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Figure 1. Online, on-device learning allows robots to “train in their test environment”. We improve the time and memory efficiency of the
self-supervised contrast maximization pipeline, such that on-board learning of monocular depth from event camera data becomes possible.
When deployed on a small drone, online learning leads to better depth estimates and more successful obstacle avoidance behavior.

Abstract

Event cameras provide low-latency perception for only
milliwatts of power. This makes them highly suitable for
resource-restricted, agile robots such as small flying drones.
Self-supervised learning based on contrast maximization
holds great potential for event-based robot vision, as it
foregoes the need for high-frequency ground truth and al-
lows for online learning in the robot’s operational environ-
ment. However, online, on-board learning raises the major
challenge of achieving sufficient computational efficiency
for real-time learning, while maintaining competitive vi-
sual perception performance. In this work, we improve the
time and memory efficiency of the contrast maximization
pipeline, making on-device learning of low-latency monoc-
ular depth possible. We demonstrate that online learn-
ing on board a small drone yields more accurate depth
estimates and more successful obstacle avoidance behav-
ior compared to only pre-training. Benchmarking experi-

ments show that the proposed pipeline is not only efficient,
but also achieves state-of-the-art depth estimation perfor-
mance among self-supervised approaches. Our work taps
into the unused potential of online, on-device robot learn-
ing, promising smaller reality gaps and better performance.

1. Introduction
Event cameras capture per-pixel brightness changes at mi-
crosecond resolution, while consuming only milliwatts of
power [14]. This combination enables low-latency percep-
tion and decision-making on agile but resource-constrained
platforms such as small drones.

To make full use of the temporal information in the event
stream, the learning pipeline consisting of network archi-
tecture and loss function should also operate at high fre-
quency [28]. Ground truth optical flow or depth is often
only available at lower rates of 10-20 Hz [5, 15, 44]. While
some datasets allow upsampling of ground truth to higher
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rates [3, 44], reaching the temporal resolution of an event
camera might be difficult and come at the cost of high data
rates. This holds back supervised learning at the short time
scales perceivable with event cameras.

Contrast maximization [12] allows self-supervised learn-
ing (SSL) of optical flow, depth and ego-motion from events
alone [13, 28, 32, 45]. Since no ground truth is needed,
learning and prediction can run at higher frequencies of
100 Hz [28] or even 200 Hz [29], with the main limiting
factor being the network’s ability to integrate information
over increasingly sparse inputs as the rate increases.

A major advantage of SSL is that it foregoes the costly
process of obtaining ground truth, which enables learning
to scale to large unlabeled datasets. An additional, but typ-
ically less emphasized advantage is that SSL can in princi-
ple be performed in the operational environment of a robot
or other edge device. Such online SSL greatly reduces the
need for generalization of the learned model, as training
happens directly on data sampled from the test distribu-
tion [34]. For visual tasks like monocular depth estimation,
this is particularly important, as generalization of this per-
ceptual capability to environments different from the train-
ing environment is notoriously difficult [11, 37].

Online SSL, however, introduces additional challenges.
Chief among them is that not only the network but also
the learning framework should be computationally efficient
enough to run on board. In this work, we improve the effi-
ciency of the contrast maximization pipeline such that on-
device learning of low-latency monocular depth and ego-
motion becomes feasible. We demonstrate continual learn-
ing of this complex visual task on board a small flying
drone, and show the usability of the resulting depth for
obstacle avoidance. Furthermore, we investigate various
combinations of pre-training and on-board learning. When
trained on event camera datasets, our small recurrent net-
work shows state-of-the-art depth estimation performance
among self-supervised approaches. Our work taps into
the unused potential of on-board, online SSL, promising
smaller reality gaps, leading to better performance.

2. Related work
SSL of monocular depth. Self-supervised learning of
monocular depth has garnered significant attention since
the early works that focused on joint depth-pose estima-
tion for static scenes [17, 35, 43]. These foundational
studies have spurred further advancements to handle more
complex scenarios, such as dynamic scenes, by integrating
optical flow estimation [31, 42], leveraging regularization
techniques [22], or incorporating motion segmentation [33].
Additionally, several works have explored learning camera
parameters [6, 18], which is particularly relevant for on-
device learning scenarios with unknown cameras.

Wang et al. [39] demonstrate that recurrent networks

can enhance depth estimation by effectively utilizing infor-
mation from multiple frames, resulting in more consistent
depth scale predictions. Similarly, Bian et al. [2] introduce
a loss term to encourage scale consistency, addressing a crit-
ical challenge in depth estimation. Achieving depth pre-
dictions with a consistent scale significantly enhances the
stability of robot control systems relying on these depth es-
timates. By combining recurrent architectures and scale-
consistent training, our approach aligns with these advance-
ments, offering a robust solution for on-device learning dur-
ing real-world operation.

SSL through contrast maximization. The contrast max-
imization framework enables the extraction of accurate op-
tical flow information by leveraging the temporal misalign-
ment of accumulated events [12, 13]. This optical flow can
be estimated either through model-based methods [32] or
using neural networks [19, 28, 45]. The choice of the opti-
cal flow model itself offers a spectrum of possibilities, rang-
ing from linear models [19, 45], to segmented representa-
tions [28], and even parametrized trajectories [20].

In our work, we adopt the approach outlined in [28], as
it aligns with our goal of achieving high-frequency estima-
tion using a neural network. Moreover, this approach sup-
ports efficient inference, which is critical for real-time ap-
plications such as robotic navigation or on-device learning.
The ability to accommodate nonlinear event trajectories fur-
ther broadens its applicability, making it a robust choice
for extracting motion information in challenging conditions
where traditional linear assumptions might fail.

SSL of depth from events. Early works focused on
jointly estimating depth and pose directly from events, em-
ploying either contrast maximization techniques [45] or
photometric error methods based on event frames [41]. A
notable contribution by Zhu et al. [45] was their ability to
estimate metric depth through the incorporation of a stereo
loss term, enabling absolute depth recovery. These methods
demonstrated the potential of event-based sensing for depth
and pose estimation in static scenes.

More recent research has expanded these approaches
to address dynamic scenes [16], where traditional static-
scene assumptions do not hold, and developed more prin-
cipled frameworks for model-based contrast maximization
to jointly estimate depth, ego-motion, and optical flow [32].
These advancements represent a significant step toward es-
timating complex, real-world motion using event data.

Additionally, some works have explored the integration
of intensity images as either inputs or components of the
loss function [46]. This hybrid approach leverages the com-
plementary information provided by intensity images to en-
hance the performance of event-based depth estimation, es-
pecially in scenarios where pure event data might lack suf-
ficient structure or texture information.
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Learning depth for drones. Already in 2016, Lamers et
al. [21] demonstrated the feasibility of learning depth
estimation on board a small flapping-wing drone. Al-
though their approach did not produce dense depth maps,
it proved effective for navigation, marking an early mile-
stone in on-device learning for aerial robotics. Several
works [23, 30] combine unsupervised depth learning with
an analytic odometry-flow pipeline (from external sources)
to achieve metric monocular depth. While their networks
are lightweight enough for embedded hardware, they are
not actually used on drones.

Recent works have focused on generating dense depth
maps on board drones. Liu et al. [24] developed a system
to estimate depth from images for obstacle avoidance on a
tiny quadrotor, leveraging recorded real-world datasets for
training. Bhattacharya et al. [1], on the other hand, used
a simulation-based approach to train depth estimation from
events. They successfully transitioned to real-world appli-
cations by performing offline fine-tuning on real-world data,
enabling effective obstacle avoidance in practice.

In this work, we take a distinct approach by performing
fine-tuning on board the drone in an online fashion during
flight, adapting the model in real time while actively avoid-
ing obstacles. This method combines the strengths of self-
supervised learning with real-time adaptability, paving the
way for more robust and efficient systems capable of han-
dling dynamic environments. By eliminating the reliance
on extensive offline fine-tuning or pre-collected datasets,
our approach addresses the challenges of real-world deploy-
ment more directly.

3. Method

3.1. Optical flow from contrast maximization

Each pixel in an event camera independently detects
changes in brightness and generates an event ek =
(tk, xk, pk) when this change exceeds a preset threshold.
The polarity pk ∈ {+1, −1} indicates whether the bright-
ness at pixel xk and time tk increased or decreased. Con-
trast maximization [12, 13] assumes these events E =
{ek}Ne

k=1 are triggered by motion, meaning that a warp
ek = (tk, xk, pk) 7→ e′

k = (tref, x′
k, pk) with the correct

motion estimate ∆xk will align it with other events trig-
gered by the same portion of a moving edge, increasing the
contrast of the image of warped events (IWE).

We follow the contrast maximization framework as
in [28], which estimates optical flow for thin slices of the
event stream using a recurrent architecture. By concate-
nating flows ui as ∆xk =

P
i(∆tiui)(ek), events can

be warped iteratively to neighboring slices, with the correct
flows leading to sharp IWEs at all reference times along the

trajectory:

LCM =
1

T + 1

TX
tref=0

P
k t̄k(tref)κ(xk)P

k κ(xk)
(1)

where t̄k(tref) is the timestamp contribution of event ek

to the IWE at reference time tref, and κ is a bilinear splatting
kernel. We regularize (prevent event collapse) by scaling
IWEs by the number of pixels with at least one event and
by masking events that get warped out of the image space
at any point [19, 28].

3.2. Combining depth and ego-motion into flow
Assuming a static scene and no occlusion/disocclusion,
depth and ego-motion can be accurately estimated from
monocular video alone [43]. The optical flow used to warp
a pixel x between different views is constructed from depth
D and a camera transformation or relative pose P :

x′ ∼ KPD(x)K−1x (2)

with K the camera intrinsic matrix, P consisting of a ro-
tation R and a translation t, and ∼ because depth is only de-
fined up to a scale.1 The network estimates depth D directly
using a softplus activation [18]; relative pose P is estimated
with rotation expressed in exponential coordinates ω [38],
and converted to R using Rodrigues’ formula.

To encourage consistent scale for consecutive depth
predictions, we include the geometry consistency loss
from [2], which computes a normalized difference between
the forward-projected depth D0�1 and interpolated depth
D′

1 for all valid pixels x ∈ V (visible in both images):

Lgeo =
1

|V |
X
x∈V

|D0�1(x) − D′
1(x)|

D0�1(x) + D′
1(x)

(3)

where we average over the number of valid pixels |V |.
Setting an appropriate weight λ, this then results in the full
loss formulation as:

L = LCM + λLgeo (4)

3.3. Optimizations for on-device learning
For efficient prediction, we make use of a lightweight,
430k-parameter network inspired by [40]. It consists of a
strided convolutional encoder, a ConvGRU recurrent bot-
tleneck, and a two-tailed convolutional decoder for depth
and ego-motion (more details in the supplementary mate-
rial). While one network forward pass takes less than a mil-
lisecond on an NVIDIA RTX 4090, computing the contrast
maximization loss and backpropagating the resulting gradi-
ents each take up more than 10 ms.

1For simplicity, we omit the conversion to homogeneous coordinates.
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Figure 2. Top left: events e of different polarities are warped forward and backward by bilinearly sampled (BS) optical flows u. Events
warped outside the image are discarded. Next, events are bilinearly splatted to IWEs (images of warped events) at all reference times t∗

ref.
Bottom left: batched processing of events such as in [28] requires zero-padding bins of events to equal length to facilitate simultaneous
warping to neighboring reference times. In contrast, our per-event parallel processing in CUDA warps all events independently, doing away
with padding and allowing to warp only those events still in the image space. Right: Runtime and peak increase in memory consumption
for different phases of computing the contrast maximization loss on an NVIDIA RTX 4090 and Jetson Orin NX. 10% of each bin is made
up of padding, which is not processed by the CUDA implementation. We indicate the range of events per bin for common datasets [9, 44]
in black. Naive PyTorch processes all events in a for-loop. While batching events together improves a lot over this, parallel processing of
all events in CUDA results in even bigger speedups with less memory consumed.

To make on-device learning feasible, we have to improve
the efficiency of the components that make up the loss com-
putation and network update: i) warping all events in the
accumulated set of events E using a sampled optical flow
to all reference times tref ∈ [0, T ], ii) bilinearly splatting
them to the IWE at that tref, iii) computing the gradient with
respect to the network parameters.

Previous work [28] warped and splatted events in batches
using PyTorch functions. This has multiple inefficien-
cies. Batching different amounts of events together leads to
padding with zeros, resulting in wasteful computation and
memory usage. This also goes for warping events that al-
ready went out of the image space (and therefore do not con-
tribute to the loss anymore). Furthermore, some operations
(like bilinear splatting) do not have optimized implementa-
tions in PyTorch. All this combined results in extra com-
putational and memory overhead due to intermediate tensor
allocations, multiple instead of single kernels, computation
graph tracking and scattered memory accesses.

The abovementioned issues can be resolved by consider-
ing that all events independently contribute to the loss since
they are summed in the IWEs, and that we can therefore
parallelize over all the accumulated events E . We imple-
ment the functions to do so in CUDA, getting rid of most of

the overhead, and connect them to PyTorch as an extension.
Specifically, we assign one CUDA thread to handle one

or more events in parallel, read off their positions in the 3D
domain (x, y, t), and then apply the flow fields to “push”
each event through time either forward or backward in an
iterative fashion. During the backward pass, we use the
stored warped-point positions along each time step (forward
and backward) to compute partial derivatives w.r.t the flow
vector ∂L

∂f . As in the forward pass, we rely on bilinear inter-
polation weights at each (x, y) to distribute gradients to the
four nearest flow-vector cells. By avoiding padding and un-
necessary warping computations, we achieve significantly
better parallelization on GPUs.

As shown in Fig. 2, the resulting improvements are,
depending on the device, roughly 100x in terms of run-
time, and 2-5x in terms of memory consumption. Common
datasets like UZH-FPV [9] and MVSEC [44] have between
1k and 10k events per bin, well within the range of these
speedups. Furthermore, looking at the peak delta memory,
the removal of padding yields much lower memory con-
sumption when event data is highly sparse. Because we
now provide the analytical gradients in the CUDA backward
kernel, these do not have to be computed through automatic
differentiation, leading to further efficiency improvements.
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Figure 3. Overview of the drone (left) and the flight environment
(right). System components in blue are for the on-board depth
learning pipeline, orange components are for low-level flight con-
trol, and green components are for logging only.

3.4. Using depth for obstacle avoidance
In the absence of metric depth and with a possibly varying
scale, we can construct simple obstacle-avoiding behaviour
using the difference in predicted depths for different parts
of the field-of-view [4, 24]. More specifically, we slice the
depth map into K vertical bins, compute the average inverse
depth dk for each, and use these to set a desired yaw rate ψ̇:

ψ̇ = ψ̇goal(d) + ψ̇avoid(d) (5)

ψ̇goal(d) = λgoal(arg min
k

(dk) − k̄) (6)

ψ̇avoid(d) = λavoid

K−1X
k=0

(k̄ − k)e
(− α

dk
)
e(− (k−k̄)2

2σ2 ) (7)

where yawing to the right is positive, and k̄ = K−1
2 is

the center index. The resulting behaviour is both obstacle-
avoiding (avoid part) and depth-seeking (goal part).

3.5. Drone and flight environment
The experimental setup as shown in Fig. 3 consists of a cus-
tom 5-inch quadrotor with a total weight of approximately
800 g, including all sensors, actuators, on-board compute
and battery. All algorithms are implemented to run en-
tirely on board, using an NVIDIA Jetson Orin NX embed-
ded GPU to receive data from the event camera, perform
learning and estimate depth in real time. Control commands
(yaw rate) based on the predicted depth maps are sent to
the flight controller, a Kakute H7 Mini running the open-
source autopilot software PX4. Communication between
PX4 and the Orin is done using ROS2 [25]. An MTF-01 op-
tic flow sensor and rangefinder enables stable autonomous
flight where only yaw rate is controlled based on the depth
estimate.

To keep the event rate down (below 1 Mev/s), we only
turn on every fourth pixel on the DVXplorer Micro, result-
ing in a 160x120 stream (instead of 640x480) for the same
field-of-view. These events are accumulated into 20 ms
windows and made into a frame for the network. The whole
events-to-depth pipeline is running at approximately 30 Hz

outdoor_day1 outdoor_night1

Depth cutoff 10m 20m 30m 10m 20m 30m

Zhu et al. [46] 2 1.40 2.07 2.65 2.18 2.70 3.64
Zhu et al. [46] 3.90 3.79 4.89 5.55 4.57 5.72
Zhu et al. [45] 2.72 3.84 4.40 3.13 4.02 4.89
Ours 2.25 3.36 4.23 3.25 3.83 4.50
Ours (dense) 1.96 2.67 3.29 2.92 3.56 4.28

Table 1. MAE (mean absolute error) of depth prediction in meters
on MVSEC test sequences at various depth cutoff distances. The
best result is highlighted in bold, and the second best is underlined.
The method shown in the shaded row serves as a reference and is
not directly comparable to the others, as it also uses image frames.

1PE 2PE MAE RMSE

SL
Cho et al. [8] 8.966 2.345 0.501 1.175
DSEC baseline [15] 10.92 2.905 0.576 1.381

SSL
Ours (best scale) 82.64 66.57 4.583 5.937
Ours (approx. scale) 84.92 70.47 4.946 6.274

Table 2. Quantitative evaluation on the DSEC disparity bench-
mark. Due to the lack of other monocular SSL (self-supervised
learning) methods on the leaderboard, we compare against two
representative stereo-based SL (supervised learning) methods.

while learning, consuming on average around 9 W. We in-
clude a RealSense D435i depth camera for logging purposes
only. To plot ground-truth flight trajectories, we record the
drone’s position using a motion capture system.

4. Experiments
4.1. Event-based depth benchmarks
Setup. We train our proposed network on the training sets
with a batch size of 8 and a constant learning rate of 1e-
4 with the Adam optimizer for 50 epochs (more details in
the supplementary material). We do truncated backpropa-
gation through time, with a backward pass/gradient update
conducted every 10 forward passes. Detaching the network
while not resetting its state ensures bounded memory us-
age, mitigates potential gradient explosion/vanishing, and
allows the network to retain temporal context effectively.
The quantitative evaluations on MVSEC and DSEC are pro-
vided in Tab. 1 and Tab. 2.

Results. On MVSEC, our method outperforms the other
two self-supervised, events-only baselines [45, 46]. For
context, we also provide the results from the approach in
[46], which additionally uses intensity frames in the train-
ing process for a photometric consistency loss. Although

2The network uses events as input but was trained with intensity frames
in the loss function. Therefore, it is included as a reference but is not di-
rectly comparable to self-supervised methods trained solely on event data.
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Figure 4. Qualitative results of disparity predictions on the DSEC disparity benchmark. Images are for visualization only, as disparity
estimation is event-based. The same color map is applied to the disparity values from the stereo- and supervised-learning-based method
from Cho et al. [8] and our monocular, self-supervised learning method for easy comparison.

it achieves a higher accuracy, our networks rely solely on
event streams during training. For completeness, we also
assess the accuracy of dense depth (i.e., not masked by
events), as shown in the last row of Tab. 1.

In the absence of self-supervised methods on the DSEC
disparity benchmark, we compare our approach against
two top-performing stereo-event-based supervised learning
baselines [7, 15]. To convert our monocular unnormal-
ized depth predictions from our network output into met-
ric depth, we apply a scaling factor derived from the ratio
of the median predicted depth to the ground truth median
from the training set, labeled as “approx. scale” in Tab. 2.
Additionally, we conduct a grid search on the scaling factor
to achieve the highest accuracy on the test set, reported as
“best scale”.

While our accuracy on the DSEC disparity bench-
mark falls short of supervised baselines, qualitative
comparisons in Fig. 4 demonstrate that our approach
effectively captures meaningful structures within dis-
parity maps, even without ground truth labels dur-
ing training. Notably, close objects, such as the
car in interlaken_00_a(540) and traffic signs
in thun_01_b(400), interlaken_01_a(1680)
and zurich_city_12_a(400), are accurately rep-
resented. Although the boundaries in our results may
lack the sharpness achieved by supervised baselines,

our approach better preserves contour shapes, such as
the front of the car in interlaken_00_a(540),
the arc of the tunnel in interlaken_00_b(560)
and the pole in zurich_city_13_a(260). This
advantage is especially evident for thin objects like
the sign pole in interlaken_01_a(1680) and
zurich_city_12_a(440), which are often challeng-
ing for supervised methods to capture accurately. Addition-
ally, our self-supervised approach can run at higher-than-
ground-truth frequencies (100 Hz vs 10 Hz) and is immune
to artifacts typically caused by the sporadic availability of
ground truth at the image boundaries, resulting in smoother
disparity maps free from discontinuity artifacts.

Limitations. Several factors constrain the accuracy of our
methods on these benchmarks, including the reliance on
self-supervised learning with events only, a compact net-
work architecture, the use of monocular depth estimation
rather than stereo and the imperfect estimation of a scal-
ing factor for converting monocular depth to metric depth.
Errors in few-event areas could be reduced by, e.g., includ-
ing the reconstruction loss from [27]. However, our aim
is not to surpass state-of-the-art methods, and we believe
the quality of our depth predictions is sufficient to support
downstream tasks like robot navigation.
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Figure 5. Left: Boxplots of distance between pilot interventions
during flight experiments. While using ground truth (GT) depth
is best, adding online learning (PT + OL) improves over just pre-
training (PT) by ~30%. Training from scratch (TFS) does not re-
sult in meaningful obstacle avoidance. Right: MAE (mean abso-
lute error) of depth prediction and RSAT (ratio of squared average
timestamps, indicates deblurring quality) during online learning in
flight. Model checkpoints were saved periodically and evaluated
on a test sequence unseen by the model beforehand. 300 learning
steps correspond to roughly 100 seconds of training during flight.

4.2. Drone experiments
Setup. We first pre-train our network on the UZH-FPV
dataset [9] using our self-supervised pipeline. This dataset
was chosen for its diverse set of motion trajectories, en-
abling the network to learn a latent representation that
generalizes well across various motion types. After pre-
training, the network is deployed on a drone, where online
learning (fine-tuning) is performed during flight. The net-
work’s forward pass operates at an average speed of 30 Hz,
with a backward pass and gradient update conducted ev-
ery 10 forward passes. During flight experiments, we set
the drone to fly at a constant height and a forward speed of
0.5 m/s. The predicted depth is binned and used to control
the drone’s yaw rate.

Results. We show the quantitative improvements
achieved through online learning in Fig. 5 (right plot),
where saved checkpoints are evaluated on a test sequence
recorded in the same environment but with different
placements for obstacles. The model shows significant
improvement not only in the RSAT (ratio of squared aver-
age timestamps) metric [19], which is strongly correlated
with the contrast maximization loss used to optimize the
network, but also in MAE (mean absolute error) when
compared against ground truth depth. Additionally, the
fine-tuning process is efficient, converging within just two
minutes of flight.

Qualitative results at different snapshots during online
learning are presented in Fig. 6. Compared to step 0 (the
pre-trained model), the disparity values for certain close ob-
jects, such as the wall and poles, increase, as evidenced by
the brightened colors in those regions. To highlight the ben-
efits of pre-training, we also compare our model with a net-
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Figure 6. Qualitative visualization of disparity map evolution dur-
ing online learning. Note that the image is for visualization pur-
poses only, as disparity estimation is event-based. The same color
map is applied to predictions from all different models for easy
comparison. The pre-trained network begins at step 0, followed
by 12K steps of online learning (OL) with streaming event data
during flight. For comparison, we also show the prediction quality
of a randomly initialized network trained from scratch (TFS) for
12K steps.

work initialized with random weights and trained using the
same amount of online learning data, as shown in the last
row of Fig. 6. The from-scratch network fails to produce
meaningful disparity maps within the flight’s limited times-
pan, underscoring the importance of pre-training in achiev-
ing fast and reliable adaptation during online learning.

Finally, we quantify that these improvements in depth es-
timation through online learning translate to better obstacle
avoidance performance in flight experiments. During each
experiment, the drone takes off and immediately starts to
fly autonomously. A human pilot monitors the flight and in-
tervenes if the drone is in a near collision with an obstacle.
After the human pilot corrects for the collision course, the
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Figure 7. Top-view flight trajectories of various experiments. Blue represents autonomous flight, while orange indicates pilot interventions
necessary to prevent collisions/going out of bounds. Training from scratch does not give meaningful obstacle-avoiding behavior. Online
learning results in longer autonomous sections and more diverse paths than just pre-training. Using ground truth depth (from RealSense)
results in almost-perfect avoidance, and only requires intervention when flying into a corner (limitation of control algorithm).

drone is switched to autonomous flying again.
We compare the distance between pilot interventions for

the different experiments in Fig. 5 (left plot), and show top
views of the flight trajectories in Fig. 7. When training
from scratch (network initialized with random weights), the
drone does not avoid obstacles and mostly flies in straight
lines. When we start with a pre-trained network, we see ac-
tual obstacle-avoiding behavior, and the distance between
pilot interventions goes up by ~65%. When adding online
learning during flight, the distance between interventions
improves by a further ~30%, and the flight behavior seems
to become more diverse.

Limitations. The quality of the on-board depth maps is
limited by the fact that only a quarter of the camera’s
640x480 resolution is used (compare Fig. 4 and Fig. 6).
We mitigate this with an artificially textured environment
to ensure sufficient motion-induced events. Higher-quality
depth maps, or operation in more natural environments, will
require using more of the camera’s resolution.

To further enhance computational efficiency and perfor-
mance, the nonlinear motion model [28] could be traded
for the cheaper-to-compute linear variant [19], at the cost
of increased errors on nonlinear event trajectories. Further-
more, inference and learning could be run asynchronously
at different rates [36], or only limited to partial network
fine-tuning for a few selected layers. Incorporating a jointly
optimized flow decoder tail [42] could also improve depth
estimation for dynamic obstacles.

Dynamic objects moving towards the drone would al-
ready be avoided by our current pipeline (even though they
are not included in training). However, due to the static
scene assumption, their depth is underestimated (like the
oncoming van in Fig. 4).

Lastly, The current depth-based yaw control is attracted
by corners in the environment, requiring pilot intervention
(see the bottom left environment corners in Fig. 7). Solv-
ing this, or allowing for more complex environments (e.g.,
higher obstacle density), would require a more advanced

control strategy capable of better interpreting depth cues.

5. Conclusion
We have improved the efficiency of self-supervised learning
of monocular depth estimation from events, such that on-
device learning of low-latency monocular depth and ego-
motion becomes feasible. The proposed approach features
more efficient and parallel processing, and has been imple-
mented in CUDA instead of PyTorch. For common event
rates (0.1-1 Mev/s) this reduces runtime by 100x, while
using 2-5x less memory—improvements that would also
transfer to other pipelines involving warping/splatting of
events [10, 27, 32] and images [26].

When trained and benchmarked on event camera
datasets, our small recurrent network outperforms other
self-supervised approaches and captures essential structures
with sufficient quality to support downstream navigation
tasks. Furthermore, we demonstrate that online learning
on board a small flying drone leads to improved depth esti-
mates within two minutes of learning, leading to more suc-
cessful obstacle avoidance (~30% improvement in distance
between pilot interventions).

Our work taps into the unused potential of on-board, on-
line self-supervised learning. The current results already
demonstrate that online learning leads to better performance
in the operational environment. While SSL still needs fur-
ther improvements to match supervised baselines, its core
advantages—pretraining on large unlabeled datasets and
finetuning directly in the test environment—hold the key to
truly robust autonomous robot deployment across diverse
real-world settings.
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