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Abstract

In this paper, we propose a new multi-modal task, termed
audio-visual instance segmentation (AVIS), which aims
to simultaneously identify, segment and track individual
sounding object instances in audible videos. To facili-
tate this research, we introduce a high-quality benchmark
named AVISeg, containing over 90K instance masks from
26 semantic categories in 926 long videos. Additionally, we
propose a strong baseline model for this task. Our model
first localizes sound source within each frame, and con-
denses object-specific contexts into concise tokens. Then it
builds long-range audio-visual dependencies between these
tokens using window-based attention, and tracks sound-
ing objects among the entire video sequences. Exten-
sive experiments reveal that our method performs best
on AVISeg, surpassing the existing methods from related
tasks. We further conduct the evaluation on several multi-
modal large models. Unfortunately, they exhibits subpar
performance on instance-level sound source localization
and temporal perception. We expect that AVIS will in-
spire the community towards a more comprehensive multi-
modal understanding. Dataset and code is available at
https://github.com/ruohaoguo/avis.

1. Introduction
Vision and hearing are our primary channels of commu-

nication and sensation [9, 23, 63, 64, 66–68]. Audio-visual
collaboration is beneficial for humans to better perceive and
interpret the world. Humans have the ability to associate
mixed sounds with object instances in complicated realistic
scenarios. Imagine a cocktail-party scenario: when a group
of people is speaking, we can not only locate the sound
sources but also determine how many people are talking.

Inspired by this human perception, we explore instance-
level sound source localization in long videos and pro-
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pose a new task, namely audio-visual instance segmentation
(AVIS). As can be seen in Figure 1 (c), it requests a model
to simultaneously classify, segment and track sounding ob-
ject instances—identify which object categories are making
sounds, infer where the sounding objects are, and monitor
when they are making sounds. This new task facilitates a
wide range of practical applications, including embodied
robotics, video surveillance, video editing, etc. Moreover,
it can serve as a fundamental task for evaluating the com-
prehension capabilities of multi-modal large models.

Audio-visual instance segmentation is related to several
existing tasks. For example, audio-visual object segmenta-
tion (AVOS) [65] is to separate sounding objects from the
background region of a given audible video, as shown in
Figure 1 (a). Unlike AVOS being tasked with binary fore-
ground segmentation, audio-visual semantic segmentation
(AVSS) [69] aims at predicting semantic maps that assign
each pixel with a specific category, as shown in Figure 1 (b).
To accomplish the above tasks, many works [17, 22, 35, 56]
extend the image segmentation frameworks [5, 12] to the
video domain, and design various audio-visual fusion mod-
ules for sound source localization. Despite promising per-
formance in the AVSBench dataset [69], current methods
still suffer from two limitations in real-world scenarios.
First, these methods fail to differentiate two sounding ob-
jects with the same category, such as the woman, man,
left ukulele and right ukulele depicted in Figure 1. Sec-
ond, these methods focus on 5- or 10-second trimmed short
videos and ignore long-range modeling abilities, which may
lead to weak performance in real world.

One potential reason that the AVIS task is rarely studied
is the absence of a high-quality dataset. Despite the exis-
tence of audio-visual segmentation datasets [65, 69], none
are directly applicable to our proposed task, due to lacking
instance-level annotations and long-form videos. There-
fore, in this work, we built the first audio-visual instance
segmentation dataset, namely AVISeg. The new dataset
consists of 926 videos with an average duration of 61.4 sec-
onds and 94,074 high-quality masks, covering 26 common
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Figure 1. Comparison of different audio-visual segmentation tasks. (a) Audio-Visual Object Segmentation (AVOS) only requires binary
segmentation. (b) Audio-Visual Semantic Segmentation (AVSS) associates one category with every pixel. (c) Audio-Visual Instance
Segmentation (AVIS) treats each sounding object of the same class as an individual instance.

categories from 4 real-world scenarios (Music, Speaking,
Machine and Animal). Our dataset can also be served as
a benchmark for AVOS and AVSS tasks. Additionally, we
present a novel evaluation metric, termed frame-level sound
localization accuracy (FSLA), which measures the propor-
tion of frames that are correctly predicted by the model out
of the total number of frames.

In order to deal with the above AVIS task, we follow the
query-based segmentation paradigm [12, 26] and propose
a baseline model called AVISM. To be specific, a frame-
level sound source localizer segments sounding objects
within each frame independently and summarizes per-frame
scenes into a small amount of object tokens. Then, a video-
level sounding object tracker is designed to build frame-to-
frame communications and track sounding objects through-
out the entire video. To lessen computational overheads in
processing long and high-resolution videos, the tracker uses
the concise object tokens as a mean of conveying informa-
tion rather than dense image features, and adopts window-
based self-attention mechanisms to efficiently capture long-
range dependencies in consecutive frames. Experimental
results demonstrate the superiority of our baseline. Addi-
tionally, we make a thorough evaluation of several promi-
nent multi-modal large models on our AVISeg dataset. Sur-
prisingly, these self-proclaimed large models are far from
satisfactory in instance-aware sound source localization and
temporal perception. Our dataset emphasizes the necessity
for further improvements in handling audio-visual data and
long videos, providing insights for future development of
multi-modal large models. Our contributions are as follows:

(1) To our best knowledge, this is the first work exploring
audio-visual instance segmentation, which aims to classify,
segment and track sounding objects in given audible videos.

(2) We create a high-quality video dataset to support the
above task, containing 926 videos with an average length of
61.4s. Besides, we propose a novel frame-level metric for
evaluating audio-visual instance segmentation.

(3) A strong baseline model is developed to localize
sound source in each frame and track sounding objects in
the entire video. To handle long videos, it distils image fea-
tures into a small number of tokens and uses window-based
attention to convey audio-visual temporal information.

(4) Extensive experiments indicate that our framework
achieves state-of-the-art results under all evaluation metrics.
Moreover, our dataset can also serve as a potential bench-
mark for evaluating various multi-modal large models.

2. Related Work
2.1. Video Instance Segmentation

Video instance segmentation (VIS) aims at simultaneous
segmentation and tracking of all object instances in videos.
Early methods [2, 4, 39, 55, 57] often extend CNN-based
image segmentation methods [20, 25] to establish tempo-
ral consistency. For example, MaskTrack R-CNN [55] in-
troduces an additional tracking head to Mask R-CNN [25]
for object matching and association between frames. SG-
Net [39] follows the anchor-free FCOS detector [49] and
directly leverages the object centerness from detection to
delineate the temporal coherence in video sequences. The
above approaches require extra post-processing steps, such
as non-maximal suppression (NMS), leading to higher com-
putational costs and potential misdetections. Recent meth-
ods [11, 26, 28, 31, 51, 52, 58, 60] adapt Transformer-based
image segmentation methods [5, 12] to the VIS task. For
example, VisTR [51] builds on the query-based DETR [5]
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and naturally outputs the sequence of masks for each in-
stance without heuristic matching or hand-designed post-
processing. Follow-up works, such as Mask2Former-VIS
[11] and SeqFormer [52], design more querying strategies
to improve the performance of segmentation and tracking.
To avoid heavy computation and memory usage, IFC [28]
and VITA [26] first distill dense spatio-temporal features
into a small amount of tokens, and then perform inter-frame
communication between tokens. This information-passing
paradigm allows models for efficiently handling long and
high-resolution videos with a common GPU.

2.2. Audio-Visual Segmentation
Audio-visual segmentation (AVS) focuses on localizing

and segmenting sounding objects within each video frame.
Zhou et al. [65, 69] introduce the first AVS dataset, namely
AVSBench, which serves two different sub-tasks including
audio-visual object segmentation (AVOS) and audio-visual
semantic segmentation (AVSS). The former [65] requires
producing binary masks of sounding objects, while the lat-
ter [69] further needs to generate semantic maps represent-
ing the object category. To address these problems, they em-
ploy a standard encoder-decoder architecture with a modi-
fied non-local block to encode space-time relation and seg-
ment sounding objects. CAVP [10] builds an AVS dataset
by randomly matching the images from COCO [38] and au-
dio files from VGGSound [6] based on the semantic classes
of the objects. Inspired by DETR [5] and Mask2Former
[12], recent works [17, 21, 22, 35, 56] adopt the query-based
architecture decode masks for sounding objects. For ex-
ample, AVSegFormer [17] trivially incorporates audio fea-
tures and learnable queries, enabling the decoder to capture
relevant visual semantics and predict the audio-constrained
masks. COMBO [56] explores multi-order bilateral rela-
tions in modality, temporal and pixel levels for the AVSS
task. Notably, a bilateral-fusion module is designed to align
audio and visual modalities bi-directionally and assist the
model in segmenting the sounding objects.

3. New Task

3.1. Problem Definition
Audio-visual instance segmentation (AVIS) is a chal-

lenging multi-modal task that involves localizing and seg-
menting sounding objects in a video, while assigning each a
unique identity label to ensure consistent tracking through-
out the video. In this task, we predefine a category label set
as C = {1, ...,K}, where K is the number of categories.
Given a video sequence with T frames and its correspond-
ing audio, suppose there are N sounding objects belonging
to the category label set C in the video. For each sounding
object oi, let ci ∈ C denote its category label, and let mi

t de-
note its binary segmentation mask in tth frame where t ∈ T ′

and T ′ denotes the sounding time set, i.e., T ′ ⊆ T . We as-
sume that an AVIS model outputs H instance hypotheses.
For each hypothesis oj , it needs to contain a predicted cat-
egory label c̃j ∈ C, a confidence score s̃j ∈ [0, 1], and a
sequence of predicted binary masks m̃j

t̃
. The goal of AVIS

task is to minimize the difference between the ground truth
and the hypotheses. This requires the AVIS model to cor-
rectly determine which instances are making sounds, accu-
rately identify and segment these sounding instances, and
reliably track them in the entire video.

3.2. Evaluation Metrics

To evaluate how well an AVIS model performs, we need
to choose appropriate metrics to compare its outputs with
the ground truth. In our task, we adopt two evaluation proto-
cols including the mean Average Precision (mAP) [55] and
the Higher Order Tracking Accuracy (HOTA) [43]. mAP
follows the computation of the average precision-recall met-
ric over trajectories, which is commonly used in video in-
stance segmentation. However, mAP is not perfectly suited
to our task, because it can be increased by producing many
different predictions with low confidence scores and does
not decrease even if non-sounding objects are predicted.
HOTA performs a bijective matching at the detection level
while scoring association over trajectories, which is de-
signed for multi-object tracking task. This makes HOTA
a balanced metric for measuring both detection and associ-
ation. When applied to the AVIS task, it can penalize those
models that predict non-sounding objects.

Besides considering the above object-based metrics, we
propose a novel measure, namely frame-level sound local-
ization accuracy (FSLA), tailored to measure the proportion
of frames that are correctly predicted by the model out of the
total number of frames. Specifically, we first use the Hun-
garian algorithm [32] to determine a one-to-one matching
between ground-truth and predicted detections. For each
frame, it can be treated as correct frame if it satisfies the
following conditions: 1) The number of sounding objects is
correct; 2) The category of the sounding objects is correct;
3) The IoU (Intersection over Union) between the ground
truth and the predicted sounding objects is greater than
threshold α. The final score is computed by averaging over
all classes before averaging different α thresholds (0.05 to
0.95 in 0.05 intervals). The pseudo code of the FSLA met-
ric is in the Supp. Materials. Compared to other metrics,
our FSLA allows for easier localization of incorrect frames
and offers a more intuitive explanation of the model’s per-
formance across different time periods. Additionally, it can
be decomposed into a set of sub-metrics (FSLAn, FSLAs
and FSLAm) which can be used for model evaluation in
scenarios with no sound source, a single sound source, and
multiple sound sources. This results in FSLA being able to
guide how models can be improved, or understand where
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Figure 2. Illustrations of our AVISeg dataset statistics. (a) Ratio of different sound sources. (b) Number of video in 4 real-world scenarios.
(c) Distribution of video lengths. (d) Number of video and objects for the 26 categories. (e) Relations between different categories.

they are likely to fail when used.

4. Dataset
To explore audio-visual instance segmentation and eval-

uate the proposed methods, we create a new large-scale
benchmark called AVISeg. Considering that this task in-
volves complex audio-visual interactions and requires high-
quality data, we manually collect and choose 926 videos
from YouTube and the publicly available datasets [33, 36,
37], e.g., MUSIC-AVQA. Our released AVISeg dataset sat-
isfies the following criteria: 1) It focuses on long-term
videos (61.4s), bringing them much closer to real applica-
tions. 2) It contains 26 common sound categories, spanning
4 dynamic scenarios: “Music”, “Speaking”, “Machine”,
and “Animal”. 3) It involves some challenging cases, such
as videos with silent sound sources, single sound source,
and multiple sources simultaneously. These attributes im-
pose higher demands on the model for accurate recognition,
segmentation, and tracking of sounding objects.

Similar to AVSBench [65], each video is divided into 1-
second clips. We then adopt an interactive semi-automatic
annotation tool 1 based on ViT-H SAM model [30] to label
sounding object instances belonging to the defined category
set exhaustively in these videos. For example, in the first
column of Figure 1, the woman is labeled as “person 1”
because she is singing, while the man is not labeled since no
sound is made. That is, an object will only be masked and
assigned a unique identifier when it emits sound. Note that
each labeled frame undergoes multiple rounds of manual
review and refinement to ensure high-quality annotations.

In terms of high-level statistics, our AVISeg dataset con-
sists of 94,074 masks on 56,871 frames, distributed in 926

1https://www.yatenglg.cn/isat/

videos for about 16 hours. Figure 2 (a-e) provides the sta-
tistical analysis of our dataset. In this dataset, silent frames,
single-source frames and multi-source frames account for
6.14%, 34.70% and 59.16%, respectively. AVISeg covers 4
real-world scenarios, with the “Music” scenario having the
largest number of videos, totaling 539. Note that a video
may belong to multiple scenarios, such as the simultaneous
appearance of animals and musical instruments. A compar-
ison of the proposed AVISeg and related datasets is shown
in Table 1. For training and evaluation, we randomly split
the dataset into training, validation, and testing sets with
616, 105, and 205 videos, respectively.

Table 1. Comparison with other datasets from related tasks. SSL
represents audio-visual event localization.

Task Dataset Videos Length Classes Anno.

SSL Flickr-S [48] 5,000 20.0s 50 bbox
VGG-SS [7] 5,158 10.0s 220 bbox

AVOS AVSBench-O [65] 5,356 5.0s 23 pixel
AVSS AVSBench-S [69] 12,356 7.8s 70 pixel

VIS YTVIS [55] 2,883 4.6s 40 pixel
OVIS [45] 901 12.8s 25 pixel

AVIS AVISeg 926 61.4s 26 pixel

5. Baseline Model
We introduce a new baseline model, termed AVISM, for

the audio-visual instance segmentation task. The proposed
AVISM model, built upon Mask2Former [11, 12] and VITA
[26], adopts a query-based Transformer architecture to learn
a set of query vectors representing sounding objects for
the instance segmentation and tracking. To better model
audio-visual semantic correlations in long and complicated
videos, we present the frame-level audio-visual fusion mod-
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Figure 3. Overview of the proposed AVISM for audio-visual instance segmentation. (a) The frame-level sound source localizer segments
sounding objects within each frame independently and condenses dense image features into frame queries. (b) The video-level sounding
object tracker takes frame queries and audio features as input, and then performs temporal audio-visual communications between frames.

ule and video-level audio-visual fusion module to integrate
audio and visual features. The overall framework of our
baseline model is illustrated in Figure 3.

5.1. Audio-Visual Representation
Given an input video sequence that contains both visual

and audio tracks, we split it into T non-overlapping visual
and audio snippet pairs {V,A} = {vi, ai}Ti=1, where each
snippet spans 1 second and T represents the number of snip-
pets as well as the video length. For each visual snippet vi,
we apply ResNet [24] or Swin Transformer [42] as the back-
bone to extract hierarchical features fV

i,k ∈ RHk×Wk×Dk .
Hk × Wk denotes the output resolution of each vi at the
kth backbone level. The final visual representation can be
formulated as FV = {fV

i }Ti=1. For each audio snippet ai,
we first convert it to a mel spectrogram via the short-time
Fourier transform and then encode it into an audio feature
vector fA

i ∈ RD using a pre-trained VGGish model [18],
where D is the feature dimension. The final audio represen-
tation FA = {fA

i }Ti=1 is extracted offline and the VGGish
model is not fine-tuned during the training process.

5.2. Frame-Level Sound Source Localizer
To accurately localize the sounding objects within each

video frame, we propose the frame-level sound source lo-
calizer that establishes the spatial association between audio
and visual modalities. As depicted in Figure 3 (a), we em-
ploy a multi-scale deformable attention Transformer [70],
namely pixel decoder, to produce enhanced visual features
f̂V
i and high-resolution per-pixel embeddings pi. Then,

the frame-level audio-visual fusion module performs cross-

attention computation between f̂V
i and the correspond-

ing audio feature fA
i at multiple scales, yielding audio-to-

image features fAV
i ∈ RC . Inspired by the set prediction

paradigm [5], we introduce Nf audio-conditioned learnable
queries, which are added with fAV

i to form frame queries
Qf ∈ RNf×C . After a Transformer decoder distills and em-
beds visual semantics of all frames into the frame queries,
each frame query is dot-multiplied with pi, and used for
classifying and segmenting its matched sounding object.

5.3. Video-Level Sounding Object Tracker
One limitation of the above localizer is that it operates

independently on each frame, with no inter-computation
shared across frames. For the solution to this problem, we
present the video-level sounding object tracker that builds
temporal communications throughout the entire video se-
quence. Considering the heavy computation demands posed
by processing long and high-resolution videos, our tracker
takes the frame queries as inputs rather than image features,
and leverages the window-based self-attention mechanisms
[42] to capture long-range dependencies among frames.

As shown in Figure 3 (b), a linear layer converts T ×Nf

frame queries gathered from all frames into object tokens
Qo. The object encoder, similar to [26], partitions these
object tokens along the temporal axis into non-overlapping
local windows of size W , within which self-attention is
performed. After alternately shifting the windows, object
tokens Q̂o from different windows can exchange object-
wise information. We extend this capability of processing
long videos to multi-model temporal learning, and design
a video-level audio-visual fusion module (Figure 4) incor-
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porating N attention layers. In each local window, it cal-
culates cross-attention between object tokens Q̂o and audio
features fA

i . As the local window shifts and the attention
layer goes deeper, our model can efficiently achieve frame-
to-frame audio-visual communications in long videos. Its
outputs are added with Q̂o and their results are referred as
QAV

o . This temporal fusion benefits the global alignment
of audio and object instances, while also enhancing object
tracking and identity association across different frames.

𝑻

Window-based
Cross-Attention

MLP
Shifted

Window-based
Cross-Attention

MLP
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Figure 4. The architecture of our proposed video-level audio-
visual fusion module. For the entire video sequence, it com-
putes cross-attention between object tokens {Q̂o,i}Ti=1 and au-
dio features {fA

i }Ti=1 within local windows, and introduces cross-
window connections by shifting windows.

To decode object-centric information from all object to-
kens, we initialize a fixed set of learnable video queries
Qv ∈ RNv×C , where Nv is the number of video queries.
The object decoder, implemented as a standard Transformer
decoder [5, 26], receives QAV

o and aggregates their seman-
tics into video queries. At the end of the decoder, two output
heads are exploited to obtain the final predictions, with each
head comprising two fully-connected layers. Specifically, a
class head predicts class probabilities p ∈ RK+1 for each
video query, including a no sounding object ∅ class in ad-
dition to the K given classes of a dataset. Besides, object
queries are input into a mask head and then dot-multiplied
with pi, resulting in the final mask logits.

5.4. Training Loss
There are three terms in the training loss as follows:

L = λframeLframe + λvideoLvideo + λsimLsim (1)

where λframe, λvideo and λsim are hyper-parameters to bal-
ance the loss terms. Their default values are set to 1, 1, 0.5,
respectively. For frame-wise supervision, we first compute
costs between frame queries and ground truth at each tth

frame using the cost function of Mask2Former [12]. Fol-
lowing DETR [5], the Hungarian algorithm [32] is then em-
ployed for optimal matching, as shown in Figure 3 (c). Fi-
nally, we utilize Lframe from [12] to calculate loss between
the matched pairs. For video-wise supervision, we also
search for optimal assignment between video queries and

ground-truth sequences using the cost function of IFC [28],
as shown in Figure 3 (d). These bipartitely matched pairs
are used to compute the loss function Lvideo from [28], a
simple extension of [12]. Additionally, as depicted in Fig-
ure 3 (e), we introduce the similarity loss [26, 55] to align
frame queries with video queries in the embedding space,
annotating pairs of equal identities as 1 and others as 0.

6. Experiment

6.1. Main Results

We compare AVISM with the state-of-the-art methods
from two related tasks, including video instance segmenta-
tion (VIS) and audio-visual semantic segmentation (AVSS).
For the VIS methods [11, 16, 26, 31, 52, 58, 60], only video
frames are used for training, while the audio is disregarded.
For the AVSS methods [17, 56], they follow the query-based
detection paradigm [5] and achieve instance-level segmen-
tation without altering the model, losses and training pro-
cedure. To make the evaluation fair, all methods utilize
ResNet-50 pre-trained on ImageNet [15] as the backbone
and are trained on the AVISeg dataset for 48,000 iterations.

Table 2 presents the comparison results, including three
main metrics (FSLA, HOTA, mAP) and five sub-metrics
(FSLAn, FSLAs, FSLAm from FSLA; AssA, DetA from
HOTA). It is worth noting that our AVISM achieves the
best results under all evaluation metrics. Compared to the
VIS methods, AVISM incorporates audio information and
leverages multi-modal contexts to localize sounding objects
within video frames, which outperforms the best VITA [26].
This multi-sensory perception helps to guide our model to
determine whether or which objects are making sounds.
Compared to the AVSS methods, AVISM condenses per-
frame scenes into a small number of frame queries and
then establishes inter-frame audio-visual communication
between them. Our experimental results demonstrate that
using the concise frame queries, instead of dense spatio-
temporal features, not only improves AVIS performance but
also provides robust practicality for processing long and
high-resolution videos. Furthermore, the results confirm the
viability of AVISeg as a benchmark for AVIS task.

Figure 5 visualizes some sample videos with our pre-
dictions. Our AVISM model accurately localize the sound-
ing object across both spatial and temporal dimensions,
e.g., “lion” in video (d). In complex scenes with multiple
sound sources, our model enables to handle the numerous
mixed semantics, e.g., “person” and “ukulele” in video (a).
When an object begins producing sound in the intermedi-
ate frames, AVISM is able to segment it and assign a new
identity, as evidenced in video (b). This case also shows the
effectiveness of our model in identifying and distinguishing
objects with similar appearances or sounds. Moreover, if a
sounding object disappears and reoccurs, the AVISM still
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Table 2. Quantitative evaluation of different models from related tasks on the AVISeg test set. The best results are highlighted in bold.

Task Model Venue Audio FSLA HOTA mAP FSLAn FSLAs FSLAm AssA DetA

VIS

Mask2Former-VIS [11] CVPR’ 22 29.75 52.03 28.66 0.00 25.47 36.37 64.49 43.33
TeViT [58] CVPR’ 22 32.28 53.67 31.52 0.00 28.07 39.18 65.27 45.10

SeqFormer [52] ECCV’ 22 30.32 54.32 32.79 25.03 21.76 36.46 67.25 45.23
VITA [26] NeurIPS’ 22 38.04 57.48 36.25 15.04 27.98 47.45 69.86 48.96

DAVIS [60] ICCV’ 23 23.99 49.12 19.83 14.61 24.83 24.69 63.51 40.11
LBVQ [16] TCSVT’ 24 34.73 56.97 36.58 27.71 29.52 38.96 68.34 48.83

AVSS AVSegFormer [17] AAAI’ 24 35.66 55.74 35.72 18.58 27.51 43.08 67.13 48.51
COMBO [56] CVPR’ 24 39.49 57.39 37.84 21.91 27.18 49.63 68.87 50.12

AVIS AVISM CVPR’ 25 42.78 61.73 40.57 32.22 29.83 52.40 71.15 54.97

correctly tracks it, e.g., “tree harvester” in video (c).

Table 3. Zero-shot results of different multi-modal large models
for audio-referred visual grounding on the AVISeg test set.

Model Assistant FSLA HOTA mAP
Sam4AVS [59] - 0.00 8.18 3.93

BuboGPT-7B [62] GPT-4 7.75 20.16 5.76
PG-Video-LLaVA-7B [44] GPT-3.5 9.15 22.86 5.94

AL-Ref-SAM 2 [27] GPT-4 18.55 38.02 15.84

6.2. Evaluations on Multi-modal Large Models
Table 3 presents the zero-shot results between different

multi-modal large models (MMLMs) on AVIS task, reveal-
ing that these methods are underperforming. For instance,
BuboGPT [62] and PG-Video-LLaVA [44] localize sound
sources with audio-image-text aligned large language mod-
els (Vicuna [14] and LLaVA [40]), and then classifies and
segments sounding objects using an off-the-shelf ground-
ing pipeline based on GPT [1] and SAM [30]. However,
BuboGPT is limited to processing a single image and one-
second audio, and PG-Video-LLaVA cannot determine the
exact time intervals for each sounding object. AL-Ref-
SAM 2 [27] adopts Chain-of-Thought prompts to unleash
GPT’s temporal-spatial perception and reasoning capabili-
ties. Although pre-trained on large-scale datasets and yield-
ing promising results on audio-visual understanding task,
these MMLMs fall short in instance segmentation and long-
range modeling, resulting in poor performance on AVISeg.
Our new task can provide deeper insights for multi-modal
instruct tuning of MMLMs, has the potential to serve as a
benchmark for evaluating their performance. More analysis
can be found in Supp. Materials.

6.3. Ablation Studies
Impact of audio-visual fusion modules. To evaluate

our proposed frame-level audio-visual fusion module (FL-
AVFM) and video-level audio-visual fusion module (VL-
AVFM), we first establish a baseline by disabling both mod-
ules. As evidenced in Table 4, the introduction of FL-

AVFM yields substantial improvements across all metrics.
These gains underscore the importance of effective audio-
visual information aggregation at the frame level for en-
hancing per-frame object localization accuracy. Further in-
corporation of the VL-AVFM leads to more pronounced
enhancements across all metrics, with the full configura-
tion achieving optimal results. This observation suggests
that the VL-AVFM plays a crucial role in leveraging tempo-
ral information across frames, thereby facilitating improved
tracking consistency and accuracy. Our findings support the
hypothesis that temporal audio-visual fusion is instrumental
in resolving ambiguities during object tracking, particularly
in challenging scenarios where motion cues may be insuffi-
cient for determining whether an object is producing sound.
This demonstrates the potential of audio as auxiliary infor-
mation to guide audio-visual instance segmentation.

Table 4. Impact of frame-level audio-visual fusion module (FL-
AVFM) and video-level audio-visual fusion module (VL-AVFM).

FL-AVFM VL-AVFM FSLA HOTA mAP
38.04 57.48 36.25
39.68 59.59 39.06
42.78 61.73 40.57

Impact of local window size within video-level sound-
ing object tracker. Table 5 presents an ablation study on lo-
cal window sizes in our video-level sounding object tracker.
We observe a clear trade-off between the maximum number
of processable frames and tracking performance. A win-
dow size of 3 allows processing of the longest sequences
(5304 frames) but yields the lowest performance across all
metrics. Conversely, a window size of 12 significantly im-
proves tracking accuracy at the cost of reduced frame capac-
ity (1416 frames). The performance gain can be attributed
to the expanded temporal receptive field, which allows the
model to capture more complex inter-frame dependencies.
This enhanced temporal context enables the tracker to bet-
ter understand the long-term dynamics of sounding objects,
leading to more accurate localization and tracking. Consid-
ering the trade-off between segmentation performance and
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Figure 5. Sample results of our baseline model on AVISeg dataset from four scenarios: (a) Music; (b) Speaking; (c) Machine; (d) Animal.
Each row have six sampled frames from a video sequence. Zoom in to see details.

the ability to process longer sequences, we chose a window
size of 6 as the default, which provides a balanced compro-
mise between accuracy and frame capacity.

Table 5. Impact of local windows size within video-level sounding
object tracker. The maximum number of frames is reported on a
single NVIDIA Quadro 6000 GPU.

Window Size Max Frames FSLA HOTA mAP
3 5304 40.83 61.13 40.14
6 2778 42.78 61.73 40.57
12 1416 42.96 62.82 41.31

Impact of visual backbone and pre-training dataset.
We further investigate whether providing a stronger back-
bone and more pre-training data can further improve the
model’s AVIS performance. As shown in Table 6, adopt-
ing the strategy from Mask2Former [12] that using COCO
for additional pre-training of our visual backbone resulted
in improvements across all metrics. However, when further
fine-tuned on the video instance segmentation dataset OVIS
[45], despite an increase in mAP, we observe a slight de-
crease in FSLA. This is likely because OVIS primarily tar-
gets improving the model’s video segmentation capabilities,
leading to the segmentation of many non-sounding objects,
thus not achieving better FSLA scores. Consequently, we
opt for the IN+COCO pre-trained visual backbone for sub-
sequent experiments. Replacing the backbone with Swin-L
achieves the highest scores across all metrics.

Table 6. Impact of visual backbone and pre-training dataset.

Backbone Pre-trained Datasets Param. FSLA HOTA mAP

R-50
IN

527.3
42.78 61.73 40.57

IN+COCO 44.42 64.52 45.04
IN+COCO+OVIS 43.68 64.64 45.76

R-101 IN+COCO 599.5 45.06 64.80 46.61
Swin-L IN+COCO 1181.8 52.49 71.13 53.46

7. Conclusion
This paper introduces a new task of audio-visual instance

segmentation with the goal of identifying, segmenting and
tracking individual sounding object instances in videos. We
present a high-quality dataset and a strong baseline model,
providing some early explorations towards this task. In ad-
dition, we evaluate the zero-shot performance of several
multi-modal large models, but they are far from satisfactory
in instance-level sound source localization and long-range
temporal perception. These findings underscore the need
for further advancements in fine-grained and time-sensitive
instruction tuning. We believe our task will innovate the
community on new research ideas and directions for multi-
modal understanding, and our dataset has the potential to
serve as a platform for testing large models.
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