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Abstract

Implicit neural representations (INRs) such as NeRF and
SIREN encode a signal in neural network parameters and
show excellent results for signal reconstruction. Using
INRs for downstream tasks, such as classification, is how-
ever not straightforward. Inherent symmetries in the pa-
rameters pose challenges and current works primarily fo-
cus on designing architectures that are equivariant to these
symmetries. However, INR-based classification still sig-
nificantly under-performs compared to pixel-based meth-
ods like CNNs. This work presents an end-to-end strategy
for initializing SIRENs together with a learned learning-
rate scheme, to yield representations that improve classifi-
cation accuracy. We show that a simple, straightforward,
Transformer model applied to a meta-learned SIREN, with-
out incorporating explicit symmetry equivariances, outper-
forms the current state-of-the-art. On the CIFAR-10 SIREN
classification task, we improve the state-of-the-art without
augmentations from 38.8% to 59.6%, and from 63.4% to
64.7% with augmentations. We demonstrate scalability on
the high-resolution Imagenette dataset achieving reason-
able reconstruction quality with a classification accuracy
of 60.8% and are the first to do INR classification on the
full ImageNet-1K dataset where we achieve a SIREN clas-
sification performance of 23.6%. To the best of our knowl-
edge, no other SIREN classification approach has managed
to set a classification baseline for any high-resolution im-
age dataset. Our code is available at https://github.
com/SanderGielisse/MWT.

1. Introduction

Implicit neural representations (INRs) [3, 5–7, 10, 24–26,
32–34] encode complex continuous signals compactly in a
neural network parameterized by θ. In the case of images,
an INR continuously maps spatial image coordinates x, y ∈
R to RGB values. Specifically, we define the function fθ :
R2 → R3 such that:

fθ(x, y) = (r, g, b),

where (x, y) denotes continuous spatial coordinates,
r, g, b ∈ R are the RGB values at that position. By do-
ing so, θ encodes the image implicitly, instead of explicitly
in a pixel value grid.

A common model choice for fθ is a multilayer percep-
trons (MLP) [25, 32, 34, 36], which enable high-quality re-
constructions. We identify two main advantages of using
MLP-based implicit neural representations (INRs). First,
the capacity of the model fθ(x, y) is not necessarily uni-
formly distributed across the image space, unlike represen-
tations based on fixed-resolution pixel grids. Second, the
signal used as input is not required to be an equidistant pixel
grid; any subset of observations from a signal can be used to
train fθ(x, y). Unfortunately, while INRs are highly effec-
tive for high-resolution reconstructions, using these implicit
representations directly for downstream tasks, such as clas-
sification, remains challenging, as it requires reasoning on
the parameters θ.

To perform a downstream task such as classification on
the parameters θ, an additional model g is required, which
takes θ as input. This involves constructing a model ar-
chitecture that can process the weights of another archi-
tecture as its input. However, θ can contain many sym-
metries. For example, in the case of MLPs, reordering the
nodes and their associated weights introduces permutation
symmetries; that is, a different arrangement of weights that
corresponds to the exact same function. Similarly, scale-
symmetries allows scaling parameters in a way that results
in an identical function, even though θ has changed.

One approach to address these symmetries is to re-
align the weights so that all symmetries map to the same
network. Unfortunately, this alignment problem is in-
tractable [1, 28]. An alternative solution is to design the
downstream architecture g to be equivariant to the symme-
tries in θ, effectively bypassing the alignment issue. Con-
sequently, many recent works have adopted this equivariant
design approach for the design of the downstream architec-
ture [8, 15, 17, 21, 27, 45]. However, the performance of
these approaches remains behind that of pixel-based clas-
sification methods. One possible reason for this could be
that RGB pixel-based representations are inherently easier
for a downstream model to interpret than the weights of
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Figure 1. Left: the existing two-step INR classification approach, where the process involves building INR datasets by fitting images using
many update steps without classifier feedback for its weight structure. The classifier is trained separately, and the classification loss cannot
influence the INR. Right: the proposed end-to-end meta-learned INR approach for classification. This method fits high-resolution images
using a few update steps with learned initialization and feedback from the classifier, allowing the classification loss to update both the
classifier and the INR weight structure, enhancing downstream performance while ensuring quick convergence.

another neural network. It may be that the weights θ of
the INR lack sufficient “structure”, making it difficult for
downstream models to identify useful image features. The
cause of sub-par performance being the absence of struc-
ture is supported by the findings of [29], who find that us-
ing the same, shared, INR initialization for all images and
then make image-specific INRs by updating the shared ini-
tialization for each particular image INR yields improved
classification results. This shared initialization may avoid
symmetries by picking a fixed reference point. This is cor-
roborated by the observations of [29] that more INR update
steps to minimize the reconstruction loss improves the re-
construction quality, it actually reduces classification per-
formance. Essentially, as the weights diverge from the ini-
tial shared INR, the structure becomes increasingly distinct,
making classification of the INR more challenging. For this
reason, we balance the INR fitting process between recon-
struction quality and classification performance, in an end-
to-end meta-learning setting using only a few update steps.
What is more, using only a few update steps allows for a
highly efficient implementation, which allows INR classifi-
cation on high-resolution images and fitting INRs on data-
augmentations in the interpretable image space.

Rather than merely sharing a common INR initialization
across all images, we enforce structural consistency beyond
shared initialization. Namely, we propose a meta-learning
approach to jointly optimize the INR initialization and the
learning rate schedule used in the image-specific updates.
The objective is to find an initialization and a learning rate
schedule such that, when an INR is fitted to an image signal,
the resulting parameters θ have a structure that is directly
interpretable for the classification model g(θ). Rather than
the current two-step approach of first converting a set of

images into their INR representations and as an indepen-
dent next step training a classifier, we make the INR fitting
process part of the classifier training loop. We do this by
back-propagating through the INR optimization steps them-
selves. This way, an end-to-end trainable setting is achieved
where the classifier can influence the structure of the INR,
see Figure 1. We focus specifically on classification as the
downstream task and use the popular SIREN as our MLP-
based INR as commonly done [8, 15, 27, 45], although our
approach is likely applicable to other tasks and other INRs
as well. Our contributions are as follows.
• End-to-end learning of INR classification: Devel-

opment of a meta-learning initialization strategy for
SIRENs, combined with a meta-learned learning-rate
scheme, aimed at enhancing classification performance
on SIRENs.

• Computational efficiency: The high convergence speed
of our approach allows high-resolution image classifica-
tion and enables the use of interpretable spatial image
augmentations during training. We explore a computa-
tionally efficient variant where a SIREN is learned on a
subset of the pixels in each step. This further reduces
computational cost, without deterioration of reconstruc-
tion quality or classification accuracy.

• Simple classifier design: We apply a straightforward,
standard, Transformer model to the meta-learned SIREN
representations, achieving improvements in classification
accuracy without requiring complex classifiers explicitly
designed to be equivariant to weight symmetries.

• State of the art classification results: We improve the
SOTA on MNIST [19] accuracy from 96.6% to 98.8%,
Fashion-MNIST [43] from 80.8% to 90.4% and CIFAR-
10 [18] from 38.8% to 59.6%. For CIFAR-10, we also
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use augmentations and improve the SOTA from 63.4%
(inr2array [46]) to 64.7%. Moreover, to our knowl-
edge, we are the first to set SIREN classification base-
lines on high-resolution datasets. On Imagenette [14] we
achieve 60.8% classification accuracy, while on the full
ImageNet-1K we achieve 23.63% accuracy.

• Comprehensive ablation study: Detailed ablation stud-
ies on key components of the proposed meta-learning
and Transformer-based approach, analyzing the impact
of meta-initialization, learning-rate schemes, and Trans-
former architecture choices on reconstruction and classi-
fication performance.

2. Related Work

Implicit Neural Representations. INRs can be defined
as a single differentiable and continuous function over the
entire signal space, globally, often parameterized by an
MLP [10, 32, 34, 36]. This allows flexible INRs capacity
allocation, using less parameters on simpler areas. A key
drawback, however, is that these models can take a long
time to converge and are challenging to train to a low recon-
struction error. An alternative is a hybrid explicit-implicit
variant, where multiple local implicit representations are
explicitly arranged spatially, either uniformly across the im-
age or based on specific heuristics [3, 5–7, 23, 24, 26, 33].
In our work, we do not consider hybrid local models and
focus only on fully implicit, global, models.

For global MLP-based INRs, ReLU activations [32]
struggle to represent high-frequency components, often re-
quiring positional embeddings [37]. The seminal SIREN
[36] approach, on the other hand, demonstrates that a spe-
cific initialization with sin activation functions achieves
smooth convergence, high reconstruction quality, and well-
defined higher-order derivatives without requiring posi-
tional embeddings leading to several follow-up works [32,
34]. In our work, we adopt the SIREN approach due to
its widespread adoption [3, 4, 10, 15], straightforward im-
plementation, and proven effectiveness in preserving high-
frequency details across diverse images.

MLP-based INR Classification. Classifying INRs is
challenging as it requires reasoning on the MLP weights
of the INR. The work by INSP-Net [44] addresses this by
differential operators, directly applied to INRs, enabling
both low-level image-to-image translation and more com-
plex tasks like classification. Alternatively, INR2VEC [8]
uses a feature encoder for each node in the MLP, followed
by max-pooling to obtain a global feature vector. How-
ever, this approach does not account for potential symme-
tries present in the neuron weights.

Equivariant INR Classifiers. DWS-Net [27] proposes
a network that can take as input an INR parameterized by
an MLP, by processing it through a series of layers that

Figure 2. Our method illustrated for a high-resolution Imagenette
[14] image. A meta-learned SIREN initialization is updated for a
small amount of gradient steps, in this case k = 4. The resulting
weights are then passed to a classifier. Meta-learning allows us to
back-propagate through the update steps, end-to-end optimizing
the SIREN both for reconstruction as for classification.

are equivariant to the permutation symmetries of an MLP.
NFN [45] improves upon this by making stronger symmetry
assumptions to improve parameter efficiency and practical
scalability. Graph Metanetworks [17, 21] extend this work
to not only accept MLPs as input, but show that any set of
operations that can be described by a graph.

Neural Functional Transformers (NFTs) [46] define an
attention-based architecture to process the weights of MLPs
and CNNs, and propose their INR2ARRAY method to con-
vert an INR into its permutation invariant latent represen-
tation. Moreover, while most work has been focused on
equivariance to the inherent permutation symmetries, re-
cent work has also explored the use of graph meta-networks
that are scale-equivariant [15] to the scale symmetries in
the weights. However, in our work, we will take a dif-
ferent approach. Namely, we demonstrate that enforcing
structure on the MLP parameters offers an alternative to
the downstream symmetry equivariance approach, showing
that strong performance can be achieved without explicitly
modeling equivariances in the classifier, allowing the use of
straightforward, standard, classifiers.

Differentiable Meta-Learning. Model-Agnostic Meta-
Learning (MAML) [11] is a meta-learning technique, with
the objective of finding a set of model initialization param-
eters θ that can be quickly adapted, in k ’inner loop’ steps,
using only a few samples. Meta-SGD [20] extends MAML
by also learning the learning rates for the k steps. This ap-
proach uses the property that the gradient descent operator
itself is differentiable, i.e.,

θk+1 = θk − α∇θLinner(·; θk), (1)

is differentiable with respect to the learning rate α and to θk
if the loss function Linner is also differentiable with respect
to θk.

Then, for this θk, we can compute a different task loss
Ltask. This task loss can be minimized by back-propagating
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through the gradient steps of the inner-loop to update the
initial θ0, such that after k steps of minimizing Linner we ob-
tain θk that minimizesLtask. While prior work typically uses
the same loss function for both Linner and Ltask, we demon-
strate that explicitly incorporating a classification loss into
Ltask leads to improved classification performance. We use
both MAML and Meta-SGD for meta-learning the INR ini-
tialization and learning rate schedule, to balance reconstruc-
tion as well as downstream classification.

Meta-Learning for INRs. Approaches similar to
MAML are used in [38] to fit an implicit 3D NeRF [25] in
just a few update steps. The data-to-functa [10] approach
uses a meta-learning to speed up the INR fitting process
while also doing dimensionality reduction with reconstruc-
tion quality as the only optimization goal, although follow-
up work shows that this does not scale to high-resolution
images [3]. In fit-a-nef [29] they manually tune and inves-
tigate meta properties and confirm that sharing an initial-
ization and using only a few update steps helps classifica-
tion. Our work differs in that we do not want to manu-
ally tune such parameters, but use meta-learning to auto-
matically learn a balance between good reconstruction and
classification accuracy, using the benefits of a shared initial-
ization with the computational advantages of having only a
few update steps, for high-resolution images. To our knowl-
edge, no previous works use classification performance as
an optimization goal in the INR meta-learning.

3. Method: Meta Weight Transformer (MWT)
3.1. Meta-Learned INR
We use SIREN [36] as the INR, and follow their initial-
ization scheme to generate the very first random initial
θ. We meta-learn this SIREN initialization θ so it can be
used as a shared starting point for all images for fitting an
image-specific SIREN, which is updated k steps for each
individual image. We also learn a learning rate schedule
α ∈ Rk×|θ| which contains a learning rate for each parame-
ter at each of the k update steps, based on [20]. The objec-
tive when learning this θ and α is not only to ensure rapid
convergence in only k steps in terms of good reconstruction
quality, but also to obtain SIREN parameters that are di-
rectly interpretable by a simple downstream INR classifier.

For clarity, we explain our method using a batch size of
1 with a single data point of one image x with class label
y. In Figure 2 we show a visual overview. We explain the
method below, and pseudo-code is given in Algorithm 1.

The meta-learning makes use of two loops: an outer loop
over all training images, and an inner loop to update the
shared learned initialization θ which is updated k times for
each specific image x in an inner loop. We denote with ϕ
the SIREN parameters θ after updating them k times. So,
we define a downstream model hψ(ϕ) that takes as input

Algorithm 1 Task-Specific SIREN Meta-Learning.
For the inner-loop, we minimize a reconstruction loss Lrec. We
then optimize the initial SIREN parameters θ and learning rate
schedule α such that ϕ does not only encode the image with high
quality, but is also in a format that can be correctly classified by
our classifier hψ(ϕ). Here, f is our SIREN, wcls is a scalar that
we can use to change the classifier influence on the meta-learning
process, and Adam refers to the use of the Adam [16] optimizer.

1: Init random SIREN with parameters θ
2: Init learning rates α for all k update steps α ∈ Rk×|θ|

3: while not converged do <outer loop>
4: Sample training image x with classification label y
5: Set starting INR parameters to shared base ϕ = θ
6: for i = (1, 2, . . . , k) do <inner loop>
7: ϕ← ϕ− αi∇ϕLrec(fϕ,x)
8: end for
9: Predict classification label ŷ ← hψ(ϕ)

10: Get θ, α gradient gcls
θ,α ← ∇θ,αLcls(ŷ, y)

11: Get θ, α gradient grec
θ,α ← ∇θ,αLrec(fϕ,x)

12: Combine θ, α gradients gθ,α ← grec
θ,α + gcls

θ,α ∗ wcls
13: Update SIREN initialization θ ← Adam(θ, gθ)
14: Update learning rates α← Adam(α, gα)
15: Get ψ gradient gψ ← ∇ψLcls(ŷ, y)
16: Update classifier ψ ← Adam(ψ, gψ)
17: end while

the k times updated sample-specific SIREN parameters ϕ.
To update the initial θ to become ϕ, we set Linner to be the
MSE reconstruction loss of the SIREN reconstruction fθ(·)
for each of the k inner-loop steps, for all n pixels in image
x as

Lrec(fϕ,x) =
1

n

n∑
j=1

(xj − fϕ(xj))2 (2)

We cannot use the classification loss in the inner-loop, as
it has to be performed at test time for new samples, where
we do not have the ground truth y of that sample. After
the inner-loop, we classify ϕ to the predicted class label ŷ
using our INR classifier ŷ ← hψ(ϕ). Then, we compute
both the reconstruction loss Lrec(fϕ,x) and the classifier
loss Lcls(ŷ, y). First, we update the parameters of the meta-
learning process. For both these losses, we compute the
gradients with respect to both the initialization values θ, and
learning rates α. We denote these gradients as grec

θ,α and gcls
θ,α

which gives

grec
θ,α ← ∇θ,αLrec(fϕ,x) (3)

gcls
θ,α ← ∇θ,αLcls(ŷ, y) (4)

Then, we combine the gradients using a scalar wcls, with
which we can control the influence of the classifier on the
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meta-learning process, to obtain gθ,α

gθ,α ← grec
θ,α + gcls

θ,α ∗ wcls (5)

which we use to obtain the gradients that we will use to
update θ and α. Lastly, we compute the gradients to up-
date the classifier weights ψ. We denote this gradient as gψ
which we compute as

gψ ← ∇ψLcls(ŷ, y) (6)

As the weights of the classifier ψ are solely optimized for
classification performance, we only use gψ to update them.

3.2. SIREN Classification using Transformers
To classify our image-specific SIREN parameters ϕ, we re-
quire an architecture hψ(ϕ) that is capable of accepting
linear layers with bias terms as input. We use a simple,
straight-forward, Transformer model [41] that operates di-
rectly on the weight space of a SIREN model without con-
sidering any explicit INR symmetries.

To input the SIREN network to the classifier we use the
property that a linear transformation followed by the addi-
tion of biases can be combined into a single matrix oper-
ation, if we pad each layer with a 1-valued input. Specif-
ically, the weights of a linear layer WL ∈ Rcin×cout and
the bias term Wb ∈ Rcout can be represented together as
W ∈ R(cin+1)×cout . This combined matrix can be applied to
the input vector padded with a 1, resulting in an operation
that is identical to applying the weight matrix followed by
the bias addition. We show a SIREN network this way in
Figure 1.

We train the classifier on the hidden layers of the SIREN.
SIREN networks often maintain the same layer dimension-
ality throughout their depth. This means that, if we only
consider the hidden layers, each neuron in a SIREN net-
work has cin+1 input weights. We use each output neuron
of the SIREN’s hidden layers to be a token for our Trans-
former model, where each neuron has a cin +1 dimensional
feature vector; those being the input weights to that neuron.

So, for a SIREN network with l hidden layers and di-
mensionality d, there are d × l input tokens for our Trans-
former model. The feature vectors for these tokens do not
inherently have any positional bias, making it challenging
for the Transformer to identify which neuron a specific fea-
ture vector corresponds to. To address this, we introduce
a learned positional bias β ∈ R|θ| for each weight. Addi-
tionally, we observe that the SIREN base weights θ and the
image-specific weights after the inner loop ϕ are often sim-
ilar. Namely, element-wise |θ − ϕ| results in mostly small
numbers. Consequently, our classifier struggles to interpret
these weights accurately, likely due to the low-frequency
bias of our model [37]. To mitigate this, we provide the net-
work with the difference between the base SIREN weights θ

and the image-specific weights ϕ instead, rather than the ab-
solute values. Because this difference often results in small
values, and the commonly used Transformer initializations
expect normalized inputs, we scale the feature vectors by
a scalar λ, which we typically set to 500. So, before pro-
viding the weights to the Transformer, we first convert our
SIREN as

ϕscaled ← λ(ϕ− θ + β). (7)

Reducing Computational Cost Computationally, the re-
construction loss in the inner loop is typically calculated
for each pixel at each of the k inner-loop steps, requiring
H × W × k forward passes through the SIREN network,
where H and W represent the image height and width in
pixels, respectively. The computation graph for all k steps
and for all H ×W pixels must be stored to facilitate meta-
learning of the base initialization θ, which can become
resource-intensive for high-resolution images. To address
this, we also explore an alternative approach that fits the
SIREN to the image using a random subset S of pixels at
each inner-loop step, rather than processing all pixels. We
denote the fraction of pixels used with s ∈ [0, 1] such that
|S| = (s×H×W ). Note that when s is set to (1/k), on av-
erage the model still sees every pixel once. By decreasing s,
we effectively make the k inner-loop steps more stochastic,
while simultaneously saving on computational cost.

Classification Accuracy (%)
Method MNIST Fashion-MNIST CIFAR-10

MLP 17.55 ± 0.01* 19.91 ± 0.47* 11.38 ± 0.34*
Inr2Vec [8] 23.69 ± 0.10* 22.33 ± 0.41* -
DWS [27] 85.71 ± 0.57 67.06 ± 0.29 34.45 ± 0.42*
NFNNP [45] 78.50 ± 0.23* 68.19 ± 0.28* 33.41 ± 0.01*
NFNHNP [45] 79.11 ± 0.84* 68.94 ± 0.64* 28.64 ± 0.07*
NG-GNN [17] 91.40 ± 0.60 68.00 ± 0.20 36.04 ± 0.44*
ScaleGMN [15] 96.57 ± 0.10 80.46 ± 0.32 36.43 ± 0.41
ScaleGMN-B [15] 96.59 ± 0.24 80.78 ± 0.16 38.82 ± 0.10

WT (Ours) 91.38 ± 1.67 83.97 ± 1.38 43.78 ± 0.64
MWT (Ours) 98.33 ± 0.11 89.41 ± 0.25 56.90 ± 0.29
MWT-L (Ours) 98.80 ± 0.06 90.43 ± 0.23 59.57 ± 0.52

Table 1. Accuracy of various methods on MNIST, Fashion-
MNIST, and CIFAR-10 datasets where models operate directly on
the SIREN weights. The values represent the mean ± standard
deviation (n = 3), in the no data-augmentation setting. The star
* denotes that the numbers were taken from [15], the (Ours) rows
are computed by us, and other values are taken from the original
papers. We show that end-to-end meta-learned classifier gradients
(MWT) strongly improves over not having such classifier gradi-
ents (WT). Moreover, MWT, as well as our large model MWT-L
set a strong new baseline for single SIREN classification.

4. Experiments
Implementation details. The classifier is a 10 block Trans-
former [41], each block with a dimensionality matching that
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of the SIREN network. LayerNorm [2] is applied prior to
the self-attention operation and the fully connected GELU
[13] layer. We implement multi-head attention with a head
dimension of 64 and use LayerScale [39] initialized at 0.1.
For optimization, we employ the AdamW [16, 22] opti-
mizer with a batch size of 16, a learning rate of 1 × 10−4,
and a weight decay of 1× 10−4.

In the inner-loop optimization described in Algorithm 1,
we use plain SGD without momentum. We observed that a
higher AdamW learning rate of 1× 10−2 for the inner-loop
learning rates α improves performance, so we adopt this
value there. The inner-loop learning rates for meta-SGD are
initialized as α ∼ Uniform(0.1, 1.0). We set the rescaling
factor for SIREN weights to λ = 500. For the SIREN net-
work itself, we use a ω = 10.0 on the first layer, a hidden di-
mensionality of 128, and a depth of 4, unless specified oth-
erwise. All experiments were conducted on NVIDIA A40
GPUs with mixed-precision enabled.

4.1. Classification of INRs
We evaluate INR classification on MNIST [19], Fashion-
MNIST [43], and CIFAR-10 [18]. We train each model on
each of the datasets for 10 epochs.

Impact of End-to-End Classifier Gradients We inves-
tigate our end-to-end Meta Weight Transformer (MWT)
to verify if gradients from the classifier effectively influ-
ence the meta-learned SIREN initialization and learning
rate schedule. Thus, we compare MWT to a variant of Al-
gorithm 1 that does not back-propagate the Lcls loss through
the inner loop and instead uses it solely for optimizing the
downstream Transformer model. We label this variant as
the Weight Transformer (WT), for which we set wcls = 0.
In this modified version, the downstream Transformer clas-
sifier does not influence the meta-learned initialization nor
the learning rate schedule, leading to a learning procedure
that is learned purely for fast and high-quality reconstruc-
tion. This WT approach resembles the traditional two-step
method outlined in Figure 1. Here, the INR is trained sep-
arately with only a reconstruction objective, after which a
classifier is trained on the INRs separately.

The results in Table 1 show a large improvement of
MWT over WT. This indicates that incorporating end-to-
end classifier gradients to guide the structuring of the INR
through meta-learning is advantageous.

Comparisons to State-of-the-art The Table 1 also in-
cludes a comparison with current state-of-the-art results in
SIREN classification where no augmentations are used. Our
WT model mostly performs similar or better than previous
state-of-the-art models, with MWT clearly outperforming
all earlier methods.

A possible explanation for why WT already does well,
is that our SIREN is learned through the meta-learning pro-

cess designed to achieve convergence within just a few up-
date steps. Namely, while non-meta learning approaches
typically require several dozen update steps to achieve rea-
sonable reconstruction accuracy, our method uses only k =
6 update steps. This reduction in the number of steps
may contribute to the observed improvement in classifica-
tion performance, consistent with findings from [29], which
demonstrated that reducing the number of update steps can
enhance downstream classification performance.

Comparing to other INR baselines that do use augmenta-
tions on CIFAR-10, these report 41.27% [27], 46.60% [45],
56.95% [15], and 63.4% [46]. Our MWT-L models scores
59.57% ± 0.52, which is quite reasonable with respect to
computation effort, because the augmented models typi-
cally need to fit 10x-50x more SIRENS. Furthermore, we
scale our MWT approach further, use a 20-layer Trans-
former, use spatial augmentations, increase epochs to 40,
and achieve a new CIFAR-10 [18] SIREN classification
SOTA of 64.7%.

4.2. Upscaling to High-Resolution
So far we focused on low-resolution images, we now ex-
plore the scalability of our approach to high-resolution im-
ages. To begin, we train our MWT classifier on Imagenette
[14], a 10-class subset of the ImageNet dataset [9], with
augmentations enabled, as we clarify below.

Spatial Augmentations When constructing datasets
composed of SIREN networks, image-space augmentations
such as scaling, rotation, flipping, and translation can be
computationally expensive, because it requires re-training
the SIREN to each new augmented signal. To address this,
weight-space augmentations have been proposed [27, 35].
However, augmenting the weight space in a way such
that it actually still represents the type of images that can
naturally occur is challenging. Fortunately, since we can fit
a SIREN to a new signal in just a few gradient steps, we can
simply apply image-space augmentations. Therefore, in
the following experiment, we also evaluate model variants
where spatial image augmentations of the training data
are used. We decrease the number of inner-loop steps
to k = 4, as this is computationally less costly, and the
results in Table 4 did not show a large drop in performance
for this change. Furthermore, we investigate if we can
push the performance by using our larger model variant
MWT-L with SIREN dimensionality of 256. By increasing
the SIREN dimensionality, we also automatically increase
the dimensionality of the Transformer tokens to 256. To
facilitate the higher image resolution, we use ω = 30.0 for
the first layer of the SIREN for all of the high-resolution
models. We vary the amount of sub-sampling by setting
different values for s. We present the results in Table
2. Note that for s = 0.25 with k = 4, the model on
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average sees every pixel once, similar to traditional image
processing models.

First, we compare the WT and MWT models. Surpris-
ingly, we find that the best performance for classification
using the small models is achieved for MWT with augmen-
tations while only using 5% of all the pixels in each of the
reconstruction inner-loop steps, resulting in a validation ac-
curacy of 57.27% on the high-resolution Imagenette [14]
dataset. Interestingly, using smaller values for s does not
appear to strongly impact classification performance nor re-
construction quality. A similar pattern is found for our large
MWT-L model, where the classification accuracy, as well as
the reconstruction quality, is relatively consistent between
varying s. This suggests that the meta-learned SIREN net-
work may have learned an implicit image bias that enables
it to interpolate the missing pixels with sufficient accuracy,
perhaps similar to [40], or simply that just a partial signal
observation is sufficient to achieve the current performance.
This might allow the model to maintain performance even
when provided with incomplete data during training, sug-
gesting potential further applications in scenarios involving
sparse input data [12] or point cloud processing.

ImageNet-1K We train MWT-L on the full large-scale
ImageNet-1K [9] dataset. We use a dimensionality of 256,
use spatial image augmentations, use a subsampling rate of
0.01 for each of the k = 4 inner-loop steps. In Table 3
we show the performance for varying wtask. To our knowl-
edge, our work is the first to train SIREN networks for a
high-resolution collection of images such as ImageNet [9].

MWT-L Model
Subsampling Accuracy Validation Training Time Memory
(parameter s) (%) (sec / epoch) (min / epoch) (train, GiB)

0.1 85.82 116.2 7.8 15.2
0.01 85.41 49.5 3.7 11.0
0.001 84.04 46.7 3.5 10.8
0.00005 30.35 41.7 3.1 10.7

Figure 3. ModelNet40 [42] results on unsigned distance functions.
Trained for 150 epochs using dimensionality of 256, number of
inner-loop steps k = 4, with augmentations enabled. Timings in-
clude the inner-loop fitting of the INR. The inr2vec work [8] scores
an accuracy of 87.0% on this dataset, with non-INR approaches
like PointNet [30] and PointNet++ [31] outperforming these with
accuracies of 88.8% and 89.7% respectively.

4.3. Ablations

To analyze the impact of our model’s hyperparameters,
we conduct an ablation study using the CIFAR-10 dataset,
with results presented in Table 4. Notably, when examin-
ing the task influence on the meta-learning of the SIREN
initialization, denoted as wcls, we observe a clear trade-
off between reconstruction quality and classification perfor-
mance. Specifically, if wcls in Algorithm 1 is set too high,
both reconstruction quality and classification accuracy de-
cline. On the other hand, if wcls is set too low, only clas-
sification performance is negatively affected. We find that
setting wcls = 0.01 strikes a good balance, yielding good
classification performance while maintaining acceptable re-
construction quality. For the number of inner-loop steps k,
we observe that taking more gradient steps generally en-
hances both classification and reconstruction performance.
However, higher values of k can be computationally expen-
sive, which is a known restriction of MAML [11], so we
use k = 6 as a practical compromise. Similarly, increasing
the depth of the Transformer and the width of the SIREN
network also improves performance but leads to a substan-
tial increase in the number of model parameters. We set the
SIREN dimensionality to 128 for our MWT model, and to
256 for our MWT-L model.

Figure 4. We provide a visualization of the trade-off made in the
ablation of the MWT model. Increasing the influence of the classi-
fier on the meta-learning of the INR (wtask) decreases reconstruc-
tion quality, but increases classification performance up to about
0.01, after which both decrease.

Classifier Classifier Influence Accuracy PSNR #Params #Params Validation Training Memory
(%) (dB) CLS SIREN (test set, sec) (min / epoch) (GiB)

WT (wtask = 0) 38.98 43.09 1.1M 465K 30.3 10.8 4.2
(wtask = 0.01) 56.02 32.64 1.1M 465K 29.0 11.6 4.2

NFNNP

(wtask = 0) 29.54 44.21 1.8M 465K 35.4 16.0 0.7
(wtask = 0.01) 49.89 32.55 1.8M 465K 28.1 11.7 4.5

NFNHNP

(wtask = 0) 25.77 44.41 3.6M 465K 35.6 14.2 5.2
(wtask = 0.01) 48.37 32.83 3.6M 465K 28.0 11.7 5.8

Table 5. We show our method on the NFN classifier [45] on
CIFAR-10 [18]. For NFN, we use three-layered network with a
layer dimensionality of 64, followed by two fully connected lay-
ers. We train for 10 epochs, with spatial augmentations enabled.
To compare, NFN [45] reports 44.1% for NFNHNP , and an accu-
racy of 46.6% for NFNNP , but do this through augmentation by
fitting 20 SIRENs from different initializations for each image.
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Model Accuracy (%) PSNR (dB) #Params #Params Validation Training Memory
No Aug. With Aug. No Aug. With Aug. CLS SIREN (sec / epoch) (min / epoch) (GiB)

WTs=0.25 47.96 ± 0.29 46.83 ± 0.25 23.23 ± 0.08 23.27 ± 0.05 1.1M 332K 40.7 5.0 19.6
WTs=0.1 48.11 ± 0.42 47.02 ± 0.37 22.50 ± 0.02 22.47 ± 0.04 1.1M 332K 20.5 2.3 9.0
WTs=0.05 49.01 ± 0.17 47.97 ± 1.27 21.64 ± 0.03 21.79 ± 0.04 1.1M 332K 12.7 1.4 5.6

MWTs=0.25 48.79 ± 0.36 56.13 ± 0.28 21.14 ± 0.02 21.14 ± 0.08 1.1M 332K 41.4 8.0 21.1
MWTs=0.1 50.14 ± 0.87 56.78 ± 0.27 20.82 ± 0.04 21.14 ± 0.02 1.1M 332K 20.5 3.5 9.6
MWTs=0.05 50.23 ± 0.31 57.27 ± 0.38 20.68 ± 0.03 20.98 ± 0.06 1.1M 332K 13.5 2.1 5.9

MWT-Ls=0.1 51.80 ± 0.23 60.62 ± 0.37 21.94 ± 0.02 22.31 ± 0.03 4.3M 1.3M 42.4 7.6 24.1
MWT-Ls=0.05 52.04 ± 0.45 60.75 ± 0.65 21.56 ± 0.02 21.86 ± 0.04 4.3M 1.3M 28.7 4.7 17.4
MWT-Ls=0.02 52.93 ± 0.90 60.75 ± 0.37 20.95 ± 0.04 21.14 ± 0.02 4.3M 1.3M 21.2 2.9 13.5

Table 2. Accuracy and PSNR results for WT, MWT and MWT-L models with varying subsampling settings on the Imagenette [14] dataset.
The columns (with aug.) indicate the use of spatial augmentations to the training data; scaling, translating, rotating and flipping. Note
that due to random uniform subsampling, also the PSNR is computed on a random, though different, uniform subset of the pixels. So, the
shown PSNR is just an approximation of the real PSNR.

Model Accuracy PSNR

wtask = 0.01 24.11% 21.78 dB
wtask = 0.001 21.87% 22.09 dB
wtask = 0.0001 19.21% 22.14 dB

Table 3. Results for the full ImageNet-1K [9] dataset trained for 40
epochs. Accuracy indicates the percentage of correctly classified
samples, while PSNR represents the average reconstruction qual-
ity of the image. This model uses 12.1 GiB of memory for training,
takes 306.0±4.2 minutes for a single epoch, takes 216.8±9.4 sec-
onds for making predictions on the full validation set. The SIREN
model has 1.3M parameters, and the WT classifier has 4.5M pa-
rameters.

5. Discussion

We introduce a straightforward Transformer architecture for
classifying SIREN networks, without being equivariant to
any parameter symmetries of the SIREN. We integrate the
SIREN fitting process into the classifier’s training loop in
an end-to-end manner, allowing the classifier to adjust the
initial parameterization and learning rate schedule of the
SIREN for new images. This approach enables the classifier
to shape the parameter space in a way that enhances clas-
sification performance, while also optimizing reconstruc-
tion quality. Our method establishes a new state-of-the-art
baseline across multiple SIREN image classification bench-
marks.

However, we are uncertain whether the initial parameter-
ization and learning rate schedule alone can impose suffi-
cient structure. Future work could explore additional learn-
able constraints on the SIREN parameters to further en-
hance classification performance. While we consider the
current reconstruction quality sufficient for our work, im-
provements may be possible, especially for high-resolution
datasets, which could be an area for further investigation.

We view this work as a step away from the conventional
focus on achieving optimal reconstruction quality in im-

Ablation Parameter Accuracy PSNR Validation Training Mem #Params #Params
(%) (dB) (sec/epoch) (min/epoch) (GiB) CLS SIREN

Task Influence wtask

0 42.24 43.11 14.0 3.1 3.0 1.1M 465K
0.001 53.53 38.92 14.2 4.0 3.0 1.1M 465K
0.01 55.79 30.93 15.2 4.3 3.0 1.1M 465K
0.1 54.00 23.11 15.5 4.2 3.0 1.1M 465K
1.0 52.35 20.89 14.2 4.2 3.0 1.1M 465K

10.0 52.34 18.14 14.0 4.1 3.0 1.1M 465K

Inner-Loop Steps k

1 49.70 23.63 6.7 1.7 2.2 1.1M 133K
2 52.46 25.24 9.1 2.5 2.3 1.1M 199K
4 54.79 29.10 11.0 3.1 2.6 1.1M 332K
6 55.79 30.93 15.2 4.3 3.0 1.1M 465K
8 55.52 30.96 16.9 5.0 3.3 1.1M 598K

10 55.58 30.79 19.8 6.0 3.6 1.1M 731K

Scaling Factor λ

1 48.60 31.38 15.0 4.2 3.0 1.1M 465K
10 54.80 31.71 13.9 4.0 3.0 1.1M 465K

100 55.16 31.43 14.0 4.1 3.0 1.1M 465K
500 55.79 30.93 15.2 4.3 3.0 1.1M 465K
1000 55.54 30.59 14.0 4.1 3.0 1.1M 465K

LayerNorm 54.89 31.18 14.0 4.1 3.0 1.1M 465K

SIREN Depth

2 55.39 28.50 10.5 2.9 1.5 1.0M 234K
4 55.79 30.93 15.2 4.3 3.0 1.1M 465K
6 55.52 31.96 21.9 6.2 4.9 1.1M 696K
8 55.79 32.73 31.6 8.5 7.4 1.1M 927K

SIREN Width
64 51.54 27.65 9.0 3.3 1.1 273K 118K

128 55.79 30.93 15.2 4.3 3.0 1.1M 465K
256 57.19 33.15 43.6 11.2 12.7 4.3M 1.8M

Transformer Depth

5 54.41 31.03 12.2 3.6 2.2 581K 465K
10 55.79 30.93 15.2 4.3 3.0 1.1M 465K
15 56.77 30.99 15.8 4.6 3.7 1.6M 465K
20 56.82 30.82 18.0 5.2 4.5 2.1M 465K

Meta-SGD Shared False 55.79 30.93 15.2 4.3 3.0 1.1M 465K
True 54.38 29.86 15.2 4.2 3.0 1.1M 133K

Meta-SGD LR
0.01 55.79 30.93 15.2 4.3 3.0 1.1M 465K

0.001 53.34 27.82 13.9 4.1 3.0 1.1M 465K
0.0001 50.58 25.95 15.2 4.2 3.0 1.1M 465K

Subsampling Rate s

1.0 55.79 30.93 15.2 4.3 3.0 1.1M 465K
0.1 54.21 24.06 11.5 3.4 2.1 1.1M 465K

0.01 46.45 18.84 12.0 3.5 2.0 1.1M 465K
0.001 18.03 16.53 12.0 3.4 2.0 1.1M 465K

Table 4. Full ablation results with timings and memory usage
for the proposed MWT, trained on 80% of the CIFAR-10 training
dataset. The reported numbers are evaluated on the remaining 20%
of the training set that was held out for validation. Accuracy indi-
cates the percentage of correctly classified samples, while PSNR
represents the average reconstruction quality of the image.

plicit neural representations (INRs), shifting toward devel-
oping INRs that also optimize for classification accuracy.
Future research on balancing the INR optimization between
classification accuracy and reconstruction quality could fur-
ther advance this direction. In principle, we do believe
that continuous signals are best represented by a continu-
ous function, instead of the accidental, discrete, sensor grid
and as such we, explicitly, believe that INRs have a bright
future.
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Gabriel Synnaeve, and Hervé Jégou. Going deeper with im-
age transformers. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 32–42, 2021. 6

[40] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Deep image prior. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 9446–9454,
2018. 7

[41] A Vaswani. Attention is all you need. Advances in Neural
Information Processing Systems, 2017. 5

[42] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015. 7

[43] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.
2, 6

[44] Dejia Xu, Peihao Wang, Yifan Jiang, Zhiwen Fan, and
Zhangyang Wang. Signal processing for implicit neural rep-
resentations. Advances in Neural Information Processing
Systems, 35:13404–13418, 2022. 3

[45] Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace,
Yiding Jiang, Samuel Sokota, J Zico Kolter, and Chelsea
Finn. Permutation equivariant neural functionals. Advances
in neural information processing systems, 36, 2024. 1, 2, 3,
5, 6, 7

[46] Allan Zhou, Kaien Yang, Yiding Jiang, Kaylee Burns, Win-
nie Xu, Samuel Sokota, J Zico Kolter, and Chelsea Finn.
Neural functional transformers. Advances in neural infor-
mation processing systems, 36, 2024. 3, 6

18737


