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Abstract

Multi-Object Tracking (MOT) has been a long-standing
challenge in video understanding. A natural and intuitive
approach is to split this task into two parts: object detec-
tion and association. Most mainstream methods employ
meticulously crafted heuristic techniques to maintain tra-
jectory information and compute cost matrices for object
matching. Although these methods can achieve notable
tracking performance, they often require a series of elab-
orate handcrafted modifications while facing complicated
scenarios. We believe that manually assumed priors limit
the method’s adaptability and flexibility in learning optimal
tracking capabilities from domain-specific data. Therefore,
we introduce a new perspective that treats Multiple Object
Tracking as an in-context ID Prediction task, transforming
the aforementioned object association into an end-to-end
trainable task. Based on this, we propose a simple yet ef-
fective method termed MOTIP. Given a set of trajectories
carried with ID information, MOTIP directly decodes the
ID labels for current detections to accomplish the associa-
tion process. Without using tailored or sophisticated archi-
tectures, our method achieves state-of-the-art results across
multiple benchmarks by solely leveraging object-level fea-
tures as tracking cues. The simplicity and impressive re-
sults of MOTIP leave substantial room for future advance-
ments, thereby making it a promising baseline for subse-
quent research. Our code and checkpoints are released at
https://github.com/MCG-NJU/MOTIP.

1. Introduction

The objective of multiple object tracking (MOT) is to accu-
rately locate all objects of interest within a video stream
while consistently maintaining their respective identities
throughout the sequence. As an essential problem in com-
puter vision, it is crucial for many downstream tasks, such
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Figure 1. Diagram of the in-context ID prediction process. Dif-
ferent colored bounding boxes represent targets corresponding to
different trajectories. We provide two valid ID prediction results,
shown in the two lines below. This indicates that each trajectory
only needs to predict the corresponding label based on the histori-
cal ID information, rather than being assigned a fixed label.

as action recognition [9] and trajectory prediction [24]. In
practical applications, it has also played a substantial role
in various fields, including autonomous driving [66], sports
event analysis [10, 48, 58], animal behavior research [71],
and so on. Consequently, the challenges and advancements
in multiple object tracking (MOT) have long garnered at-
tention from the community.

In the early stages of research within multi-object track-
ing area, the application scenarios and benchmarks were
largely concentrated on pedestrian tracking [26, 40]. In
this scenario, the characteristics of pedestrians are primar-
ily linear motion and distinguishable appearance. There-
fore, at that time, the methods [3, 69] predominantly re-
lied on the Kalman filter [55] to model trajectories and
predict their locations in the current frame, subsequently
employing manually-designed algorithms for target match-
ing. Subsequent research [54, 56, 68] introduced addi-
tional re-identification modules to compute the similarity
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between trajectories and current objects, aiding in resolving
long-term occlusions that are challenging for linear motion
estimations. Despite achieving notable success in pedes-
trian tracking, these methods have struggled to keep up
with the emergence of increasingly complex tracking sce-
narios [10, 52, 71]. In these scenarios, irregular move-
ments and similar appearances deviate from heuristic pri-
ors, reducing the effectiveness of fixed matching rules then
weakening tracking performance. Although some of the lat-
est heuristic algorithms [21, 36, 63] can gradually adapt to
these cases, the compromise is that each improvement re-
quires substantial human analysis as well as meticulous tun-
ing of rules and hyperparameters.

In recent years, some scholars have proposed end-to-end
trainable MOT methods [4, 39, 60, 67, 72] that directly learn
tracking capabilities from the given training data to pursue
the optimal solution. Among these, the methods [16, 39, 49,
51, 67] based on extending DETR [6, 30, 74] to MOT have
garnered significant attention and research. They propa-
gate track queries across video frames to represent different
trajectories. Despite achieving impressive results on mul-
tiple benchmarks, particularly on some highly challenging
ones, these methods still leave some concerning issues. The
most notable is that simultaneously using different types of
queries for detection and tracking can cause conflicts within
the unified decoding process [61, 65], thus impairing either
detection or tracking performance. Some studies [70] have
found that using an additional independent detector [18] to
decouple multi-object tracking can effectively mitigate this
issue. Other studies [61, 65] have also shown that handling
detection and tracking within the same module can lead to
conflicts in the allocation of supervision signals. Reflecting
on the above, a natural question arises: Can we maintain
the decoupling nature of the multi-object tracking problem
while discarding heuristic algorithms in favor of an end-to-
end pipeline to fully unleash the model’s potential?

Since there are already many mature end-to-end frame-
works for object detection [6, 18, 74], we primarily focus
on the formulation of object association. Intuitively, it re-
sembles a classification problem, as different trajectories
are annotated with distinct labels. However, considering
the generalization to unseen trajectories during inference,
i.e., new ID labels, classification prediction cannot be di-
rectly applied to object association. This is why, despite
some ReID-based methods [68] using label classification
for supervision, cosine similarity is employed during in-
ference to calculate the affinity matrix, thereby determin-
ing the association results. We reflect on this generaliza-
tion dilemma, which arises because the labels of trajectories
differ from traditional classification tasks [46]. Although a
unique number annotates each trajectory as its ID, this does
not imply that it can only be represented as this label. On the
contrary, it is considered acceptable as long as a trajectory

is predicted with the same ID label at all time steps. There-
fore, we consider treating the object association problem as
an in-context ID prediction problem, as illustrated in Fig. 1.
Specifically, for a target in the current frame, we only need
to predict its ID label based on the ID information carried
by the corresponding historical trajectory, rather than pre-
dicting a globally fixed label as in traditional classification
tasks. This ensures the generalization ability while facing
unseen identities during inference. In this way, the target as-
sociation is formulated into a novel framework, maintaining
consistency and end-to-end in both training and inference.

Based on the perspective above, we propose our method,
MOTIP, by treating Multiple Object Tracking as an ID
Prediction problem. Specifically, we opted for Deformable
DETR [74] as our detector because it can directly provide
object-level embeddings while detecting targets, without
the need to consider various feature extraction techniques
such as RoI, hierarchical structures, or feature pooling. To
represent the identity information for each trajectory, we
store a set of learnable ID embeddings, which are attached
to specific trajectory tokens as needed. As for the crucial ID
prediction module, we simply use a standard transformer
decoder [53], composed of multiple layers of alternating
self-attention and cross-attention. Despite our minimal-
ist and straightforward design, without employing tailored
and sophisticated network structures, it demonstrates im-
pressive state-of-the-art tracking performance across multi-
ple benchmarks. Therefore, we believe that framing multi-
object tracking as an ID prediction problem still holds sig-
nificant untapped potential, which can be further explored
in future research.

2. Related Work

Tracking-by-Detection is the most widely used paradigm
for multi-object tracking in the community. These meth-
ods [3, 47, 69] employ post-processing strategies to asso-
ciate detection results with historical trajectories, thereby
achieving online multiple object tracking frame by frame.
Most of them [3, 69] rely on Kalman filter [55] to handle
linear pedestrian motion [19, 26, 40] and leverage ReID
features [7, 17, 36, 37, 54, 56, 68] to incorporate object
appearance cues. In recent years, many methods [1, 5,
8, 12, 12, 14, 15, 21, 32, 38, 50, 62–64] have adopted
more complicated modeling and matching approaches or
introduced additional multimodal information to mitigate
the limitations of manual algorithms in complex scenar-
ios [10, 52]. Our proposed MOTIP also structurally de-
couples detection and association, but it relies on learnable
models rather than heuristic algorithms. While some mod-
ern approaches [22, 34, 35, 43, 59] also utilize learnable
modules to capture motion patterns, they still depend on
handcrafted decisions to accomplish object association. In
contrast, our method incorporates the decision-making pro-
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cess into the end-to-end pipeline, which significantly high-
lights the uniqueness of our approach.
Tracking-by-Propagation is a recently popular end-to-end
multiple object tracking paradigm. Inspired by query-based
detection models [6, 30, 74], they [39, 67] extended the de-
tect queries to the tracking task, using track queries to rep-
resent tracked targets and propagate them through the video
sequence. There are also some methods [4, 25] that em-
ploy tailored query-based model variants. Due to the flexi-
bility of end-to-end trainable models, they are more adapt-
able to tracking in complex scenarios [52]. Subsequent
works [4, 16, 49] have focused on long-term modeling,
further enhancing the training performance. Nevertheless,
some studies [61, 65, 70] have pointed out irreconcilable
conflicts in the process of joint detection and tracking and
attempted to alleviate this issue. Although our MOTIP also
utilizes a query-based detection model [74], we do not fall
into this paradigm because our object detection and associ-
ation are performed sequentially in two separate modules,
rather than simultaneously.

3. Method

In this section, we detail our proposed method, MOTIP,
which treats multiple object tracking as an in-context ID
prediction task. Firstly, in Sec. 3.1, we introduce a novel
perspective on how to formulate object association in MOT
as an ID prediction problem. Subsequently, in Sec. 3.2, we
provide a detailed explanation of each component within
MOTIP. Finally, in Sec. 3.3 and Sec. 3.4, we further illus-
trate the processes of training and inference.

3.1. In-context ID Prediction

In multiple object tracking data, different trajectories are an-
notated with distinct ID labels. Therefore, some works [68]
adopt classification loss to directly supervise the model in
distinguishing different identities. However, during infer-
ence, the model will encounter unseen trajectories, which
means it needs to predict out-of-distributed labels, lead-
ing to generalization issues. As a result, additional post-
processing steps must be employed to complete the infer-
ence, such as using cosine similarity to determine object-
matching results.

Upon deep reflection, we believe this is due to the dif-
ference between ID labels in MOT and traditional classifi-
cation tasks [46]. In MOT, the labels of the trajectories are
actually used to indicate a certain consistency rather than
specific semantic information. In other words, for a trajec-
tory, as long as the ID label remains consistent across each
frame, it is acceptable and does not need a specific label.
For example, in Fig. 1, the ID labels of these four objects
are marked as 1 2 3 4 in the ground truth file. However,
we can also use 8 5 7 3 to represent them. As long as the

labels remain consistent in subsequent frames (as shown on
the right), it will be considered a correct result.

Based on the above analysis, MOT can be regarded as a
special label prediction problem where target labels are de-
termined by historical trajectory identity information. Let
Tt−1 represent the historical trajectories, where Tt−1 =
{T 1

t−1, T 2
t−1, · · · , T M

t−1} with each T m
t−1 representing a tra-

jectory with a consistent identity. Simultaneously, we ran-
domly assign an ID label km to each trajectory T m

t−1 ensur-
ing 1 ≤ km ≤ K. When a new frame It is input, for any
detected object ot, if it belongs to the m-th trajectory T m,
its correct ID label prediction result should be km. Since
this prediction objective is based on the identity informa-
tion k attached to the historical trajectories, we refer to it as
in-context ID prediction, where the assigned label k serves
as an in-context prompt. In Fig. 1, we have provided some
examples. Due to this formulation, the ID prediction results
for any unseen trajectories will remain within the distribu-
tion of the training procedure, i.e., 1 ≤ k ≤ K, thereby
addressing the generalization dilemma.

3.2. MOTIP Architecture
The overall architecture of MOTIP is surprisingly simple, as
shown in Fig. 2. It contains three main components, which
we will detail below: a DETR [74] detector to detect ob-
jects and extract their object-level features, a learnable ID
dictionary to represent different in-context identity infor-
mation, and an ID Decoder to predict ID labels based on
historical trajectories.
DETR Detector. We use Deformable DETR [74], an end-
to-end object detection model, as our detector. Starting
from an input image It, the CNN [20] backbone and trans-
former encoder extract and enhance the image features.
Subsequently, the transformer decoder generates the out-
put embeddings from learnable detect queries. They are de-
coded into bounding boxes and classification confidence by
the bbox and cls head, as illustrated in Fig. 2. This approach
further simplifies our method, as we can directly use the de-
coded output embedding as the target feature fn

t , eliminat-
ing the need for complicated feature extraction techniques
such as RoI, hierarchical methods, etc.
ID Dictionary. As discussed in Sec. 3.1, for the model’s
generalization on unseen trajectories, we require additional
signifiers to represent the identity information of trajecto-
ries, which are used as in-context prompts. Since identity
is discrete information, a naı̈ve approach would be to use
one-hot encoding. However, we believe this is not a good
idea. Firstly, one-hot encoding is not conducive to neural
network training. Secondly, this encoding scheme limits the
number of ID labels to the vector dimensions that the model
can handle, which is unfavorable for subsequent expansion
and generalization. Therefore, we create an ID dictionary I
that consists of K+1 learnable words to represent different
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Figure 2. Overview of MOTIP. There are three primary components: a DETR detector detects objects, a learnable ID dictionary represents
different identities, and an ID Decoder predicts the ID labels of current objects, as we detailed in Sec. 3.2. We combine object features
with their corresponding ID embeddings to form the historical trajectories Tt−T :t−1. Subsequently, the ID tokens are regarded as identity
prompts, and the ID Decoder performs in-context ID prediction based on them, as discussed in Sec. 3.1 and Sec. 3.2.

identities, as follows:

I = {i1, i2, · · · , iK , ispec}, (1)

where each word ik is a learnable C-dimensional embed-
ding. In detail, the first K tokens {i1, i2, · · · , iK} are reg-
ular tokens that represent specific identities, while the last
word ispec is a special token that stands for newborn objects.
Tracklet Formation. In MOTIP, we only use object-level
features as tracking cues. Therefore, for the m-th trajectory,
we retain all target features from the past T frames, denoted
as Ft−T :t−1 = {fm

t−T , · · · , fm
t−1}, and randomly assign a

unique ID label km. Then, we fuse the corresponding ID
words ikm with the target features fm

t , so that the track-
lets carry both tracking cues and in-context identity prompts
needed for ID prediction, as discussed in Sec. 3.1. Here, we
simply use concatenation to achieve this, as shown below:

τm,km

t = concat(fm
t , ikm). (2)

Here, fm
t is the C-dimensional output embedding from

DETR, and ikm is a C-dimensional token obtained
from the dictionary Eq. (1). Ultimately, this results in
a 2C-dimensional tracklet representation τm,km

t . Ac-
cording to this, we denote all historical trajectories as
Tt−T :t−1 = {· · · , T m

t−T :t−1, · · · }, where T m
t−T :t−1 =

{τm,km

t−T , · · · , τm,km

t−1 }. For the sake of consistency, we ap-
ply the same construction form from Eq. (2) to the targets
in the current frame. However, since there is no trajectory
identity yet, we use the special token ispec instead of ikm ,
denoted as τnt = concat(fn

t , i
spec).

ID Decoder. Due to the variable length and number of his-
torical trajectories, we use a standard transformer decoder
structure [53] as our ID Decoder to handle the variable-
length inputs. This component uses all historical tracklets
τm,km as Key and Value to decode all active detection track-
lets τnt in the current frame, as illustrated in Fig. 2. We use
a simple linear classification head to predict the ID label for
the decoded output embeddings. If a detection τnt belongs
to the m-th trajectory, the classification head should predict
it as km, since ikm corresponds to the in-context ID infor-
mation for that trajectory. This way, the entire object as-
sociation process can be formulated as a classification task,
allowing for direct supervision using cross-entropy loss.

3.3. Training
Loss Function. As previously discussed, we transform the
object association in MOT into an end-to-end learnable K+
1 classification problem through in-context ID prediction.
Consequently, we can use the standard cross-entropy loss
function as supervision, denoted as Lid. Since DETR [6, 74]
can also be trained end-to-end, the entire MOTIP model can
utilize a unified loss function L for supervision:

L = λclsLcls + λL1LL1 + λgiouLgiou + λidLid, (3)

where Lcls is the focal loss [29]. LL1 and Lgiou denote the
L1 loss and the generalized IoU loss [44], respectively. λcls,
λL1 and λgiou are their corresponding weight coefficients,
and λid is the weight coefficient of ID loss Lid.
Trajectory Augmentation. In multiple object tracking, we
often face numerous challenges, such as target occlusion,
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Figure 3. Illustration of trajectory augmentation: trajectory ran-
dom occlusion (left) and trajectory random switch (right). Two
different colors represent two distinct trajectories.

blurriness, and high similarity between targets. This can
potentially lead to partial errors in ID assignment during on-
line inference, which in turn can reduce the reliability of his-
torical trajectories in subsequent processes. However, such
errors do not occur during training because we use ground
truth for supervision and trajectory construction. We argue
that the oversimplification during training may prevent the
model from acquiring sufficiently generalized and robust
tracking capabilities. To mitigate this issue, we propose two
trajectory augmentation techniques to be used during the
training phase. Firstly, considering that occlusion is a chal-
lenging problem faced by MOT, we randomly drop tokens
from each trajectory with a probability of λocc, as shown on
the left of Fig. 3. Secondly, considering the potential ID
assignment errors during inference, we randomly swap the
ID tokens of two trajectories within the same frame with a
probability of λsw to simulate the model assigning incorrect
IDs to similar targets, as shown on the right of Fig. 3.

3.4. Inference
As discussed in Sec. 3.1 and Sec. 3.2, during the inference
stage, we can randomly assign an ID label km to each tra-
jectory T m and use the corresponding ID embedding ikm ,
as long as the labels are unique across different trajectories.
I.e., for any two trajectories T m and T n, km ̸= kn. In the
implementation, we sequentially assign ID labels from 1 to
K to represent the trajectories. For some longer video se-
quences, as trajectories expire and new ones appear, there
may be more than K trajectories. To address this, we recy-
cle the ID labels of the concluded trajectories for reuse.

In practice, for all output embeddings decoded by
DETR, we first filter them using a detection confidence
threshold λdet. After that, all active detections are fed into
the ID Decoder to predict the probability of each ID label.
Similar to traditional classification tasks [20, 46], for each
object, we select the ID with the highest probability (> λid)
as the final result. Subsequently, if an object is not assigned
a valid ID and its detection confidence is greater than λnew,
it will be marked as a newborn target and assigned a new
identity. This makes our inference process very simple and
straightforward. Notably, due to the restriction against du-

plicate ID predictions in the evaluation process of MOT
tasks, when two targets in the same frame are predicted to
the same ID label, only the one with the highest confidence
score is retained. The pseudocode and additional details are
provided in Appendix B.2.

From past experience, more complex or advanced ID as-
signment strategies, such as Hungarian algorithm or multi-
stage matching [69], might offer some improvements. How-
ever, to validate the robustness and generalization of the
model itself, we do not focus on these approaches.

4. Experiments
4.1. Datasets and Metrics
Datasets. To evaluate MOTIP, we select a variety of chal-
lenging benchmarks. DanceTrack [52] is a multi-person
tracking dataset composed of 100 videos of various types
of group dances. SportsMOT [10] is a dataset focused on
athlete tracking, composed of 240 sports broadcast videos.
BFT [71] is a high-maneuverability target tracking dataset
that includes 22 bird species from around the world, con-
sisting of 106 video clips. These benchmarks feature nu-
merous serious challenges commonly face in multi-object
tracking, such as frequent occlusions, irregular movements,
high-speed motion, and similar appearance. This will help
us fully verify the robustness and generalization ability of
MOTIP in different scenarios.
Metrics. We mainly use the Higher Order Tracking Accu-
racy (HOTA) [33] to evaluate our method since it provides
a balanced way to measure both object detection accuracy
(DetA) and association accuracy (AssA). We also list the
MOTA [2] and IDF1 [45] metrics in our experiments.

4.2. Implementation Details
Network. In practice, we select Deformable DETR [74]
with a ResNet-50 [20] backbone as our default DETR
detector because it is a versatile option for downstream
tasks [42, 67]. Similar to previous work [16, 61, 65], we
also utilize the COCO [28] pre-trained weights as initial-
ization. We apply relative position encoding in the ID De-
coder because tracking focuses more on relative temporal
relationships rather than absolute timestamps. To mini-
mize unnecessary additional modules, the hidden dimen-
sion throughout the entire model is kept consistent with De-
formable DETR, which is C = 256. Since the ID dictionary
can be reused, it is only necessary to ensure that K is not
less than the maximum number of targets per frame. Here,
we set K to 50 for simplicity.
Training. As in the prior work [16, 70], we use several
common data augmentation methods, such as random re-
size, crop, and color jitter. The shorter and longer side of
the input image is resized to 800 and 1440, respectively.

In each training iteration, we randomly sample T + 1
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Methods HOTA DetA AssA MOTA IDF1

w/o extra data:
FairMOT [68] 39.7 66.7 23.8 82.2 40.8
CenterTrack [72] 41.8 78.1 22.6 86.8 35.7
TraDeS [57] 43.3 74.5 25.4 86.2 41.2
TransTrack [51] 45.5 75.9 27.5 88.4 45.2
ByteTrack [69] 47.7 71.0 32.1 89.6 53.9
GTR [73] 48.0 72.5 31.9 84.7 50.3
QDTrack [41] 54.2 80.1 36.8 87.7 50.4
MOTR [67] 54.2 73.5 40.2 79.7 51.5
OC-SORT [5] 55.1 80.3 38.3 92.0 54.6
StrongSORT [13] 55.6 80.7 38.6 91.1 55.2
C-BIoU [62] 60.6 81.3 45.4 91.6 61.6
Hybrid-SORT [63] 62.2 / / 91.6 63.0
DiffMOT [35] 62.3 82.5 47.2 92.8 63.0
MeMOTR [16] 63.4 77.0 52.3 85.4 65.5
CO-MOT [61] 65.3 80.1 53.5 89.3 66.5
MOTIP (ours) 69.6 80.4 60.4 90.6 74.7

with extra data:
MOTRv3 [65] 68.3 / / 91.7 70.1
CO-MOT [61] 69.4 82.1 58.9 91.2 71.9
MOTRv2 [70] 69.9 83.0 59.0 91.9 71.7
MOTIP (ours) 72.0 81.8 63.5 91.9 76.8

Table 1. Performace comparison with state-of-the-art methods on
the DanceTrack [52] test set. The best result is shown in bold.

frames of images with random intervals, perform ID pre-
diction on the subsequent T frames, and supervise them
with Eq. (3). To reduce computational costs, we only back-
propagate the gradients for the DETR on four of these
frames, while the remaining T − 3 frames are processed
in the no-gradient mode using torch.no grad(). By decou-
pling the detection and association problems and allowing
the ID Decoder to use attention masks [53] to ensure future
invisibility, our method can achieve high parallelism and be
GPU-friendly. As a result, MOTIP can be efficiently trained
using 8 NVIDIA RTX 4090 GPUs. For instance, training
on DanceTrack [52] takes less than one day. More details
and discussions about the training setups can be found in
Appendix B.1.

Hyperparameters. In our experiments, the supervision
weight coefficients λcls, λL1, λgiou and λid are set to 2.0, 5.0,
2.0 and 1.0. The maximum temporal length T is set to 29,
59, and 19 for DanceTrack, SportsMOT, and BFT, respec-
tively. The inference thresholds λdet, λnew, and λid are set to
0.3, 0.6, 0.2. For the training augmentation parameters, we
set λocc = λsw = 0.5. Although fine-tuning some hyperpa-
rameters on different datasets may yield better results, for
simplicity, we strive to maintain their consistency.

Methods HOTA DetA AssA MOTA IDF1

w/o extra data:
FairMOT [68] 49.3 70.2 34.7 86.4 53.5
QDTrack [41] 60.4 77.5 47.2 90.1 62.3
ByteTrack [69] 62.1 76.5 50.5 93.4 69.1
TrackFormer [39] 63.3 66.0 61.1 74.1 72.4
OC-SORT [5] 68.1 84.8 54.8 93.4 68.0
MeMOTR [16] 68.8 82.0 57.8 90.2 69.9
MOTIP (ours) 72.6 83.5 63.2 92.4 77.1

with extra data:
GTR [73] 54.5 64.8 45.9 67.9 55.8
CenterTrack [72] 62.7 82.1 48.0 90.8 60.0
ByteTrack [69] 62.8 77.1 51.2 94.1 69.8
TransTrack [51] 68.9 82.7 57.5 92.6 71.5
OC-SORT [5] 71.9 86.4 59.8 94.5 72.2
DiffMOT [35] 72.1 86.0 60.5 94.5 72.8

Table 2. Performace comparison with state-of-the-art methods on
the SportsMOT [10] test set. The best is shown in bold. The
results of existing methods are from prior work [10, 16, 49].

4.3. Comparisons with State-of-the-art Methods
We compare MOTIP with numerous previous methods
on the DanceTrack [52], SportsMOT [10], and BFT [71]
benchmarks, as shown in Tab. 1, Tab. 2, and Tab. 3, respec-
tively. For recent tracking-by-query methods [67, 70] that
also use DETR, studies [16, 49, 65] have shown that the
choice of different DETR [30, 74] and backbone [20, 31]
networks can significantly impact performance. Therefore,
we chose Deformable DETR [74] with a ResNet-50 [20]
backbone as the competing platform to ensure a fair com-
parison. Some methods [10, 61, 65, 70] use extra detection
datasets to simulate video clips for joint training. We argue
this approach is detrimental to the robustness of end-to-end,
especially long-term modeling methods, as detailed and dis-
cussed in Appendix C and other research [16, 49]. There-
fore, we primarily compare results without using additional
datasets and still demonstrate superior performance.
DanceTrack. The complex scenarios of frequent occlu-
sions and irregular motion pose a severe challenge to
heuristic algorithms [68, 69]. Methods such as Hybrid-
SORT [63], C-BIoU [62], and others [13, 35], despite uti-
lizing a more powerful detector [18], more intricate man-
ual designs, and additional tracking cues to enhance per-
formance, are still significantly outperformed by MOTIP.
Compared to the strong competitor CO-MOT [61], which
also uses Deformable DETR [74], we achieve a new state-
of-the-art result with a notable lead of 4.3 HOTA and 6.9
AssA, even surpassing some outstanding results [61, 65]
that using additional datasets for training (as shown in the
lower of Tab. 1). Such impressive performance demon-
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Methods HOTA DetA AssA MOTA IDF1

JDE [54] 30.7 40.9 23.4 35.4 37.4
CSTrack [27] 33.2 47.0 23.7 46.7 34.5
FairMOT [68] 40.2 53.3 28.2 56.0 41.8
TransCenter [60] 60.0 66.0 61.1 74.1 72.4
SORT [3] 61.2 60.6 62.3 75.5 77.2
ByteTrack [69] 62.5 61.2 64.1 77.2 82.3
TrackFormer [39] 63.3 66.0 61.1 74.1 72.4
CenterTrack [72] 65.0 58.5 54.0 60.2 61.0
OC-SORT [5] 66.8 65.4 68.7 77.1 79.3
MOTIP (ours) 70.5 69.6 71.8 77.1 82.1

Table 3. Performace comparison with state-of-the-art methods on
the BFT [71] test set. The best performance is shown in bold. The
results of existing methods are derived from [71] and [49].

strates the considerable potential of our approach in ex-
tremely challenging scenarios.

SportsMOT. Sports broadcasts involve frequent camera
movements, accompanied by athletes’ high-speed move-
ments and repeated interactions. OC-SORT [5] effectively
handles sudden stops and starts by explicitly modeling non-
linear movements, resulting in a significant improvement
over its predecessor [69]. In experiments, our proposed
MOTIP significantly outperforms all previous methods by a
considerable margin while also surpasses competitors [16,
39] using the same detector [74]. To avoid introducing ad-
ditional engineering challenges and intricate remedies, as
elaborated in Appendix C, we have not provided the re-
sults with extra training datasets like [23, 35, 43]. How-
ever, our method, trained solely on the SportsMOT train set,
still surpasses many joint training methods [5, 35, 51] espe-
cially on the association accuracy (AssA), as shown in the
lower part of Tab. 2, demonstrating our commendable per-
formance and potential.

BFT. Tracking birds differs in many ways from tracking
humans [10, 11, 40, 48, 52]. On the one hand, birds have
highly dynamic movements due to their three-dimensional
activity space, compared to ground targets. On the other
hand, their appearance is often more similar due to the ab-
sence of artificial distinctions such as clothing. Therefore,
this presents a challenging new problem that is different
from previous ones. Nevertheless, as shown in Tab. 3, our
MOTIP has established a new state-of-the-art result with
70.5 HOTA and 71.8 AssA. This helps demonstrate the gen-
eralization ability of our method across different scenarios.

4.4. Ablations

We conduct our ablation experiments on DanceTrack [52]
because it is challenging and offers a large-scale training set
that better unlocks the model’s potential. Unless otherwise

self hung aug HOTA DetA AssA MOTA IDF1

57.7 76.3 43.9 85.5 56.1
✓ 59.7 75.8 47.2 85.6 59.9
✓ ✓ 60.8 75.5 49.3 83.7 62.5

✓ 60.2 75.4 48.2 82.0 61.3

✓ 59.5 75.3 47.2 85.6 61.1
✓ ✓ 59.9 75.1 47.9 85.6 62.2
✓ ✓ ✓ 62.2 75.2 51.8 85.4 65.6
✓ ✓ 62.2 75.3 51.5 85.2 64.8

Table 4. Evaluate the impact of different components and strate-
gies. Let self, hung, and aug symbolize the self-attention layer,
Hungarian algorithm, and trajectory augmentation, respectively.
The gray background is the choice for our final experiment.

stated, all trajectory augmentation techniques will not be
used, i.e., λocc = λsw = 0.0. More details and analyses will
be elaborated in Appendix B.3.
Hungarian Algorithm. The Hungarian algorithm is a
commonly used approach for finding global optimal solu-
tions [5, 69]. However, by default, we do not use the Hun-
garian algorithm in our method, but rather opt for the more
straightforward inference procedure described in Sec. 3.4.
Nonetheless, we explore its impact on our MOTIP. As
shown in the bottom half of Tab. 4, it does not provide con-
siderable benefits to our method. We believe this is because
our model inherently possesses the ability to find optimal
solutions, which also indicates that our approach is far re-
moved from traditional heuristic algorithms.
Self-Attention in ID Decoder. Earlier, we mentioned that
MOTIP can find global optimal solutions. We believe
this can be attributed to the self-attention layers in the ID
Decoder. We perform an ablation study on this design
in Tab. 4. Not surprisingly, using only the decoder layers
can still achieve acceptable tracking performance. How-
ever, we argue that self-attention layers are crucial for better
tracking. This is because they help the current objects ex-
change identity information during inference, thereby pre-
venting confusion among similar targets. Therefore, the im-
pact of the Hungarian algorithm is amplified, which is why
you can observe a remarkable improvement. When trajec-
tory augmentation is introduced, the performance gap be-
tween the approach without self-attention layers and the fi-
nal MOTIP further widens, underscoring the critical role of
self-attention layers.
Comparison with ReID Pipelines. Since our MOTIP also
uses object-level features as tracking cues, it can easily be
mistaken for a type of ReID method. In Tab. 5, we compare
two ReID learning pipelines derived from [68] and [42],
identified as re-id and contra, respectively. In the upper sec-
tion (#1 to #3) of Tab. 5, we perform experiments using the
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# Train Form HOTA AssA IDF1

# 1
Two-Stage

re-id 29.4 11.5 22.1
# 2 contra 41.0 22.6 36.4
# 3 id-pred 55.4 41.1 55.7

# 4

One-Stage

re-id 41.0 22.5 35.0
# 5 re-id‡ 50.6 34.7 50.9
# 6 contra 49.8 33.0 47.1
# 7 contra‡ 52.6 37.3 54.0
# 8 ⋆contra 51.2 35.0 48.1
# 9 ⋆contra‡ 54.5 40.3 55.5

# 10 id-pred 59.5 47.2 61.1

Table 5. Comparison with common ReID pipelines. As the
tracking formulation (Form), re-id and contra represent training
the model using the formula from two well-known ReID meth-
ods, [68] and [42], respectively, and inference is based on cosine
similarity. The id-pred indicates our proposed MOTIP. ‡ and ⋆
represent the use of the Hungarian algorithm and the trajectory
enhancement module, respectively.

frozen, well-trained DETR weights. These results clearly
illustrate that our method shows significant advantages over
the other two formulations under the same object features.
In the remaining part of Tab. 5, we jointly train all network
parameters in a one-stage manner. To eliminate the influ-
ence of introducing additional structures, we incorporate a
trajectory enhancement module, identical to the structure
of our ID Decoder, into some experiments, denoted as ⋆.
The experimental results demonstrate that, whether utiliz-
ing a trajectory enhancement module or an advanced assign-
ment strategy (Hungarian algorithm, refer to ‡), these meth-
ods still lag behind our MOTIP. This can be attributed to
MOTIP’s ability to manage historical tracklets with greater
flexibility, as visualized and discussed further in Appendix
D.3. In contrast, ReID methods [42, 54, 68] employ heuris-
tic algorithms to integrate historical information and per-
form similarity calculation independently, which limits the
model’s adaptability. Furthermore, we emphasize that the
incorporation and interaction of ID information can en-
hance the model’s capability to distinguish similar trajec-
tories in complex scenarios while facilitating better assign-
ment decisions. Incidentally, the introduction of the ID
field also enables the trajectory augmentation mentioned
in Sec. 3.3, further boosting the tracking performance, as
shown in Tab. 6.

Trajectory Augmentation. In Tab. 6, we explore the hy-
perparameters of the two different trajectory augmentation
approaches mentioned in Sec. 3.3. The performance sig-
nificantly improves when λocc is set to 0.5. However, if
too many tokens are discarded (λocc = 1.0), it can under-
mine the results due to excessive difficulty. Set λocc to 0.5,

λocc λsw HOTA DetA AssA MOTA IDF1

0.0 0.0 59.5 75.3 47.2 85.6 61.1
0.5 0.0 60.7 75.0 49.4 85.2 62.7
1.0 0.0 58.6 75.5 45.7 85.7 59.8

0.5 0.2 61.6 75.4 50.5 85.4 64.1
0.5 0.5 62.2 75.3 51.5 85.2 64.8
0.5 0.8 59.8 75.0 47.9 82.7 61.8

Table 6. Exploration of the hyperparameters for the trajectory
augmentation techniques mentioned in Sec. 3.3. The gray back-
ground is the choice for our final experiment.

when progressively increasing the λsw from 0.2 to 0.8, our
method achieves the best performance while λsw is set to
0.5. Therefore, we use λocc = λsw = 0.5 to conduct experi-
ments as the final results in Sec. 4.3. It should be noted that
using different augmentation hyperparameters on different
datasets can yield better performance. However, to avoid
over-focusing on engineering tricks, we use this unified set-
ting across all datasets.

5. Limitations and Discussions

Although we achieved new state-of-the-art results across
numerous datasets, our method still has considerable room
for improvement, and several noteworthy limitations re-
main. As discussed in Sec. 3.2, our approach is simple and
intuitive, adhering to the philosophy less is more. There-
fore, our primary objective is to verify the feasibility of
treating MOT as an in-context ID prediction process, rather
than delving into highly customized model designs. This
leaves ample room for future research to explore enhance-
ments and customizations, such as tailored ID Decoder lay-
ers, additional tracking cues (e.g. motion, depth, etc.), and
more sophisticated trajectory modeling techniques. An-
other limitation is that the capacity K of the ID dictionary
may not be enough in crowded scenarios. We have shown
that in most cases, the token utilization rate is below 40%.
If necessary, K can be adjusted upwards for extreme sce-
narios. Just like DETRs set the number of detect queries to
300 by default, our setting is also for general scenarios.

6. Conclusion

We have introduced treating multiple object tracking as an
in-context ID prediction task, which simplifies both the
training and tracking processes. Based on this, we pro-
posed MOTIP, a simple yet effective baseline design. Sur-
prisingly, our method surpassed the state-of-the-art on all
benchmarks. This demonstrates the tremendous potential of
our pipeline and method, suggesting it can serve as a viable
inspiration for future research.
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and Konrad Schindler. MOT16: A benchmark for multi-
object tracking. CoRR, abs/1603.00831, 2016. 1, 2, 7

[41] Jiangmiao Pang, Linlu Qiu, Xia Li, Haofeng Chen, Qi Li,
Trevor Darrell, and Fisher Yu. Quasi-dense similarity learn-
ing for multiple object tracking. In CVPR, pages 164–173.
Computer Vision Foundation / IEEE, 2021. 6

[42] Pierre-François De Plaen, Nicola Marinello, Marc Proes-
mans, Tinne Tuytelaars, and Luc Van Gool. Contrastive
learning for multi-object tracking with transformers. In
WACV, pages 6853–6863. IEEE, 2024. 5, 7, 8

[43] Zheng Qin, Sanping Zhou, Le Wang, Jinghai Duan, Gang
Hua, and Wei Tang. Motiontrack: Learning robust short-term
and long-term motions for multi-object tracking. In CVPR,
pages 17939–17948. IEEE, 2023. 2, 7

[44] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian D. Reid, and Silvio Savarese. Generalized
intersection over union: A metric and a loss for bounding
box regression. In CVPR, pages 658–666. Computer Vision
Foundation / IEEE, 2019. 4

[45] Ergys Ristani, Francesco Solera, Roger S. Zou, Rita Cuc-
chiara, and Carlo Tomasi. Performance measures and a data
set for multi-target, multi-camera tracking. In ECCV Work-
shops (2), pages 17–35, 2016. 5

[46] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein, Alexander C. Berg,
and Li Fei-Fei. Imagenet large scale visual recognition chal-
lenge. Int. J. Comput. Vis., 115(3):211–252, 2015. 2, 3, 5

[47] Leonardo Saraceni, Ionut Marian Motoi, Daniele Nardi, and
Thomas A. Ciarfuglia. Agrisort: A simple online real-time
tracking-by-detection framework for robotics in precision
agriculture. In ICRA, pages 2675–2682. IEEE, 2024. 2

[48] Atom Scott, Ikuma Uchida, Ning Ding, Rikuhei Umemoto,
Rory P. Bunker, Ren Kobayashi, Takeshi Koyama, Masaki
Onishi, Yoshinari Kameda, and Keisuke Fujii. Teamtrack:
A dataset for multi-sport multi-object tracking in full-pitch
videos. In CVPR Workshops, pages 3357–3366. IEEE, 2024.
1, 7
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