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Abstract

Model binarization has made significant progress in en-
abling real-time and energy-efficient computation for con-
volutional neural networks (CNN), offering a potential so-
lution to the deployment challenges faced by Vision Trans-
formers (ViTs) on edge devices. However, due to the struc-
tural differences between CNN and Transformer architec-
tures, simply applying binary CNN strategies to the ViT
models will lead to a significant performance drop. To
tackle this challenge, we propose BHVIT, a binarization-
friendly hybrid ViT architecture and its full binarization
model with the guidance of three important observations.
Initially, BHVIT utilizes the local information interaction
and hierarchical feature aggregation technique from coarse
to fine levels to address redundant computations stemming
from excessive tokens. Then, a novel module based on shift
operations is proposed to enhance the performance of the
binary Multi-Layer Perceptron (MLP) module without sig-
nificantly increasing computational overhead. In addition,
an innovative attention matrix binarization method based
on quantization decomposition is proposed to evaluate the
token’s importance in the binarized attention matrix. Fi-
nally, we propose a regularization loss to address the in-
adequate optimization caused by the incompatibility be-
tween the weight oscillation in the binary layers and the
Adam Optimizer. Extensive experimental results demon-
strate that our proposed algorithm achieves SOTA perfor-
mance among binary ViT methods. The source code is re-
leased at: https://github.com/IMRL/BHVIT.

1. Introduction

In recent years, ViTs have made significant progress in
many computer vision fields [8, 35]. Nevertheless, due to
the substantial model size and high computational com-
plexity, deploying ViT in real-time application scenarios
with limited computing resources is challenging. To deal
with this issue, model quantization methods [14, 17] have
been proposed, among which binary ViT techniques can
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Figure 1. Classification accuracy on ImageNet-1K dataset for the
binary method ReActNet [23], when applied in CNN and ViT ar-
chitectures, respectively.

be the most efficient ones. Especially, the very recent
Large Language Models (LLMs) [1] and Visual Language
Models (VLM) [31] all adopt the transformer architecture.
Therefore, the exploration of binary ViT with high perfor-
mance holds practical significance. Although many binary
CNN models have been preceding binary ViT, as shown in
Fig. 1, directly applying existing binary CNN techniques
(e.g., RSign and RPReL.U [23]) to the ViT framework can
not solve the significant performance degradation.

The primary reasons for the performance degradation lie
in two aspects. First, the back-propagation of the attention
module can be easily corrupted by the multiple clip func-
tions and the non-differentiability of the sign operator, re-
sulting in vanishing gradients for most elements in the ac-
tivation. Second, the binary attention matrix cannot accu-
rately represent the differences among the similarities of
different tokens. The binarized attention can introduce a lot
of noise and reduce the signal-to-noise ratio of the attention
matrix [40], leading to a performance drop.

To tackle these challenges, we propose a hybrid ViT
framework in this paper, which is better suited for binariza-
tion than the ViT and its full binarization version. Our con-
tributions can be summarized as follows:

e We investigate the reasons for the severe performance
degradation in the current binarized ViT models.

e Based on our research, we propose three novel mod-
ules to construct a high-performing Binarization-friendly
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Figure 2. Multiplication of binary vectors implemented using
Xnor and popcount operations, yielding the result 2p — n

Hybrid ViT (BHViT) framework. Additionally, we pro-
pose a regularization loss to address incomplete optimiza-
tion caused by the incompatibility between weight oscilla-
tion and the Adam Optimizer.

e To enhance the performance of the binary attention
module, we propose a binarization scheme called Quanti-
zation Decomposition (QD) for attention matrices.

e We have applied the BHVIT to both classification and
segmentation tasks and achieved SOTA performance.

2. Related work

Binary Neural Networks (BNN). Model binarization
initially begins with the CNN framework. Courbariaux
et al. [2] proposed the BinaryConnect model with bi-
nary weights and full-precision activations. To address
the issue of non-differentiable sign operators, they intro-
duced the clip function to approximate the gradient dur-
ing the back-propagation process. Based on BinaryCon-
nect, Hubara et al. [13] further extended the binarization to
the model’s activation, allowing the BNN to utilize Xnor
and popcount operations to approximate matrix multiplica-
tion. Rastegari et al. [32] introduced the scaling factor for
both weight and activation to enhance BNN performance
on large datasets [4]. Lin et al. [20] introduced multiple bi-
narization bases for weights and activations to approximate
the corresponding full-precision values, but it introduces ad-
ditional computations. Liu et al. [22] introduced residual
links for each binary convolution layer to improve the rep-
resentation capacity of the features. Furthermore, Liu et
al. [23] incorporated an RPReL.U activation function and
the RSign operator within a MobileNet-based [34] archi-
tecture to reduce the performance gap between BNN and
the corresponding full precision network.

Binary Vision Transformers (ViTs). While binary oper-
ations (e.g., RSign [23]) can be directly applied to ViTs,
performance often degrades significantly. To address this,
Li et al. [18] introduced the head-wise scaling operation to
the attention module and utilized a ranking-aware distilla-
tion loss to train the binary ViT. Wang et al. [37] proposed
channel-wise scale factors based on the Hamming distance
between the binary ) and K tensors. Gao et al. [7] uti-
lized distinct thresholds to transform the full-precision at-
tention matrix and V' matrix into a superposition form con-
sisting of multiple binary bases. Other approaches relax
bit-level constraints for specific network components. He
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et al. [11] proposed a mixed-precision vision transformer,
binarizing the attention module and MLP weights while
keeping MLP activations in full precision. Similarly, Lu et
al. [26] maintained full-precision attention matrices in their
mixed-precision ViT.

In contrast to the above binary ViT methods, our work
aims to mitigate the incompatibility between the ViT ar-
chitecture and existing binarization techniques. Compared
with BiReal.-Net [22], we first elucidate the significance
of dense residual connections for binarizing the ViT archi-
tecture from an optimization perspective. Additionally, we
slightly modify the original dense residual connections to
accommodate the unique structural modules in Binary ViT.

3. Background

In the binary model, the weights and activations are con-
strained to two states, 1 and -1 (or 0 and 1). The multi-
plication of binary vectors is efficiently implemented using
Xnor and popcount operations (Fig. 2). The linear layer is
a fundamental component of the ViT that accomplishes the
channel-wise aggregation of feature information. Its bina-
rization process is described by:

Y = B, (X, W) = aw (W@X), (1)
where Y, X, W, W, and X represent the output, input,
weight, binarized weight, and binarized activation of the
linear layer, respectively. aw is a scaling factor. The sym-
bol ® denotes binary matrix multiplication implemented by
Xnor and popcount operations. To obtain X, as shown in
Eq. 2, the sign operator and the piecewise polynomial func-
tion [22] are applied to the forward and backward processes
of the activation binarization, respectively.

X - b)

Forward X = B, (X, a,b) = sign (

L 9L 0X
Backward 87X = 87X87X =

X=b)) b—a<X<b

L (2+2(%
% X=0)) b<X<b+a,
otherwise

2

L (2-2(%X

0

where b and a represent the corresponding learnable bias
and scale factor, respectively, and L is the loss function.
Due to the attention values (ranging from O to 1) sig-
nificantly differ from the other activations, the attention is
specifically binarized, as shown in Eq. 3.
> ’07 1) ) (3)

Forward A;; = By, (A, a,0)=

a - clip <r0und (Att -0
a

G, all b<Au<a+b
Back d = { 0Ay,
ackwar O0A { 0 ' otherwise



where B, represents the binary function for the full preci-
sion attention matrix A, and AAtt denotes the correspond-
ing binary attention matrix. clip (x,0, 1) truncates values
that fall below 0 to O and those above 1 to 1, effectively
ensuring that the output remains within the range [0, 1].
round operation maps the input to the nearest integer.

To binarize weights, we adopt the commonly used oper-
ations in Eq. 4.

Forward B,, (W[:’k]) =G (abs (W[:’k]))

~sign (Wi x)
pr— . 4
Backward W G (abs (W p)) “)
oL
. m . 171<W[:,1«]<1’

where W ;) represents the data in the k-th output channel
of W. G () represents the average function to calculate the
scaling factor. 171<W[:,k]<1 denotes a mask tensor with
the same size as W, ;. The element of the mask tensor is
marked as one if the corresponding element in W, 5, falls
in the closed interval [-1,1].

4. Method
4.1. Binarized Hybrid Vision Transformer

The architecture of our approach is depicted in Fig. 3, which
comprises four stages in a feature pyramid with distinct fea-
ture sizes in spatial and channel dimensions in each stage.
Given the input image I € R**#*W the patch embedding
layer based on the convolution, as shown in Eq. 5, is ap-
plied to split and project image I to the feature sequence
X, € R4 X% \where H and W indicate horizontal and
vertical size of image, respectively.

Hy = GELU (bn (Cov (1))) ,Xo =Hp + Pe, (5)
where bn means a batch-norm layer. GELU is a gelu ac-
tivation function. cov is a 4 x 4 convolution layer with a
stride of 4. P, means a learnable position embedding.

Then the embedding of X;_; in each block as follow,
H . — MSGDC (X;_1)+X;_1,if Stage € [1,2]
=17 1 MSMHA (X;_ 1 )+X;_1,if Stage € [3,4]’

X; = B_MLP (Hl—l) +H;_ 1,

(6)
For simplification, we use "MSGDC” and "MSMHA” to
represent the Binary Multi-Scale Grouped Dilated Convo-
lution module and the Binary Multi-Scale Multi-Head At-

tention module, respectively.
The pyramid structure can extract multi-scale features
and effectively enhance the representation ability of binary
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features by increasing the channel dimension of the output
feature. However, it also results in a large spatial resolution
of features in the early stages of the model. It leads to a
significant increase in the complexity of the attention mod-
ule. To address this issue, we introduce MSGDC consisting
of three 3 x 3 grouped atrous convolution layers (each layer
employing a different dilated ratio) as the token mixer in the
first two stages of the model. Meanwhile, we introduce an
MSMHA module to accomplish token-wise feature fusion
in the last two stages, ensuring effective information inte-
gration at different scales. A convolution layer with a stride
of 2 and a 2 x 2 kernel size is applied in each down-sampling
layer, which doubles the number of activation channels.

4.2. Token mixer

Multi-scale grouped dilated convolution (MSGDC) We
apply three grouped convolutions with different dilation
rates, enabling multi-scale feature fusion to enhance the
representational capability of binary activation. Com-
pared with ordinary convolutions and self-attention mod-
ules, grouped convolutions significantly reduce the model’s
parameters and computational complexity.

For the input feature X;_; € R7*XWXC the embedding
process of the MSGDC module is defined as

i1 = RPReLU (B_Cov§i52" " (Bq (Xi1-1)) + Xi—1)

H,  =bn(H_, +H] , +H} ),

(7
where B, () is the binary function defined in Eq. 2.
B C ovgixl;z"_l is the binarized 3 x 3 grouped atrous convo-
lution layer with dilated ratio of 2n—1,n € (1,2,3). H]_,,
H? |, and H} ;| are the outputs of each grouped convolu-
tion layers, respectively. RPReL.U is the activation function
proposed by Liu et al. [23].

Multi-Scale Multi-Head Attention module (MSMHA)
The original self-attention mechanism requires calculating
the similarity between all tokens. However, when () and K
are binarized, the distribution of attention values exhibits
a long-tail distribution with nearly 99% of attention val-
ues approaching O [7, 11], rendering most similarity cal-
culations useless. To solve this problem, we introduce
MSMHA, a variant of the window attention mechanism
that maintains global information interaction and decreases
computation costs. The motivation for applying the win-
dow attention mechanism is based on our observation that
excessive numbers of tokens can degrade the performance
of binary ViT, which is described in detail in Observation |
(The detailed illustration is shown in the Appendix.).

Observation 1. Avoiding excessive numbers of tokens is
beneficial for Binary ViT.
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Figure 3. The architecture of the proposed binary hybrid ViT. “MSGDC” and “MSMHA?” refer to the Binary Multi-Scale Grouped Dilated
Convolution module and the Binary Multi-Scale Multi-Head Attention module, respectively. “GAP” stands for global average pooling.
“Input_D” denotes the input tensor after downsampling. “RPRELU” is the activation layer proposed in [23].

In MSMHA, for the input feature X;_; €
REXWXC(Rig. 4), we first apply average pooling with
a kernel size of 7 x 7 to obtain high-scale feature
X9h ¢ R7*XT*C. Meanwhile, we split the spatial
resolution of the input feature to 7 x 7 and get the window
version of the input feature X*? € R*5 X7<7C_ Subse-
quently, the hidden state feature H € R a0 *(49+7557) xCjg
obtained by concatenating X;**7(flattened to 1D vector)
and X["9"(repeated and flattened). As shown in Eq. 8,
Qi—1, K;_1, and V;_; tensors are obtained by applying
three binary linear layers to the hidden state feature H.

Q-1 =B;(H),K;- 1 =Bx(H),V,-, =B, (H),
B, (X) = RPReLU (bn (BLi, (X, W,)) + X),
®)
where B, (), By (), and B,, () are the same operation with
three different tensors of binary weight. Br;, is a binary
linear layer and W, is the binary weight of linear layer in
B,. Then the attention matrix A is obtained by Eq. 9.

Ba (Qlfl) * Ba (Klfl)
Va ). ©

Note that the binary attention matrix employs 0 and 1 in-
stead of -1 and 1 as the binary states. Unlike the full-
precision attention matrix, the binary version cannot assign
different weights to each token based on their similarity,
which is one of the primary factors resulting in the signifi-
cant performance drop in binary ViT. To address this issue,
we propose an effective binarization method called Quanti-
zation Decomposition (QD).

A, = softmax (

4.3. Quantization Decomposition

The softmax function ensures that each element of the atten-
tion matrix is less than 1. Therefore, we introduce a global

AvgPool repeat
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Figure 4. Building hidden state feature for MSMHA.

scaling constant s = 2™ — 1 (with n = 2). The binarization
of the attention matrix is then achieved through:

) S) )

(10)
where ¢ () is a boolean function. In this way, we obtain s
binary attention matrices. If an element of sAy is larger
than or equal to the constant ¢ — 0.5, the corresponding
element of A‘t’t is set to 1. In contrast to the original bi-
narization function, QD involves a decomposition process
consisting of logical operations with relatively low compu-
tational complexity.

Meanwhile, we observe that applying additional shortcut
in each MSMHA can improve the optimization of the binary
linear layer for Q, K, and V tensors in the attention module
for better performance, which is detailed in Observation 2
(The detailed illustration is shown in Appendix.). Differ-
ent from the previous method [16, 22] aiming to enhance
the representational capacity of binary activations through
residual connections, our focus is on alleviating optimiza-
tion issues caused by gradient mismatch and gradient van-
ishing. Therefore, we add shortcuts from full-precision Q,
K, and V tensors to the output of the attention module di-
rectly, which improves the optimization process by decreas-

A% = o (round (sAy) >0 —0.5),0 = (1,2---
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Figure 5. Architecture of the binary MLP module. (a) Overall
architecture. (b) The shift module, where colored rectangles rep-
resent horizontal, vertical, and mixed shift operations, with k1 and
k2 denoting different translations. (c) and (d) illustrate specific
shift operations.

ing the gradient mismatch between each activation in the
attention module and the module’s output.

Observation 2. Adding a residual connection in each bi-
nary layer is beneficial for Binary ViT.

After obtaining multiple binarized attention matrices, V;
can be obtained through Eq. 11.

S
V= <Z A%, ®B, (Vl—1)> + Q1+ K1 +V_y,
o=1
(11)

According to the recorded splicing dimension informa-
tion (the ‘concatenation’ process shown in Fig. 4) in obtain-
ing the hidden state feature H, V is split to the window-
version feature V¥ and the high-scale feature V9" Fi-
nally, the output feature X; is obtained by Eq. 12.

X =9 (V}‘”") + 1t (mean (V;iow”)) ,

where 1 refers to reshaping the window-version feature to
the original feature. 1} is the nearest neighbor interpolation
to make the shape of V&°“™ the same as X;. mean (X) is a
global average function along the dimension corresponding
to the number of windows.

4.4. Binary MLP

The architecture of our proposed binary MLP module is de-
picted in Fig. 5 (a). To mitigate information loss and gra-
dient errors, we introduce the shift operation, as shown in
Fig. 5 (b), (c), and (d).

12)
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Given the input feature H;_; € R#xWx¢

ing of the binary MLP is defined as
H;%; = bn (Bri (Ba (Hi-1))),
H] , = RPReLU (H}°, + repeat (H;_1)),
H7?, = bn (BLa (Ba (Hy)))
H}_, = RPReLU (H{®; + pool (H}_,)) ,
Sk = L (S (Hi—1)) + Ly (S (Hi—1))

+ Lo (SP" (Hi1)) k€ (1,2),

X; = Hl2—1 +S; + SQ,

, the process-

13)

where By,; and By are two binary linear layers with a ratio
of 4 and 0.25 between the number of input channels and out-
put channels, respectively. L, denotes a learnable channel-
wise scaling transformation. The repeat operation involves
repeating the input four times and concatenating them along
the channel dimension. The pool function denotes 1D av-
erage pooling with a stride of 4. S; and S» represent two
groups of shift operations with different strides. S"°", Sver,
and S™* are three fundamental shift operations defined in
Fig. 5 (c) and (d), respectively.

For the horizontal shift operation shown in Fig. 5 (c),
shifting the entire input feature map one pixel to the right
is equivalent to moving the first column of the input feature
map to the last column. Vertical shift operations can be im-
plemented similarly. For the mix shift operation shown in
Fig. 5 (d), we first identify four neighboring tokens of the
current token. Then, in sequential order, we extract features
from each adjacent token by taking one-fourth of the fea-
tures along the channel dimension and concatenating them
to replace the features of the current token.

4.5. Training Settings

Distillation Compared to the one hot label, the predic-
tion provided by the teacher model for each class contains
more information. Therefore, we utilize the DeiT-small [35]
model as the teacher model during the training process to
enhance the performance of the proposed binary model.

Compared with real-valued networks, weight oscillation
occurs more frequently in the binary model [21, 28, 38]. In
addition, we find that the commonly used Adam optimizer
enlarges the weight oscillation of binary networks and re-
sults in some weights eventually ceasing updating, as de-
scribed in Observation. 3 (The detailed illustration is shown
in Appendix.).

Observation 3. The Adam optimizer enlarges the weight
oscillation of binary networks in the later stages of the
training process, failing to update numerous parameters ef-
fectively.

To tackle this issue, we integrate L; -regularization into the
model’s latent weights during the later phases of the model



training, thereby compelling some latent weights around 0
close to £1. Then, the total loss function is shown in Eq. 14.

L= (1 —A- B) Lcls + >\Ldis + BLrea

1 n
Lye = — -1
o= 2 el =1 "
5= 0.1 if Thow = 0.9 X Tinax
10 others ’

where L.s and Lg;s represent the cross-entropy loss
between the class prediction and the corresponding label
and the one between the output of the teacher network and
the student networks’ output, respectively. L, refers to the
L;-regularization loss. To balance each component of L,
we set the coefficient 5 = 0.1 (L, is about 10 times of
L., and Ly;s in scale). Additionally, the model achieves
the best performance when the hyperparameter \ is set to
0.8. Thow and T},,, mean the current epoch index and the
number of total epochs, respectively.

5. Experiments
5.1. Datasets and Implementation Details

Datasets. We evaluate the proposed method on four
datasets, CIFAR-10 [15], ImageNet-1K [4], ADE20K [43]
and the RS-LVF Dataset [41]. CIFAR-10 consists of 60,000
images with ten classes, where 50,000 images are used for
training and 10,000 for testing. ImageNet-1K has 1,000
classes, with a training set of 1.2 million images and a test
set of 50,000. ADE20K is a challenging dataset including
more than 20000 images with 150 categories with a limited
amount of training data per class. RS-LVF comprises 1000
aerial images with corresponding road labels in a Bird’s-
Eye View (BEV).

Implementation Details. We apply “RandomResized-
Crop” and “RandomHorizontalFlip” operations to the
ImageNet-1K dataset for data augmentation. For the
CIFAR-10 dataset, we follow the data augmentation scheme
proposed in DeiT [35]. The AdamW optimizer with co-
sine annealing learning-rate decay and an initial learning
rate of 5 x 10~ are applied to train the proposed method.
The training process for the ImageNet-1K dataset is con-
ducted using 4 NVIDIA A100 GPUs with a batch size of
512. The total epoch number for the ImagNet-1k dataset
and the CIFAR-10 dataset are 150 and 300, respectively.
For ADE20K and RS-LVF, the training batch sizes are 18
and 4, and the epochs are 50 and 100, respectively.

5.2. Classification

Results On CIFAR-10. We compare the classification ac-
curacy of our method on the CIFAR-10 dataset with other
BNN and binary ViT models. The result is shown in
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Table 1. Classification results on CIFAR-10. W-A refers to the bit
number of weights and activations for the corresponding binary
method. NP denotes the number of network parameters (x10°).
The 1 indicates that the attention matrix is fully precise.

Architecture Methods W-A NP  Top-1(%)
Bi-RealNet[22]  1-1 112 89.12
IR-Net [29] -1 112 91.20
RBNN [19] -1 112 9220
XNOR-Net [32]  1-1 112 9021
ResNet-18 RAD [6] -1 112 9005
Proxy-BNN[10] 11 112  91.80
ReActNet[23]  1-1 112 9231
ReCU [39] -1 112 92.80
Mobile-Net  ReActNet-A [23] 1-1 28.3 82.95
. ProxC++1 [26]  1-1 21.6  86.19
DeiT-Small GSB [7] -1 216 9120
. Ours-Tiny 1-1 13.2 93.30
BHVIT Ours-Small -1 221 95.00

Ground Truth
-

ReActNet
"

Figure 6. Visualization on the RS-LVF dataset.

Tab. 1. Since the ViT model requires a large amount of
training data [7] and lacks the inductive bias specific to
visual tasks, the performance of binary ViT methods on
small datasets is typically weaker than the BNN methods.
Nevertheless, compared to BNN methods, our proposed
BHViT-Tiny method achieves higher classification accuracy
(0.5%) than the SOTA method ReCU [39]. For the methods
based on ViT architecture, with the same level of the pa-
rameter’s number, our proposed BHViT-Small outperforms
ProxConnect++1 [26] by nearly 8.81% and GSB [7] by
4.8% in terms of accuracy.

Results On ImageNet-1K. On the ImageNet-1K dataset,
the classification performance of binary models based on
different architectures is shown in Tab. 2. We find the
methods with full-precision downsampling layers gener-
ally achieve good performance. Compared with ResNet-18
based methods, the performance of BHViT-tiny' is higher
than the best method, ReActNet, by about 0.5% with simi-
lar OPs and model size. From Tab. 2, we can see the model’s
performance based on pure ViT architecture is not good
enough. BHViT-Smallf is 20.6 % higher than the current
SOTA (ReActNet) with a similar OPs level. Compared with
the Swin transformer architecture, BHViT-Small’ exceeds
the best method (BiViT) by 11.5 %. For the BinaryViT ar-
chitecture, our method BHViT-Small still exceeds it by 0.7



% with the same setting. Compared with ReActNet-B*,
based on the MobileNet architecture, our BHViT-Smallf
achieves the same performance with a smaller model size
and computational cost. In addition, the performance of
ReActNet-A method on the datasets with relatively limited
training data (e.g. CIFAR-10) is far inferior to the proposed
algorithm. The proposed algorithm solves the problem
shown in Fig. | and greatly surpasses current transformer-
based algorithms in terms of performance, enabling the bi-
nary ViT architecture to outperform binary CNNss.

5.3. Road Segmentation and Image Segmentation

Road Segmentation. We evaluate the performance of the
proposed model in road segmentation with the BEV per-
spective in aerial images. Road segmentation can be con-
sidered as a pixel-wise binary classification task. To assess
the method’s performance, we utilize the Mean Intersection
over Union (mIOU) metric and mean accuracy metrics. The
result is shown in Tab. 3, and some visual results for each
method are demonstrated in Fig. 6. Each method is based on
an encoder-decoder architecture, similar to U-Net [33]. The
decoder module for each method is a ResNet structure with
increasing resolution. In particular, different from ReAct-
Net [23] and our method, the weight and activation of the
ResNet-34 method are kept in full precision. From Tab. 3,
we can observe that our proposed BHVIT model exhibits
higher segmentation accuracy than the CNN-based ReAct-
Net, surpassing even full-precision methods.

Image Segmentation. We evaluate the performance of the
proposed model in image segmentation with ADE20K [43]
dataset. We apply two evaluation metrics, including
pixel accuracy (pixAcc) and mean Intersection-over-Union
(mIoU) to test each method. The result is shown in Tab 4,
which demonstrates that our BHVIT achieves SOTA perfor-
mance among current binary segmentation algorithms.

5.4. Ablation Study

The impact of each proposed module. As shown in Tab. 5,
the result displays the performance changes of the BHViT-
Small model on the CIFAR-10 dataset by sequentially drop-
ping the proposed modules, validating each proposed mod-
ule’s effectiveness. In the Tab. 5, "FDL’ denotes the down-
sampling layer with full precision. 'RL’ means the proposed
regularization loss. ’Shift’ is the proposed shift module
shown in Fig. 5. In particular, the ablation of "MSGDC’
and "MSMHA’ represents whether it adds multi-scale infor-
mation interaction in the corresponding module.

The impact of coefficient \. Based on the CIFAR-10
dataset, we examine the influence introduced by the bal-
ance parameters A on the classification performance of the
BHViT-Small model. The result is shown in Tab. 6, from
which we can conclude that the model achieves the highest
accuracy when the hyperparameter A is set to 0.8.
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Table 2. Results On ImageNet-1K. T represents keeping the down-
sampling layer at full precision and * means applying the two
stages training scheme proposed by [27]. OPs is defined as
OPs = % + FLOPs [23]. BOPs and FLOPs mean binary
and float operations, respectively.

Network Methods (;ZB?) (Sﬁ)sg) FILO(;Z) )1
Real-valued 46.8 182 69.6
T OBNNsT[T 49272
XNOR-Net' [32] 51.2
ABC-Net! [20] 427
ResNet-18 [9] Bi-Real Net' [22] b1 16 04
IR-Net! [29] ' ’ 58.1
RBNNT [19] 59.6
ReCUT [39] 61.0
ReActNet*T [23] 65.5
Real-valued 22.8 123 722
C BT [2517 ¢ 217
DeiT-Tiny [35]  Bi-ViT [18] Lo o6 287
BiBERT [30] ' : 5.9
BVT-IMA [37] 30.03
Real-valued 548 224 785
Ours-Tiny ~ BHViT-Tiny ’2’5’ 05 640
BHViT-Tiny" ' 1.1 66.0
Real-valued 872 36.8 733
" Bi-Real Net!” ~ 622
ResNet-34 [9] RBNN' 33 19 631
ReCU't 65.1
. ReActNet-A* 0.87 694
MobileNet [12] - poactNet-B*t 27 163 70.1
Real-valued  88.4 455 79.9
TTTTBIT T T T T T T T T T304
) BVT-IMA 47.98
DeiT-Small [35] Bi-ViT 34 15 409
BiBERT 17.4
ReActNet 49.5
Si-BiViT [42] 4.6 22 55.67
. . Real-valued 904 46.0 799
BinaryVIT [10] - - H5 e oViT ~ = 35~ 079" 677
Real-valued 1142 449 81.2
- BiBERT 34.0
Swin-Tiny [24] Bi-ViT 42 15 555
BiViT [11] 58.6
Si-BiViT 9.87 45 63.8
Real-valued 904 450 793
Ours-Small =~ BHViT-Small ’3’5’ T 08 684
BHViT-Small : 1.5 701

The impact of Regularization Loss (RL). We validate the
effectiveness of the proposed regularization loss function
from the perspective of weight distribution. The ablation of
the RL on the CIFAR-10 dataset are depicted in Fig. 7 (The



Table 3. Comparison results of road segmentation in aerial view.

Encoder  Architecture W-A  OPs(G) mAcc mlou
ResNet-34 U-Net 32-32 41.82 854 778
ReActNet U-Net 1-1 4.87 76.5 63.6
Ours U-Net 1-1 4.82 92.2 85.1

Table 4. Image segmentation results on ADE20K.

Method Bit OPs (G) pixAcc (%) mloU (%)
BNN 1 4.84 61.69 8.68
" ReActNet 1 498 6277 922
"AdaBin [36] 1 524 5947 7.6
"BiSRNet[5] 1 507 6285 974
~ Ours 1 495  65.63 = 1487

Table 5. Ablation study for BHViT-Small on the CIFAR-10.
Shift MSGDC MSMHA QD RL FDL Topl (%)

v v v v vV 95.0
A 92.1
vy 90.7
Vv 889
Y 86.7
2 85.6
T 832

Table 6. Ablation study for BHViT-Small on the CIFAR-10 dataset
with different hyperparameters .

A 0.1 02 03 04 05 06 07 08 09
Topl (%) 93.6 93.8 94.1 94.2 93.9 94.5 94.8 95.0 94.7

Table 7. Classification results of BHViT with different token mixer
settings. T means the downsampling layer is maintained at full

precision.

Model Token mixer Top1(%)
BHViT-Small Hybrid 70.1
BHViT-Small MSMHA 68.8
BHViT-Small MSGDC 67.2

first convolution layer of block 1 and the Q linear layer of
block 8, respectively), from which we observe that the RL
change the distribution of latent weights, closer to +1 or -
1, effectively mitigating weight oscillation. Meanwhile, at
each training epoch, Fig. 8 shows the change in the number
of flipped parameters with or without RL (the first convolu-
tion layer of block 1), validating the effectiveness of RL in
solving weight oscillation.

The impact of different token mixer. We further studied
the impact of different token mixer settings on model per-
formance. The proposed MSMHA module can also reduce
the number of tokens in the first two stages, i.e., applying
MSMHA as the token mixer to all stages will turn the model
into a pure ViT architecture. Alternatively, using MSGDC
as the token mixer for each stage results in a pure CNN
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Figure 7. Compare the weight histograms of two layers in differ-
ent blocks. (a) and (c) denote the weight distribution of two layers
without regularization loss. (b) and (d) denote the weight distribu-
tion of two layers with regularization loss.
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Figure 8. The number of flipped weights w/wo RL.
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architecture. We validate the three different types of token
mixers on ImageNet- 1K, shown in Tab. 7. The pure ViT ver-
sion achieves 1.3% lower classification accuracy than the
hybrid version, while the pure CNN version performs the
worst. The proposed hybrid architecture is a better choice
for binarization.

6. Conclusions

In this paper, we propose a high-performance hybrid ViT
framework and its binarized version, significantly reducing
computational complexity while maintaining exceptional
accuracy. Our work is based on three important observa-
tions, which guide us in introducing MSMHA, MSGDC,
and MLP enhancement modules to improve the perfor-
mance of binary ViT. Additionally, we propose the QD bi-
narization method for the attention matrix and a regulariza-
tion loss function to address weight oscillation issues in bi-
nary models when using the Adam optimizer. Experimental
results show that the proposed method achieves SOTA per-
formance among binarized models on benchmark datasets.
Acknowledgements. This work was supported by the fund
from the Fundo para o Desenvolvimento das Ciéncias e
da Tecnologia (FDCT) of Macao SAR with Reference No.
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