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Figure 1. We introduce VideoRepainter, a practical framework for video inpainting using a keyframe as reference. We show example use
cases such as changing a person’s head into a balloon (object changing, first row), altering the environment from field to beach (background
changing, second row), and adding a sand-made “CVPR” to the beach (novel concept insertion, third row).

Abstract

Video inpainting, which aims to fill missing regions with vi-
sually coherent content, has emerged as a crucial technique
for creative applications such as editing. While existing ap-
proaches achieve visual consistency or text-guided genera-
tion, they often struggle to balance coherence and creative
diversity. In this work, we introduce VideoRepainter, a two-
stage framework that allows users to inpaint a keyframe us-
ing established image-level techniques, then propagate the
changes to other frames. Our approach can leverage state-
of-the-art image models for keyframe manipulation, thereby
easing the burden of the video-inpainting process. To this
end, we integrate an image-to-video model with a symmet-
ric condition mechanism to address ambiguity caused by
direct mask downsampling. We further explore efficient

strategies for mask synthesis and parameter tuning to re-
duce costs in data processing and model training. Evalua-
tions demonstrate our method achieves superior results in
both visual fidelity and content diversity compared to exist-
ing approaches, providing a practical solution for creative
video manipulation. See our Project Page for more details.

1. Introduction

Video inpainting aims to fill the missing regions of a video
with coherent content. Earlier efforts in this domain focused
primarily on restoration tasks, where the objective was to
repair missing content by ensuring harmony with the sur-
rounding visual context. However, the emergence of ad-
vanced video generation models (e.g., Pika [51], Kling [34],
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Gen3 [57]) has transformed user expectations beyond mere
reconstruction. Contemporary applications demand cre-
ative content manipulation, enabling users to modify exist-
ing videos in innovative ways. This includes incorporating
novel objects or content through instruction-guided inpaint-
ing, as well as environment modifications via background
replacement for virtual tour applications. These evolving
requirements present new challenges in achieving visual
coherence with creative flexibility, necessitating novel ap-
proaches to video inpainting.

While maintaining visual coherence remains crucial, a
significant challenge in creative video inpainting lies in
achieving user control over the regenerated regions. Current
approaches often utilize pre-trained text-to-video (T2V)
diffusion models, employing textual prompts as inpaint-
ing guidance. Recent works such as AVID [89] and Co-
CoCo [93] have attempted to enhance this approach by
fine-tuning T2V models with masked pixel conditioning.
However, these methods, which rely heavily on pre-trained
T2V backbones, frequently encounter limitations in visual
quality and controllability. These limitations stem primar-
ily from the relative scarcity of video training data, result-
ing in inferior performance (e.g., weak text-following abil-
ity) of T2V models relative to their text-to-image counter-
parts. Furthermore, the slow video generation processes
compound these issues, leading to a cumbersome user expe-
rience that often requires extensive trial and error to achieve
desired results.

In this work, we provide VideoRepainter for the task
of video inpainting by disentangling the generation of still
content and dynamic motion. Specifically, VideoRepainter
first allows users to inpaint a keyframe using any estab-
lished image-level techniques [7, 28, 30] and then propa-
gates these modifications across the temporal dimension.
This decoupled approach can leverage the superior visual
quality and controllability of state-of-the-art image inpaint-
ing methods, thereby expanding the possibilities for user-
directed content manipulation. Furthermore, by isolating
temporal aspects, the video generation component can focus
specifically on maintaining coherence across frames rather
than content generation. To address the critical challenge
of temporal consistency, we exploit the similarity between
image-to-video (I2V) generation and video inpainting, i.e.,
both being video generation tasks conditioned on partially
observed pixels. Our investigation reveals that conventional
downsampled mask conditioning introduces ambiguity in
video inpainting, which we resolve through a symmetric
mask conditioning approach. To support arbitrary user-
defined masks and facilitate training on in-the-wild videos,
we implement efficient mask synthesis strategies. Addition-
ally, we demonstrate that our 12V model repurposing can be
achieved by updating less than 2% of the model parameters,
significantly enhancing training efficiency.

Extensive experiments demonstrate that VideoRepainter
achieves superior visual quality and versatility in video in-
painting tasks while maintaining modest computational and
data requirements in training. By leveraging state-of-the-
art image inpainting capabilities, our approach enables so-
phisticated visual effects challenging for prior text-guided
methods, such as transforming a person’s head into a ballon
or adding a sand-made “CVPR” on the beach (Fig. 1). Eval-
uations across diverse use cases consistently show that our
method outperforms existing approaches in both perceptual
quality and content diversity, validating its effectiveness as
a practical solution for creative video manipulation.

2. Related Work

Image Inpainting. Image inpainting has been a long-
standing problem in computer vision for years. Earlier
explorations in this field primarily involve traditional ap-
proaches [6, 14], Variational Autoencoders (VAEs) [49, 64,
91], and Generative Adverserial Networks (GANs) [15, 39,
48, 58, 63, 70, 80, 81, 84]. With the development of Diffu-
sion Models (DMs) [25, 55, 62], recent focus has shifted
to leverage DMs to solve the inpainting problem. One
branch of this work leverages the DMs’ zero-shot inpaint-
ing capabilities [2, 3, 13, 38, 79, 85]. Repaint [44] alters
the denoising by sampling the unmasked regions using the
given image information. Other work enables inpainting by
training dedicated models with masked pixels as condition-
ing [55, 69, 73, 74, 78, 83, 85]. For instance, Stable Dif-
fusion Inapint [55] directly takes the mask and masked im-
age as input to the UNet [56] and finetunes a text-to-image
diffusion model to predict the complete image. Smart-
Brush [73] incorporates shape guidance in addition to a text
prompt for more flexible content control. BrushNet [30] in-
troduces a plug-and-play UNet branch to separately tackle
the image features and noisy latent to achieve flexible in-
painting. Our method can leverage state-of-the-art image
inpainting to the context of video inpainting.

Video Inpainting. Traditional video inpainting focuses on
restoring the missing area of a video. Earlier work in this
field employs convolutional networks for spatiotemporal in-
formation aggregation [12, 27, 67]. Other work leverages
optical flow as additional information [22, 33, 36, 37, 77,
941], or video Transformer [9, 40, 41, 92] for video inpaint-
ing. However, these methods primarily focus on content
coherence instead of controllability. Recently, another line
of research has tackled the problem of text-guided video in-
painting by leveraging the priors of video diffusion models.
For instance, AVID [89] adopts a pre-trained video motion
module [24] and trains the inpainting model with structure
guidance, enabling the task of inpainting-based video edit-
ing with a text prompt. CoCoCo [93] introduces an en-
hanced motion capture module for better inpainting con-
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sistency and compatibility with multiple backbone variants.
Though these methods can inpaint with text-aligned guid-
ance, they sometimes suffer from low visual quality tied
to the base video diffusion models. We tackle the video
inpainting by first solving a keyframe inpainting problem,
thereby pushing the inpainting quality to a higher level.

Video Editing. Video editing aims to change a certain as-
pect of a source video, e.g., global style, local region, con-
tent movement [65, 90], etc. This area has seen significant
recent progress with the development of image and video
diffusion models [4, 11, 16, 20, 21, 29, 31, 42, 43, 45, 46,
61, 71, 88]. Some of these methods leverage a pre-trained
text-to-image prior and enforce temporal consistency via
feature fusion [10, 23, 52]. Other methods explore vari-
ous approaches such as one-shot tuning [47, 72] and neu-
ral atlases [4, 11], etc. Our works feature re-inpainting a
source video within a specified region and can enable local-
ized video editing with higher visual quality and diversity.

3. Methods

Given a video sequence {f*}N| with corresponding mask
sequence {m*} , (derived from user input or segmentation
models [54]) and an optionally inpainted keyframe f7,..,
we aim to generate visually coherent content for masked
regions while maintaining consistency with known areas.

We present the key components of VideoRepainter:
Sec. 3.1 details the adaptation of image-to-video diffu-
sion models for inpainting with resolved mask ambiguity;
Sec. 3.2 introduces our robust training mask generation
strategy for in-the-wild videos; and Sec. 3.3 presents the
training and inference implementations.

3.1. Efficient Model Repurposing

Video inpainting can be formulated as a conditional genera-
tion task, where the model synthesizes content based on par-
tially observed pixels. This formulation closely aligns with
image-to-video (I2V) generation, where synthesis is condi-
tioned on the initial frame. Given this structural similarity
and shared underlying requirements, we opt to leverage pre-
train I2V priors for video inpainting through efficient model
repurposing, substantially reducing computational and data
requirements compared to training from scratch (Fig. 2).

3.1.1 Image-to-Video Diffusion Model

Image-to-video (I2V) models perform the video generation
task conditioned on the first frame. Representative 12V
models such as Stable Video Diffusion (SVD) [8] and Dy-
namiCrafter [75] are built upon powerful text-to-image dif-
fusion models [55]. They expand the T2I model by adding
temporal layers, e.g., temporal convolution and attention, to
model cross-frame consistency and motion dynamics. As
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Figure 2. Image-to-Video (I12V) Model Repurposing. (a) 12V
diffusion models are conditioned on repeated first frame latent se-
quence obtained from VAE encoder £(-); (b) We efficiently repur-
pose 12V for video inpainting by replacing z. with our symmetric
mask condition (see Sec. 3.1.2) and LoRA [26] finetuning. Here
we visualize with zo-prediction for clarity.

the additional condition, the first frame latents z encoded
by the VAE are temporally repeated and concatenated to
the noisy sample 2! to form the denoising UNet’s input
zt.c = |2}, 23], as shown in Fig. 2 (a). Here 2} represents the
i-th frame’s latent at j-th diffusion timesteps. Moreover, the
CLIP [53] text embedding is replaced by the first frame’s
embedding computed from the CLIP’s vision branch. The
denoising UNet is trained under the EDM [32] framework,
learning to predict a cleaner version of the noisy sample:

L= Ezo,t,ewN(O,O'?) “le - ZO(Zt,ca tu C) ||§]7 (l)

where c is the conditional vision embedding, z; is noised
sample, ¢ is the diffusion timestep condition. In this work,
we adopt SVD [8] as the I2V backbone.

3.1.2 Resolving Mask Ambiguity

The video inpainting model requires both pixel values of
known regions and precise mask information. While image-
to-video tasks operate with fixed uncertainty regions (all
frames except the first), inpainting tasks must handle arbi-
trary masked regions. Thus, additional information should
be considered as the model’s input.

Conventional mask conditioning approaches typically
concatenate binary masks with UNet inputs [30, 55, 89,
93] (Fig. 3 (a)). However, such practice introduces am-
biguity for methods based on latent diffusion models
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Figure 3. Comparing Mask Conditioning Mechanism. (a) Con-
ventional diffusion-based inpainting approaches [30, 55] down-
sample masks to match VAE latent dimensions, compromising
fine-grained boundary details. (b) Our proposed symmetric mask
conditioning encodes dual variants of the masked image to pre-
serve mask fidelity and resolve spatial ambiguity.

(LDMs) [55]. LDMs operate in a compact latent space
with downsampled spatial dimensions (e.g., the downsam-
pling ratio is 8 for Stable Diffusion), and thus require corre-
sponding mask downsampling to match the latent size. This
resolution reduction compromises mask precision, particu-
larly evident in the degradation from detailed RGB masks
to jagged representations, as shown in the red and blue crop
in Fig. 3 (a). Consequently, pixels within complex mask
boundaries may be misclassified into unmasked regions, as
demonstrated by the earring shape in our example. Our ex-
periments reveal that this issue becomes particularly prob-
lematic when handling complex dynamic masks (Sec. 4.3).

We address this ambiguity through symmetric mask en-
coding (Fig. 3 (b)). Our approach encodes two variants of
the masked image through the VAE, one with black-filled
mask regions and another with white-filled regions, and
concatenates both encoded latents as UNet conditions. This
enables precise pixel classification: identical values across
variants indicate unmasked regions, while differences de-
note masked areas. Moreover, this design maintains com-
patibility with the VAE latent space and thus facilitates
model repurposing. In implementations, we newly involve
a trainable input convolution layer to the UNet to process
the additional channels (Fig. 2 (b)).

3.1.3 Reusing Pre-trained Knowledge

Both image-to-video generation and video inpainting
tasks operate as pixel-conditioned generation, as noted
in Sec. 3.1. To maximize the utility of pre-trained knowl-
edge, we minimize network modifications by optimizing a
small subset of parameters. We adopt Low-Rank Adap-
tation (LoRA) [26] for efficient task adaptation. LoRA
approximates weight updates through two low-rank matri-
ces: A € R™*" and B € R™*", transforming pre-trained
weights W to W’ = W + ABT. These trainable rank-
decomposition matrices enable efficient parameter updates
while preserving the core model structure.

In our implementation, we apply such a technique to
spatial and temporal attention layers, as these components
are crucial for capturing long-range visual correspondences.
This adaptation strategy proves highly effective, with less
than 2% of the parameters being updated compared to the
entire model finetuning. This minimal modification signif-
icantly reduces memory usage, making our method more
accessible for practical applications.

3.2. Supporting Arbitrary Inpainting Region

Our goal is to develop a unified model supporting diverse
inpainting applications, including keyframe-based inpaint-
ing, background modification, object insertion, efc. This re-
quires robust handling of spatially and temporally arbitrary
inpainting regions. The model must process various mask
types, ranging from precise video object segmentation to
simple rectangular regions and rough user sketches.

Previous approaches have relied on online instance de-
tection [93] or video segmentation datasets [76, 92]. How-
ever, these methods introduce computational overhead or
data preprocessing requirements. We demonstrate that ap-
plying robust content-agnostic mask augmentation strate-
gies during training is enough to achieve strong general-
ization capabilities. This approach enables efficient scal-
ing to in-the-wild videos without preprocessing overhead.
Our mask augmentation strategy incorporates the following
techniques:

Spatial augmentations. For the spatial mask shape, we

adopt the following mask types and transformations:

* Full mask. All pixels are masked, aiming to maintain the
model’s generation ability;

* Grid mask. We split spatial regions into grids and mask
each grid independently under a fixed probability.

* Square mask. A random square region is masked.

* Scribble mask. Random scribble are generated to stimu-
late human drawing behaviours [82].

* Mask reversion. All above mask types except that the full
mask is randomly reversed to enhance applications such
as changing the background.

Temporal augmentations. For each training video, we first
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perform spatial augmentations to obtain an initial mask. We
then apply the following temporal transformations to get a
mask sequence for the video.

e Static. The initial mask is copied to all frames.

* Spatiotemporal bezier. A random Bezier curve is gener-
ated to serve as the moving trajectory of the mask. The
initial mask then moves along the trajectory to simulate
masks that track specific objects.

e Temporal variants. After obtaining the mask sequence,
some shape randomness is randomly added to each frame
to stimulate the mask shape change over time.

Task-specific augmentation. We randomly make some
frames fully visible to the model to support inpainting with
keyframe reference. In other cases, the model is optimized
for unconditioned inpainting.

Since none of the above augmentations involve deep
learning models, they can be efficiently generated on the
fly without placing a noticeable burden on training time.

3.3. Implementations

Training. Fig. 2 (b) illustrates our training procedure.
Training video clips undergo random masking (Sec. 3.2),
followed by symmetric VAE encoding to obtain the mask
condition z,. (Fig. 3), which is then concatenated with the
noisy sample z; as UNet input. While maintaining the ob-
jective function in Eq. (1), we update only the input con-
volution and LoRA parameters. This parameter-efficient
approach, which preserves most pre-trained weights, effec-
tively prevents overfitting. We thus employ a progressive
training strategy by initially efficient training at a lower res-
olution, followed by high-resolution fine-tuning.

Extension Beyond Training Length. Video diffusion
models typically operate on fixed-length sequences, with di-
rect inference on longer sequences often resulting in quality
degradation. While existing approaches employ temporal
MultiDiffusion [5], i.e., denoising overlapped clips simul-
taneously with averaged overlapping regions, it lacks con-
sistency constraints and may suffer from content drifting.
We address this limitation through a coarse-to-fine gen-
eration process for sequences exceeding the training length.
First, we sample sparse frames uniformly across the video
duration for initial content propagation. These inpainted
frames then serve as anchors for the second stage, where
we apply MultiDiffusion with each subsequence condi-
tioned on the anchor frames, ensuring fidelity to the original
keyframe while generating the complete sequence.

4. Experiments

We choose Stable Video Diffusion (SVD) [8] as our
image-to-video (I2V) backbone. It is able to generate
14 (svd-base) or 25 (svd-xt) frames. We chose

svd-xt for the main experiments. After initialization,
the UNet contains 1525.9 M parameters and 27.9 M train-
able parameters. We train the model with a self-collected
watermark-free video dataset that contains about 300K
videos. The low-resolution pre-training is conducted on
320 x 576, and high-resolution fine-tuning is on 576 x 1024.
We use AdamW optimizer and set the learning rate to 5e—5.
We use 16 NVIDIA A100s for training. The total optimiza-
tion iteration is SOK.

We infer the model with Euler sampler [32] in the Dif-
fuser library [66] with 25 sampling steps. Other hyperpa-
rameters are fixed to the original SVD settings. For the first
stage of image inpainting, we use Adobe Photoshop [28]
generative infilling for background replacement usage and
FLUX [7] inpainting ControlNet [1, 86] for other cases.

4.1. Qualitative Results

Our method achieves exceptional visual quality and diver-
sity in creative video inpainting, leveraging state-of-the-art
image inpainting techniques [1, 28] and video generation
priors from the I2V model [8]. As demonstrated in Fig. 1
and Fig. 4, our method successfully addresses various cre-
ative inpainting scenarios, including novel object addition,
background modification, virtual try-on, efc. Our approach
enables sophisticated visual manipulations that were previ-
ously challenging for existing methods, such as transform-
ing a human head into a balloon (Fig. | case 1), integrating
sand-textured text into beach scenes (Fig. | case 3), com-
positing tiny villages within coffee cups (Fig. 4 case 2), and
placing sailboats among clouds (Fig. 4 case 3). This creative
capability stems from our two-stage inpainting architecture
combined with advanced image inpainting models. The [2V
model’s temporal priors ensure seamless integration of in-
painted content, maintaining both visual and temporal co-
herence with unmasked regions, as evidenced by consistent
background perspective changes (Fig. 1 case 2, Fig. 4 case
5) and natural water-sand interactions (Fig. | case 3).

4.2. Comparisons to Prior Works

Baselines. We consider the following baseline covering re-
cent progress in video inpainting, generation, and editing:
(1) CoCoCo [93]: a text-guided video inpainting frame-
work featuring motion capture modules for temporal con-
sistency. While AVID [89] shares similar architectural de-
signs, its implementation remains close-sourced at the time
of our experiments. Therefore, we adopt CoCoCo as our
primary text-guided baseline, given its comparable techni-
cal approach and public accessibility. (2) 12VGen-XL [87]:
an image-to-video diffusion model trained on high-quality
and high-resolution videos. (3) ModelScope [68]: a text-
to-video diffusion model trained on large-scale text-video
paired data. We adapt these models for video inpainting
following previous practices [2, 44, 89]; (4) AnyV2V [35]:
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Figure 4. Qualitative Results. Here we demonstrate some creative use cases, e.g., novel object insertion, background changing, and virtual
try-on. Our method propagates the keyframe inpainting results throughout the whole video with excellent consistency and visual quality.

We recommend referring to our Project Page for better visualizations.

Metrics Cons.+  PSNR (Bg.) MSE (Bg.)|x10¢ AS4 Metrics Cons.4 PSNR (Bg.);y MSE (Bg.) x10¢+ ASy
CoCoCo [93] 93.94 28.33 18.82 4.57 CoCoCo [93] 96.16 31.82 6.66 5.24
12VGen-XL [87]  93.52 29.51 13.09 4.34 [2VGen-XL [87]  95.98 31.99 7.61 4.68
ModelScope [68]  91.55 25.18 34.16 2.30 ModelScope [68]  95.32 25.71 28.28 3.7
Ours 96.01 31.46 8.85 4.47 AnyV2V [35] 96.28 18.38 173.96 5.44

Ours 97.31 32.29 3.77 5.49

Table 1. Video Inpainting Evaluations. “Cons.” stands for CLIP
consistency score; “AS” stands for aesthetic score; “Bg.” stands
for background fidelity metrics.

a state-of-the-art video editing framework that employs
DDIM inversion [17, 62] to preserve source video charac-
teristics while enabling spatiotemporal feature injection.

Settings. We compare our method against baselines on
video inpainting and editing tasks. For video inpainting, we
omit the editing method AnyV2V since it’s out of the base-
line’s scope. For video editing, we provide an inpainted
first frame for I2VGen-XL and AnyV2V, while providing
detailed text prompts for CoCoCo and ModelScope since
they do not accept image conditioning.

4.2.1 Quantitative Comparisons

We quantitatively compare our method against baselines
on video inpainting and inpainting-based editing. For in-
painting evaluation, our model runs in unconditioned in-
painting mode and does not receive a keyframe. We con-
sider the following dimensions and derive the correspond-
ing metrics that align with prior work: (1) Temporal con-
sistency: the smoothness of the final video, measured by
the CLIP vision embedding’s distance of all the adjacent

Table 2. Video Editing Evaluations. Abbreviations remain the
same with Tab. 1.

frames [24, 53, 72, 89]; (2) Background fidelity: follow-
ing [30], we evaluate unmasked regions’ fidelity to the
source video with PSNR and MSE error; (3) Visual qual-
ity: the perframe aesthetics score [30, 59, 60], revealing the
leval of artifacts and visual harmony. For inpainting evalua-
tion, we use 50 videos from the DAVIS dataset [50], and for
the editing evaluation, we create 20 editing samples based
on in-the-wild videos.

As shown in Tab. | and Tab. 2, our method outperforms
the others in most aspects. Compared to the prior edit-
ing state-of-the-art method AnyV2V, our method provides
better background fidelity in an end-to-end pipeline design,
without the need for DDIM inversion and regeneration pro-
cess, thereby significantly saving the inference compute.

4.2.2 Qualitative Comparions

We present comparative editing results in Fig. 5, focusing
on two challenging scenarios: background alteration and
novel object insertion. Text-based inpainting methods Co-
CoCo and ModelScope generate semantically appropriate
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Figure 5. Qualitative Comparisons. We compare VideoRepainter with representative text-guided inpainting models, text-/image-to-video
generation models, and keyframe-based video editing approach. On challenging use cases such as background changing and new object
insertions, our method produces preferred visual quality and consistency.

rame

gy

w/o symmetric

Ours

masked f cond.
Figure 6. Symmetric Mask Condition. Using downsampled
mask (Fig. 3 (a)) leads to ambiguity and the leakage of black pix-
els, and our solution resolves such an issue.

content but exhibit limitations in visual quality, particu-
larly evident in large-region modifications and uncommon
semantic elements like the teddy bear case. 12VGen-XL
demonstrates detail loss and temporal inconsistencies dur-
ing frame propagation. While AnyV2V maintains back-
ground consistency, it suffers from reduced high-frequency
detail. Additionally, its DDIM inversion approach lacks
motion cues for newly introduced objects, resulting in the
disappearance of the teddy bear into the ocean waves. Our
method achieves superior visual consistency with the edited
frame while maintaining stable, high-quality output across
sequences, as demonstrated in the bottom row of Fig. 5.

4.3. Ablating Design Components

We conduct ablations on some essential design components
of our method. To maintain efficiency and an economical
compute budget, our ablation models are trained with the
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Metrics #Param Cons.;  PSNR (Bg.)y MSE (Bg.) <100 AS4
w/0o symm. 2791 M 95.17 27.52 22.23 4.20
w/o full mask 2791 M 96.46 28.28 18.27 4.21
w/o grid mask ~ 27.91 M 96.48 28.56 18.24 3.97
w/o T-bezier 2791 M 94.87 30.08 12.50 4.19
w/o T-variants ~ 27.91 M 96.52 29.65 13.42 3.94
full model 1525.94M  97.48 28.90 17.11 4.26
only attn. 771718 M 96.71 30.80 8.90 4.32
Ours 2791 M 96.73 30.78 11.59 4.24

Table 3. Ablative Comparisons. We ablate the symmetric mask
condition, mask synthesis strategy, and trainable components by
training several model variants on the svd-base backbone.

svd-base backbone and a total number of 14 frames.

Symmetric Mask Condition. We evaluate our symmet-
ric condition mechanism against the conventional down-
sampled mask approach illustrated in Fig. 3. Our sym-
metric condition preserves mask detail fidelity, particularly
for complex mask geometries. The comparison in Fig. 6
demonstrates that downsampled masks can lead to misclas-
sification of masked pixels as unmasked regions, produc-
ing black pixel artifacts in complex boundary areas (case
2). In contrast, our method achieves smooth transitions be-
tween inpainted and original regions (case 3). Quantitative
evaluation further supports these observations. As shown
in Tab. 3, comparing “w/o symm.” versus “Ours” reveals



first frame

last frame

Figure 7. Keyframe Location. Our method consistently produces
high-fidelity results regardless of keyframe location.

that removing the symmetric mask condition reduces back-
ground fidelity.

Mask Synthesis Strategy. We evaluate our masking strate-
gies designed for uncurated Internet video training and ar-
bitrary mask inference through controlled experiments re-
ported in Tab. 3. Results indicate that removing spa-
tial mask augmentation reduces background fidelity scores
while eliminating temporal augmentation decreases tempo-
ral consistency metrics. The combination of all masking
strategies in our final model achieves optimal performance
across evaluation metrics, demonstrating the complemen-
tary nature of these techniques.

Trainable Components. We evaluate the efficacy of
our adapter training strategy through comparative analy-
sis in Tab. 3, examining three variants: full model param-
eter training (“full model”), attention-only training (“only
attn.”), and only attention LoRA adapters (“Ours”). While
unrestricted model optimization offers greater flexibility, it
leads to decreased background fidelity, likely due to overfit-
ting on limited training data. Attention layer tuning yields
better results through parameter regularization, with our
adapter approach achieving comparable performance while
maintaining optimal parameter efficiency.

Keyframe Location. While using the first frame as the
inpainting keyframe is conventional, supporting arbitrary
keyframe selection provides crucial flexibility when ini-
tial frames contain challenging occlusions or deformations.
Despite utilizing an image-to-video backbone, our method
maintains consistent performance regardless of keyframe
position. As demonstrated in Fig. 7, our approach achieves
high-fidelity inpainting results with both first-frame and
last-frame keyframe configurations, highlighting its tempo-
ral robustness.

Inference Mask Precision. When training the model, we
use random and content-agnostic masks, which not only of-
fer efficient synthesis but also prevent the model from learn-
ing unwanted correlations between objects and mask shapes
or positions. This design choice also offers flexibility in

Precise mask (from Segment Anything 2) Imprecise mask (by user drawing)

Figure 8. Mask Precision. Our model generalizes across varying
levels of mask precision and offers more editing flexibility.

Figure 9. Failure Case. Our method exhibits little or no motion
when the inpainting is beyond the domain capacity of the underly-
ing I2V model, e.g., adding an anime girl to a realistic street.

inference by supporting arbitrary mask precision levels, as
shown in Fig. 8. Users can either leverage video segmenta-
tion models [18, 19, 54] for a precisely localized editing, or
arbitrarily draw the region for a coarse indication.

5. Conclusion

We present VideoRepainter, a practical framework that ad-
vances creative video inpainting by enhanced content diver-
sity and visual fidelity. Our approach introduces a two-stage
architecture that first employs established image inpaint-
ing models for keyframe modification, followed by tempo-
ral propagation to the remaining frames. The framework
features an efficient adaptation of pre-trained image-to-
video models, incorporating symmetric mask conditioning
and spatiotemporal augmentations to ensure precise mask
handling and data-efficient training. Extensive evaluations
across diverse scenarios demonstrate that VideoRepainter
consistently outperforms existing methods in both percep-
tual quality and creative expression.

Limitations. The effectiveness of our approach is inher-
ently bounded by both the underlying image-to-video (12V)
backbone and the selected image inpainting model. Specif-
ically, we find a common failure mode where the keyframe
inpainting is beyond the domain capacity of the underly-
ing 12V model, as shown in Fig. 9. In such cases, the
newly introduced content typically exhibits little or no mo-
tion. Moreover, we assume having a user-provided mask
region, but instructional-based editing is preferred in au-
thentic use cases. Future improvements may address these
constraints through enhanced 12V architectures and diverse
temporal training data, as well as involving feedback from
Multi-modal Large Language Models (MLLMs).
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