two examples, the various outputs keep the

resolution of the content, but for the HR counter scene, the output sizes are 3115×2076 for SGSST, 1600×1066 for StyleGaussian and

779×519 for ARF (see supp. mat. Figure 28 for ARF results without downscaling). Thanks to its multiscale global VGG statistics, SGSST

is the most faithful method regarding style consistency.

hours (8.9 min. per image).

5.2. Comparison

We perform a thorough comparative study using 40 3D style

transfer experiments using 9 different scenes and various

style images (see supp. mat.). We compare our results with

the NeRF-based ARF [48] and the 3DGS-based StyleGaus-

sian [26] algorithms, described in Section 2, using their

public implementations3.

Comparing style transfer methods is challenging because

each algorithm treats the style image differently. Following

high quality 2D style transfer [10, 12], our loss uses up to

four scales and each scale uses five VGG layers. The UHR

style images were downscaled so that the style has the same

size as the content images (no upscale was applied if the

style image is smaller than the content image). In contrast,

ARF uses a single VGG layer from a single scale and the

style image is downscaled to be twice smaller than the con-

tent input, resulting in smaller local texture. StyleGaussian

reduces the style images so that it has the size 256×256, a

scale that is hardly sufficient to represent HR style images

such as paintings.

Qualitative comparison Figure 4 shows three different

comparative experiments. As one can observe, the results

of StyleGaussian [26] are generally not satisfying since the

method fails to transfer local texture or to preserve the style

3https://github.com/Kai-46/ARF-svox2; https://

github.com/Kunhao-Liu/StyleGaussian

image’s color palette. ARF results better reproduce brush-

stroke textures, but the transfer is limited, as the method

only involves a single VGG layer at a single scale. Also,

NNFM does not ensure the preservation of a global color

palette. In comparison, SGSST preserves the style at all

considered scales. This results in color palette preservation,

as well as a verifiable transfer of features of any size, from

large brushstrokes (Figure 4 middle) to local grain transfer

(Figure 4 right). In addition, SGSST is the only method that

performs style transfer at the original resolution of the HR

example of Figure 4 right.

Quantitative comparison Even though there is no con-

sensus for the quantitative evaluation of NST [17], follow-

ing previous works, we report two different metrics for style

transfer quality and texture consistency across views. Style

transfer quality can be measured by the Gram loss [11]. A

second metric proper to NeRF style transfer [25, 26, 33] is

to check the short-term and long-term consistency of the ra-

diance fields in terms of LPIPS [49] and RMSE between

wrapped views. Since SGSST is the only method work-

ing with UHR images, when necessary we forcefully down-

graded all the results to the resolution of ARF for compar-

ison. The average of these two metrics over our 40 experi-

ments is reported in Table 1. The Gram loss is the best for

SGSST and, surprisingly, StyleGaussian achieves a lower

Gram loss than ARF, which is not consistent with the quali-

tative evaluation, probably explained by ARF using a single

VGG layer compared to five for the two other methods. In

terms of consistency metrics, StyleGaussian reports to be
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Method
Transfer

quality

Short-range

consistency

Long-range

consistency

Gram↓ LPIPS↓ RMSE↓ LPIPS↓ RMSE↓

SGSST 2.59e8 0.030 0.032 0.055 0.063

StyleGaussian 4.61e8 0.033 0.029 0.050 0.056

ARF 5.77e8 0.040 0.037 0.072 0.066

Table 1. Quantitative comparison. Style transfer quality and tex-

ture consistency metrics averaged over 40 experiments for SGSST,

StyleGaussian, and ARF. Best results in bold, second best under-

lined.

SGSST ARF StyleGaussian

Voting results (%) 66.3 31.6 2.1

Table 2. Perceptual study. Summary of the 680 votes for the most

style consistent result.

the most stable approach followed by SGSST but note that

this metric favors the lack of texture.

Perceptual study To further support our results, we con-

ducted a perceptual study comparing the 40 3D style trans-

fer experiments. For each example, four images were dis-

played (at a resolution of 1280×720): the style image and,

in a blind random order, the results of the three meth-

ods (SGSST, ARF and StyleGaussian) shown at a common

viewpoint (also randomly selected). Each participant was

shown ten random instances and was asked to select the re-

sult that was the most faithful to the style image. The study

was conducted on the web with volunteer participants.

A total of 68 participants took part in the test, result-

ing in 680 votes summarized in Table 2. This perceptual

study shows that the fast style transfer performed by Style-

Gaussian is consistently judged inferior in quality over ARF

and SGSST. It also confirms that SGSST is far superior to

ARF in terms of visual quality since 66% of the participants

ranked our method first for its painting style transfer quality,

even when presented with results downscaled in resolution.

5.3. Ablation study

Influence of optimization parameters Our SGSST algo-

rithm stylizes a realistic 3DGS scene by tuning the constant

color components of the 3DGS Gaussians using a single 2D

style transfer loss function at multiple scales (Equation (6)).

In contrast, Zhang et al. [46] optimize all 3DGS parame-

ters. This, however, necessitates a complex loss made of six

different terms to avoid artefacts: a loss term enforces con-

sistency with the original geometry via depth preservation

while a preprocessing of Gaussians floaters is necessary af-

ter color transfer.

Figure 5 shows that optimizing more parameters of the
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Figure 5. Influence of optimization parameters: Allowing more

3DGS parameters to be optimized when minimizing the SOS loss

does not improve the stylization quality and can dramatically im-

pact the geometry. From left to right: Style image, content,

SGSST default (optimization of colors), results when optimizing

all spherical harmonics, results when optimizing all parameters.

3DGS for SGSST brings no benefit. Optimizing all the

spherical harmonic coefficients does not improve the result,

and letting all the parameters free like in [22, 46] leads to

a strong degradation of the geometry. Note that two instan-

taneous 3DGS style transfer methods [26, 33] are based on

modifying the color features via some neural networks, but

their results are not comparable to optimization-based ap-

proaches in terms of visual quality.

Failure of coarse-to-fine strategy Our approach mini-

mizes a style transfer loss simultaneously at all scales. This

is different from the coarse-to-fine style transfer strategy

that has proven successful for HR style transfer [12]. Fig-

ure 6 illustrates that this coarse-to-fine strategy fails in the

context of 3DGS. Indeed, the gain obtained by optimizing at

a given scale is quickly lost when optimizing the next one

leading to the disappearance of large scale features. This

can be explained by the fact that the 3DGS representation is

a more constrained representation than pixel grids due to its

sparsity.

Color transfer via style transfer at the coarsest scale

As described in Section 4.3, we first optimize the style

transfer loss at the lowest resolution for 10k iterations and
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SOS loss

↓ 8 ↓ 4 ↓ 2 ↓ 1Ground truth

Figure 6. Failure of coarse-to-fine strategy. Results of coarse-to-fine style transfer for the example of Figure 3. Each scale is initialized

with the output of the previous scale. As shown by the evolution of the losses (right), when training at a new scale, the loss of the previous

scales increases quickly. This explains why the large scale painting features disappear progressively and are absent after training the target

UHR (see close-up details).

Figure 7. Color transfer via style transfer at the coarsest scale.

The first 10k iterations at the coarsest scale allow for quick color

changes in the 3DGS scene. Removing this step may lead to color

artifacts in the result (top) compared to our default two-step opti-

mization (bottom).

then optimize the SOS loss for another 10k iterations. Fig-

ure 7 illustrates that these first iterations are necessary for a

faithful style color palette reproduction.

6. Discussion and limitations

Texture representation The texture representation

within a 3DGS scene depends on the density of Gaussians

and may be limited in low density areas. Isolated Gaussians

can sometimes be spotted as illustrated by Figure 8.

Large computation time Depending on the resolution,

SGSST requires from several minutes to several hours of

computation. On the other hand, fast 3DGS stylization ap-

proaches [26, 33] do not reach a satisfactory visual quality.

Content-style mismatch As said earlier, the Gram loss

has the advantage of being independent of the style’s im-

age resolution. Also, it enables a faithful transfer of global

statistics of the style image, such as its color palette. This

important feature is, nevertheless, counterproductive when

Original view 3DGS Stylized 3DGS

Figure 8. Limited texture representation due to low Gaussian

density of the initial 3DGS. From left to right: Original scene,

3DGS reconstruction, stylization of the 3DGS scene.

the style and content images strongly mismatch, leading to

color bleeding or texturing of flat areas. Other controls can

be added to mitigate these artefacts [12] and it was shown

that these controls are effective for 3DGS scenes [46].

7. Conclusion

In this work we presented SGSST, a method that, for the

first time, enables UHR 3DGS style transfer. To that aim,

among other innovations, we introduced the simultaneously

optimized scales (SOS) loss. Our qualitative, quantitative

and perceptual studies show that SGSST obtains superior

style transfer quality than state of the art, even after reduc-

ing our results’ resolution for a fair comparison with meth-

ods that do not reach UHR. Such high quality UHR results

necessitate a large computation time that, nevertheless, re-

mains comparable with that of UHR 3DGS training.

This work opens the way to several research directions.

A first challenge is to produce equally high quality style

transfer with a faster algorithm based on UST. A second

more exploratory direction is to investigate geometry style

transfer for 3DGS by designing adapted regularization to

avoid the caveats depicted by Figure 5.
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