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Abstract

We address the challenge of representation learning from a

continuous stream of video as input, in a self-supervised

manner. This differs from the standard approaches

to video learning where videos are chopped and shuf-

fled during training in order to create a non-redundant

batch that satisfies the independently and identically dis-

tributed (IID) sample assumption expected by conventional

training paradigms. When videos are only available as a

continuous stream of input, the IID assumption is evidently

broken, leading to poor performance. We demonstrate the

drop in performance when moving from shuffled to sequen-

tial learning on three tasks: the one-video representation

learning method DoRA, standard VideoMAE on multi-video

datasets, and the task of future video prediction.

To address this drop, we propose a geometric modifi-

cation to standard optimizers, to decorrelate batches by

utilising orthogonal gradients during training. The pro-

posed modification can be applied to any optimizer – we

demonstrate it with Stochastic Gradient Descent (SGD) and

AdamW. Our proposed orthogonal optimizer allows models

trained from streaming videos to alleviate the drop in rep-

resentation learning performance, as evaluated on down-

stream tasks. On three scenarios (DoRA, VideoMAE, future

prediction), we show our orthogonal optimizer outperforms

the strong AdamW in all three scenarios.

1. Introduction

Trained on Internet-scale data at powerplant-scale energy

costs, the way deep learning models are created today is

drastically different from the way humans acquire their vi-

sual intelligence. Humans perceive a single continuous vi-

sual input, starting from being infants in cribs. This visual

input is highly redundant and temporally correlated. Such

an input poses significant challenges for current deep learn-

ing paradigms. These paradigms were primarily developed

for learning from images, and make assumptions on the in-

formativeness of every training batch as an independently

and identically distributed (IID) sample from the data dis-
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Figure 1. We address the task of learning from video by sequen-

tially loading its clips in time (top). As neighbouring clips are very

similar, consecutive gradients are highly correlated – we show the

histogram of cosine similarity of gradients between consecutive

batches. This causes model collapse. In contrast, current methods

shuffle the video to simulate an IID input (middle). Consecutive

gradients are accordingly decorrelated – cosine similarity is cen-

tred around 0. We propose to learn from the orthogonal gradients

– which allow standard optimizers to recover the drop in perfor-

mance when training from a sequential video stream (bottom).

tribution. These assumptions are immediately broken when

learning from a continuous stream.

To accommodate the current learning paradigms, video

models have to date been restricted to learning from short

clips, by dividing any long video streams into short seg-

ments and shuffling these to enable learning. This gap be-

tween human learning and current video models is not only

a computational burden from storing and accessing large

videos, but is also potentially limiting the capabilities of

models to achieve the human’s ability to generalise. Learn-

ing from a continuous stream is key to enabling intelligent

agents that learn on-the-fly or adapt to new environments.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Additionally, models that learn from streaming videos can

address privacy concerns as videos are not stored or shared.

Our paper is inspired by recent works that attempt to

learn from a single video [43] or from streams of videos [7].

In [43], learning from a single long video is impressively

shown to generalize but only when the video is stored in

disk, such that random access is possible – with batching,

random sampling and shuffling. In contrast, [7] concate-

nates videos to simulate a continuous stream that matches a

day-long input and demonstrates the drop in performance

when moving from shuffled to sequential learning on a

number of self-supervised and supervised tasks.

In this work, we focus on the core obstacle to learning

from streaming video: the redundancy of the data leading

to highly correlated gradients. We make the following con-

tributions:

• We quantify the drop in performance when learning from

sequential, rather than shuffled, data on three video learn-

ing methods: DoRA, VideoMAE and future prediction.

• We propose to use a geometrically-principled optimizer,

using the orthogonal gradient during learning.

• We augment commonly used optimizers – Stochastic Gra-

dient Descent (SGD) and AdamW with learning from or-

thogonal gradients. We refer to these augmented optimiz-

ers as orthogonal optimizers.

• We showcase clear improvements using our orthogonal

optimizers when learning from sequential data on all three

video learning methods.

2. Related Work

Continual Learning. Existing continual learning litera-

ture focuses on the learning dynamics and the effects of

introducing novel tasks over the training cycle, emphasiz-

ing knowledge accumulation as new tasks and data become

available. The main objective of such works is quick adap-

tation while preserving performance on previously learned

tasks (failure to do so is commonly termed as “Catastrophic

Forgetting”) [25]. In the context of continual learning, task

changes over the training progress – it could be a different

objective function, or incremental annotated labels [5, 35].

But often the data in these tasks consists of independent im-

ages [28, 37], which are much less correlated than consec-

utive video frames.

Various approaches have been proposed to tackle these

problems: input replay buffers, which make the learning

problem closer to the IID case by accumulating a dataset

to sample from; architectural adjustments [2, 30, 46],

adapting the optimization algorithm [25], or redesigning

the training paradigm e.g. adding pre-training with IID

data [31, 36]. Orthogonal gradients have been explored in

the context of continual learning, where the model learns a

number of distinct tasks iteratively [14] – in this case or-

thogonal gradients were used to avoid catastrophic forget-

ting of previously learned classes when learning continual

image classification. The orthogonal computation is only

computed after training each task.

Different from prior work in continual learning, we ad-

dress the problem of a single task learnt from continuous

videos, where the learning process unfolds along the tempo-

ral dimension of visual sequences. This task is particularly

challenging because in addition to the the problem of catas-

trophic forgetting due to the extensive temporal history, the

continuity of the video frames introduces high correlations

between consecutive learning steps which can be detrimen-

tal to the learning process. We revisit [14], extending it to

multiple optimizers and testing it for the first time on video

tasks in general and streaming videos in particular.

Learning from Video Streams. The majority of video

models trained today are trained from randomly sampled

short clips sampled from large video datasets, creating

roughly IID samples which make training with stochastic

gradient descent effective.

One exception is the work by Purushwalkam et al. [34],

which explores learning a self-supervised model from con-

tinuous video streams. This work uses a ‘replay buffer’ to

store recent training samples in order to overcome the high

temporal correlation of streamed videos. Another work,

closer to ours, is the ‘Baby Learning’ framework [7]. In

that work, a future prediction model is trained on streaming

video and is evaluated on both in-stream and out-of-stream

tasks – trading off adaptation and generalization. This work

includes experiments with a variety of common optimizers,

but does not explicitly deal with the temporal correlation

of the gradients. Another line of work automatically filters

training samples [3, 13] – this can be applied to streamed

video learning scenarios to handle the high temporal corre-

lation of gradients. However, such methods effectively load

more data than is actually used for training, and the result is

quite similar to using a replay buffer, requiring extra com-

pute and memory.

Video Representation Learning. Rapid progress has

been made in visual representation learning from images

and videos, especially in the family of self-supervised meth-

ods. These can be grouped into three main core ideas –

contrastive learning (CPC [32], MoCo [21], SimCLR [8],

DPC [20]), self-distillation (BYOL [18], DINO [6]) and re-

construction based methods (MAE [22], VideoMAE [15,

42], SiameseMAE [19]). However, all these techniques

rely on training with IID data randomly sampled from large,

shuffled training datasets, which contrasts with the sequen-

tial nature in which humans, for example, perceive visual

information. This paper explores some of these models

when applied to the streaming video input scenario.
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Test-time adaptation. When encountering distribution

shifts at test time, models often fail to adapt or produce

reasonable results given the new data. Test-time adapta-

tion methods attempt to address this issue by either in-

troducing training objectives which can be applied at test

time [26] - these usually would be self-supervised objec-

tives [12, 39] - or by adding regularization terms to an al-

ready trained model [27]. These ideas have been recently

transposed to language models [40] and connections to in-

context learning and online reasoning are now actively be-

ing pursued [1, 12, 33, 44, 45]. Here we demonstrate that

test-time adaptation on video streams benefits from using

orthogonal gradients.

3. Method

Problem Setup. We focus on the hard problem of se-

quential learning from a single continuous video. Given

a long video V , our goal is to train a model fθ on the

video V sequentially to minimize an objective function L,

where θ represents the network parameters. Since the en-

tire video V is too long to feed into the model at once, a

practical approach is to cut the video into small chunks,

{V1,V2, ...,Vn}, where each Vi denotes i-th video clip with

a short temporal window. Different to the common prac-

tice of randomly sampling clips as mini batches to train the

model, we wish to learn from a video stream, so clips are

fed in their sequential order.

The greatest obstacles to learning from video sequen-

tially is the high temporal correlation of gradients. In most

cases, the video changes slowly and the gradient of the cur-

rent batch is almost identical to that of the previous batch.

The stochastic optimization methods widely used in deep

learning, such as SGD, are all based on the assumption that

the global gradient can be approximated by the gradient

of mini-batches to some extent, which does not hold true

when learning from sequential videos. We focus on the task

of learning from long videos in a self-supervised manner

where the learning signal purely comes from the pixels, and

the temporal correlation of gradient is severe. This is dis-

tinct from supervised learning where the supervisory signal

might provide insights on where subtle changes or infor-

mative content is. Our objective is a mechanism that can

learn from these subtle changes; in effect, able to continu-

ally decorrelate the gradients and learn from the residual.

Learning from Orthogonal Gradients. Our method is

straightforward: as the gradients are temporally correlated,

we propose to learn from the orthogonal components of

the gradients. In detail, the gradients of two consecu-

tive update steps can be written as gt−1 = ∇θLt−1 and

gt = ∇θLt, where θ denotes the model parameters and

L is the loss function. In an idealistic training scenario

(a) (b)

Figure 2. A simplified illustration of orthogonal gradients. (a) In

common IID training, the gradient between consecutive steps are

not very correlated due to the IID nature. (b) Whereas if learning

from sequential videos, the gradients between consecutive steps

are highly correlated, which harms the optimization. We propose

to update the model parameters from the orthogonal components

of the current gradient, denoted as ut. In practice, the gradients

and the orthogonal operation are in a high dimensional space.

where the data samples in subsequent mini-batches fol-

low the IID distribution, these two gradients typically have

low similarity, which can be measured by a cosine distance

cos (gt−1, gt) ≈ 0.

When training sequentially, empirically we find the gra-

dients between two consecutive update steps can be highly

similar, i.e. cos (gt−1, gt) → 1, as shown in Figure 1. To

decorrelate these gradients, we propose to only update with

the orthogonal component of the gradient gt w.r.t. the past

gradient gt−1 for the optimization step. As illustrated in

Figure 2, the actual gradient used for the update is

ut = gt − projgt−1
gt (1)

where projgt−1
(gt) is the projection operation onto the di-

rection gt−1:

projgt−1
(gt) =

gt · gt−1

gt−1 · gt−1

gt−1 =
||gt|| cos (gt, gt−1)

||gt−1||
gt−1

(2)

This orthogonal gradient update has ideal behaviour for

two scenarios at either end of the correlation spectrum:

(1) when the training data is close to an IID distribu-

tion, i.e. cos (gt−1, gt) ≈ 0, the orthogonal gradient ut is

close to the original gradient, since ut = gt − projgt−1
gt ≈

gt. It means the orthogonal gradient based optimization

rule is compatible with IID training scenario. In contrast,

(2) when the consecutive data samples have high sequen-

tial similarity, i.e. cos (gt−1, gt) ≈ 1, the orthogonal gra-

dient has a small magnitude on a new direction ut =

gt−projgt−1
gt ≈ gt−

||gt||
||gt−1||gt−1. A small gradient results

in minor changes to the model’s parameters. This avoids the

model to be excessively optimized along one gradient direc-

tion, when there is insufficient new signal.

Practically, decorrelating the current gradient with the

past single step can be sensitive to noise. Inspired by the
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Algorithm 1 Orthogonal SGD

Require: Learning rate η > 0, momentum parameter β ∈
[0, 1), initial parameters θ0, number of iterations T

1: Initialize velocity c0 = 0

2: for t = 1 to T do

3: Sample a mini-batch of data Bt from the training set

4: Compute the gradient: gt = ∇θL(θt−1;Bt)
5: Compute the orthogonal gradient: ut = gt − projct−1

gt

6: Update the raw momentum: ct = βct−1 + (1− β)gt

7: Overwrite the gradient: gt := ut

8: Update the parameters: θt = θt−1 − ηgt
9: end for

common usage of ‘momentum’ in standard optimizers [41],

we maintain an exponential moving average (EMA) of the

original ‘clean’ gradients, denoted by ct, with an update rule

ct := βct−1 + (1− β)gt (3)

where β is the momentum factor, by default we use β = 0.9.

The orthogonal gradient is then computed by

ut = gt − projct−1
gt (4)

Notice that the EMA is computed on the original gradients,

rather than the orthogonal component ut, whereas ut can

be further fed into first/second order moment subject to the

choices of optimizers (e.g. second-order optimizer AdamW

in Algorithm 2).

Importantly, the aforementioned geometric modification

is applicable to many optimizers. Here we show two

commonly used optimizer algorithms modified by orthog-

onal gradients: SGD optimizer as an illustration (Algo-

rithm 1), and the AdamW optimizer [29] (Algorithm 2).

The text in green indicates the addition to the original al-

gorithms. We mostly experiment with Orthogonal-AdamW

due to its faster convergence speed.

Trade-off between algorithm and speed. In the con-

vex optimization literature, there are relevant methods that

might be more favourable than orthogonal operation, such

as conjugate gradient method [23, 38]. However, orthog-

onal gradient is computationally cheaper than conjugation,

since the orthogonal projection can be implemented as co-

sine distance and vector norms (Equation 2), which could

take advantages from well-optimized pre-compiled kernels

in deep learning toolboxes. We do not delve into this di-

rection in this paper, but it could be an interesting future

work.

Algorithm 2 Orthogonal AdamW

Require: Learning rate η > 0, weight decay coefficient

λ > 0, decay rates β, β1, β2 ∈ [0, 1), small constant

ϵ > 0, initial parameters θ0, number of iterations T
1: Initialize first moment vector m0 = 0, c0 = 0 , and

second moment vector v0 = 0
2: for t = 1 to T do

3: Sample a mini-batch of data Bt from the training set

4: Compute the gradient: gt = ∇θL(θt−1;Bt)
5: Compute the orthogonal gradient: ut = gt − projct−1

gt

6: Update the raw momentum: ct = βct−1 + (1− β)gt

7: Overwrite the gradient gt := ut

8: Update biased first moment estimate: mt =
β1mt−1 + (1− β1)gt

9: Update biased second moment estimate: vt =
β2vt−1 + (1− β2)g

2
t

10: Compute bias-corrected first moment: m̂t =
mt

1−βt

1

11: Compute bias-corrected second moment: v̂t =
vt

1−βt

2

12: Apply weight decay: θt−1 = θt−1 − ηλθt−1

13: Update parameters: θt = θt−1 − η m̂t√
v̂t+ϵ

14: end for

4. Experiments

In this section, we focus on providing empirical evidence

using real video datasets to demonstrate the effectiveness

of the orthogonal optimizer. We particularly experiment

with Orthogonal-AdamW, on three scenarios: representa-

tion learning on a single long video, representation learning

on video datasets, and future prediction tasks as same as [7].

4.1. DoRA on a Single Video

The DoRA paper [43] trains a vision transformer [11] image

backbone on a single long video and achieves competitive

performance. They apply aggressive frame augmentations

and randomly sample short video clips, similar to other self-

supervised works [6, 21], to obtain diverse training samples.

Differently, we focus on learning video representation from

a single video in a sequential manner, which poses a great

challenge to these prior methods because of the high tem-

poral correlation between batches.

Datasets. Following DoRA [43], we use the WalkingTour

video at Venice (denoted as WTvenice) from the Walking-

Tour dataset proposed by the same work. This video is

extensively used by DoRA and enables us to conduct a

through analysis. The WTvenice video has a duration of 1

hour 50 minutes at 60fps, containing a continuous urban

view around Venice city center filmed from a hand-held
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initialization
pretraining dataset: WTvenice downstream ImageNet

pretraining method optimizer linear probe top1 kNN top1

DINOImageNet - - - 74.4

DINOImageNet DoRA sequential (batch-along-time) AdamW 6.1 1.8

DINOImageNet DoRA sequential (batch-along-time) Orthogonal-AdamW 64.5 51.8

VideoMAESSV2 - - - 3.7

VideoMAESSV2 DoRA sequential (batch-along-time) AdamW 7.9 3.0

VideoMAESSV2 DoRA sequential (batch-along-time) Orthogonal-AdamW 11.2 5.7

random DoRA sequential (batch-along-time) AdamW 3.5 0.8

random DoRA sequential (batch-along-time) Orthogonal-AdamW 8.2 3.1

Table 1. Experiments on DoRA [43] pretraining on WTvenice
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Figure 3. Effect of orthogonal optimizer on sequential training of DoRA on the WTVenice video. On IID training, the consecutive gradient

has low cosine similarity (right). Sequential training (left) naturally brings a high similarity of consecutive gradient, but the orthogonal

optimizer decorrelate the gradients over time. Notice that we plot cos (gt−1, gt) in this figure.

camera. As in [43], we train on this video, albeit in a se-

quential manner, and then evaluate the learnt representa-

tion on the downstream task of object recognition on Im-

ageNet [10].

Task Setting. We train the DoRA method using their of-

ficial codebase. Instead of randomly sampling short video

clips, we sample clips sequentially from the beginning of

the video. i.e. given a batch size N , our first batch B1 =
{C1, . . . , CN} and the second batch continues from CN+1

to C2N , where Ci denotes the i-th short clip from the source

video. Practically, each video clip contains 8 consecutive

video frames sampled at 1 fps, and every two consecutive

clips are shifted by 1 frame, or 1/60 second. For evalua-

tion, we monitor the performance of ImageNet linear probe

and k-nearest-neighbour classification performance, same

as DoRA. We monitor the performance drop due to sequen-

tial video training, and observe how much gain the orthog-

onal optimizer can reclaim.

Architecture. We use the same architecture as DoRA,

which consists of two ViT-S image backbones, forming

a teacher-student structure. Each ViT-S backbone con-

tains 12 transformer blocks with 384 embedding dimen-

sion. Their training scheme is inspired by DINO [6] – the

‘teacher’ module is updated from an exponential moving

average (EMA) of the student’s parameters. The DoRA

architecture also contains a multi-object tracking module,

which masks out objects based on the attention scores

among the image patches produced by the teacher module.

The teacher module has the privilege to observe the full

video frames as input, whereas the student module takes

as input either heavily cropped video frames, or partially

masked frames, and is trained to produce a representation

that is close to the teacher’s output; the student module is

trained with gradient back propagation. For evaluation, we

take the backbone of the teacher module and perform down-

stream tasks, same as DoRA.

Implementation Details. The original DoRA is trained

from scratch for a long time (10+ days on 16 GPUs). We

train DoRA with different initialization methods includ-

ing DINO weights pretrained on ImageNet, and Video-

MAE weights pretrained on Something-Something-V2

(SSV2) [16], and random initialization. By default, we train

DoRA for 1 epoch on the WTvenice with a batch size of 32

video clips distributed on 4 Nvidia A100 GPUs. For Ima-

geNet classification and kNN evaluation, we use the same

setting as DoRA’s codebase. The full implementation detail

can be found in the supplementary material.
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DoRA Discussion. Figure 3 illustrates the cosine similar-

ity between consecutive gradients (i.e. cos (gt−1, gt)) when

training DoRA on WTvenice. It is clear that in sequential

training scenario, the proposed Orthogonal-AdamW is able

to reduce the gradient correlation over time (orange vs.

blue), getting closer to the low correlation in IID sampling

scenario (green).

The experimental results of training DoRA sequentially

are shown in Table 1. When initializing with a strong

DINOImageNet checkpoint, the Orthogonal-AdamW opti-

mizer is able to prevent the training failure; whereas with

the baseline AdamW optimizer, the model parameters are

damaged by the sequential training and cannot be trained

further. With VideoMAESSV2 initialization, in a short train-

ing schedule the Orthogonal-AdamW optimizer surpasses

AdamW on the same setting (3.0 to 5.7 on kNN accu-

racy). We note that VideoMAESSV2 initialization gives

much worse results on downstream ImageNet classification

performance. This is possibly because the SSV2 dataset

does not have enough diversity for general objects. We also

experimented training DoRA from scratch, although the se-

quential training of DoRA is inefficient, the Orthogonal-

AdamW outperforms AdamW by a clear margin, and with

AdamW the model does not train.

4.2. VideoMAE on Video Datasets

For general self-supervised video representation learning,

VideoMAE [15, 42] remains a competitive method which

learns from reconstructing video patches, but it was mostly

applied on large scale video datasets with large diversity.

In this section, we generalize the proposed orthogonal op-

timizer to VideoMAE training on common video datasets

rather than a single video, but in a sequential manner.

Batching strategy for sequential videos. From one

video, loading clips in a sequential manner is straightfor-

ward. But when the dataset has multiple videos, or there are

multiple video streams available simultaneously, two dif-

ferent ways of forming mini-batches emerge. As shown in

Figure 4 (a), one can batch video clips over the time axis,

and go through videos one by one in the dataset, such as

B1 = {V1C1, V1C2, . . . }. But if the video in the dataset is

not long enough w.r.t. the batch size, the next batch might

sample clips from a different video source (not from V1). As

shown in Figure 4 (b), one can also batch video clips over

different videos, e.g. B1 = {V1C1, V2C1, . . . }, and the next

batch will sample videos from the next timestamp. In this

section, we experiment with both batching methods, named

as ‘batch-along-time’ and ‘batch-along-video’.

Datasets. We use Something-Something-V2 and

Kinetics-400 as pretraining datasets, to be compariable with

VideoMAE [42]. Something-Something-V2 (SSV2) [16]

V1-C1 V1-C2 V1-C3

V2-C1 V2-C2 V2-C3

V3-C1 V3-C2 V3-C3

Video1

Video2

Video3

... ...

batch1 batch2
...

V1-C1 V1-C2 V1-C3

V2-C1 V2-C2 V2-C3

V3-C1 V3-C2 V3-C3

time

batch1

...

...

...

Video1

Video2

Video3

... ... ...

batch2

...

...

...

(a) batching along time axis

(b) batching along videos
Figure 4. Two batch strategies for sequential video datasets, for

videos Vi divided into clips {C1, ...CN}. (a) batch along the

time axis: a more practical way of batching long video streams,

where the samples within a batch have high correlation. But when

the batch size is large, the temporal correlation between consecu-

tive batches might be low. (b) batch along videos: samples within

a batch are diverse but the temporal correlation between consec-

utive batches is high. Notice that in practice adjacent clips may

have temporal overlaps, for clarity we do not show any overlaps in

the figure.

is a fine-grained action classification dataset focusing

on object manipulation. It consists of 220k short videos

with duration between 2 to 6 seconds, which are labelled

into 174 classes emphasising the action, such as ‘moving

something from left to right’. Kinetics-400 (K400) [24]

is a large scale action classification dataset sourced from

internet videos. It contains 230k videos with duration of 10

seconds, spanning over 400 general human action classes.

For downstream evaluation, we report action classification

results on SSV2 dataset.

Task Setting. We pretrain a VideoMAE model from

scratch, on both SSV2 and K400 datasets. Differently to

common practice that ramdomly samples short video clips

from each video in the dataset and applies shuffling, we load

videos in a sequential manner with both batching strategies

illustrated in Figure 4. To evaluate the quality of learned

representation, we apply two methods: linear-probe and

attn-probe. Linear-probe means a single linear layer on top

of the frozen pre-trained visual encoder is trained for the ac-

tion classification task; Attn-probe means attentive probing
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pretraining dataset: SSV2 downstream SSV2

video processing optimizer linear-probe top1↑ attn-probe top1↑

VideoMAESSV2 [42] AdamW 23.2 55.7

shuffled video clips AdamW 19.0 54.9

shuffled video clips Orthogonal-AdamW 21.0 54.7

sequential (batch-along-time) AdamW 16.4 46.1

sequential (batch-along-time) Orthogonal-AdamW 18.4 48.0

sequential (batch-along-video) AdamW 9.5 30.3

sequential (batch-along-video) Orthogonal-AdamW 10.4 32.6

pretraining dataset: K400 downstream SSV2

video processing optimizer linear-probe top1↑ attn-probe top1↑

VideoMAEK400 [42] AdamW 19.2 52.1

shuffled video clips AdamW 20.3 46.3

shuffled video clips Orthogonal-AdamW 21.4 48.4

sequential (batch-along-time) AdamW 19.3 44.7

sequential (batch-along-time) Orthogonal-AdamW 20.5 46.5

sequential (batch-along-video) AdamW 18.7 43.5

sequential (batch-along-video) Orthogonal-AdamW 18.2 43.6

Table 2. Experiments on VideoMAE pretraining on SSV2 and K400. The experiment in gray is our downstream evaluation results with the

official checkpoint obtained from [42].

used in [4]: a single transformer block including attention

operation and MLP layers is trained on top of the frozen

pre-trained visual encoder for action classification task.

Architecture. We use a Vision Transformer [11] ViT-B as

the visual encoder, which consists of 12 transformer blocks

with an embedding dimension of 768. As part of the MAE

training, we use a visual decoder which consists of 4 trans-

former blocks, which is trained to reconstruct visual patches

from the encoder outputs, and will be discarded when eval-

uating for downstream tasks. We train the VideoMAE with

the default 0.9 drop ratio, which means 90% of the visual

patches will be discarded for the visual encoder and will be

reconstructed by the visual decoder. The entire network is

trained from scratch.

Implementation Details. The model takes 16 frames at

224 × 224 resolution as input. For sequential loading, we

first take all the frames from each video, then sample 16-

frame clips from that. In order to have a clear compari-

son for both batching methods, we sample the same num-

ber of clips from each video. For example, on SSV2 we

first take 64 uniformly-sampled frames from each video,

then take 4 clips without overlap, each clip containing 16

frames; Similarly, on K400 we first take 112 uniformly-

sampled frames from each video, then take 7 clips without

overlap, each clip containing 16 frames. With this, the mod-

els trained with both strategies observe exact same video

clips, but only different in the batch arrangement. For IID

sampling and downstream tasks, we use the default strategy

as in [42], where a 16-frame clip is randomly sampled from

each video. For our pretraining experiments, the model is

trained with a batch size of 512 clips for the same number

of iterations (260k steps), for a fair comparison. Other im-

plementation details are in the supplementary material.

Discussion. The results are shown in Table 2. First, notice

that there is no big drop when switching from IID sampling

to the ‘batch-along-time’ sequential sampling, e.g. linear

probe 19.0 → 16.4 for SSV2, 20.3 → 19.3 for K400. The

reason is the videos in SSV2 and K400 are relatively short

compared with our batch size (512 clips), the consecutive

batches actually contain clips from different video sources.

Second, it is expected that ‘batch-along-video’ gives worse

results than ‘batch-along-time’ due to larger temporal cor-

relation between batches. Third, proposed Orthogonal-

AdamW optimizer works better than the baseline AdamW

on both sequential cases, e.g. attn probe top1 +2% when

pretrained on SSV2, and +1% when pretrained on K400.

Additionally, it is interesting that the Orthogonal-AdamW

also works slightly better on shuffled clips, e.g. linear probe

top1 +2% when pretrained on SSV2 and +1% when pre-

trained on K400. Probably it is because the inter-batch cor-

relations from shuffled clips on SSV2 and K400 datasets

are significant enough, that decorrelating the gradients bring

some small gains.

4.3. Future Prediction on Video Streams

In this section, we reproduce the experiments of learning

from video streams from Carreira et al. [7], and experiment
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displacement +0.64s Ego4D: Pixel MSE↓ / PSNR↑ ScanNet: Pixel MSE↓ / PSNR↑

method (batch-along-time) pretraining optimizer in-s. out-of-s. in-s. out-of-s.

BabyLearning [7] Guided Future Prediction RMSProp 0.055 / - 0.066 / - 0.055 / - 0.061 / -

BabyLearning [7]† ViT-L-I21K-CLS RMSProp 0.059 / - 0.073 / - 0.061 / - 0.066 / -

BabyLearning (repro) ViT-L-I21K-CLS RMSProp 0.032 / 15.9 0.026 / 16.9 0.033 / 15.07 0.041 / 14.28

BabyLearning ViT-L-I21K-CLS AdamW 0.034 / 15.9 0.026 / 16.8 0.033 / 15.72 0.033 / 15.27

BabyLearning ViT-L-I21K-CLS Orthogonal-AdamW 0.031 / 16.4 0.023 / 17.6 0.032 / 15.77 0.033 / 15.28

Table 3. Performance on future frame prediction task on Ego4D-Stream and ScanNet-Stream datasets, compared with [7]. † this result are

obtained by contacting the authors. The ‘(repro)’ denotes our reproduction of the experiment from [7] with a same setting.

with our orthogonal optimizer on this sequential training

scenario.

Datasets. Following [7], we use ScanNet-Stream and

Ego4D-Stream datasets. ScanNet-Stream is a continu-

ous version of ScanNet-V2 proposed in [7], which simply

stitches all the videos together to mimic a long video and to

experiment with sequential loading. ScanNet-V2 [9] con-

tains videos of in-door room scanning scenario, with an

average duration of 1 minute, together with synchronized

depth masks, semantic segmentation masks, and camera

poses. We use the same train-val split as [7] – 1.2k original

ScanNet videos for training and 312 for validation. Sim-

ilarly Ego4D-Stream is a stitched version of Ego4D [17].

Ego4D is a large scale egocentric video dataset contains var-

ious daily activities. Each Ego4D video has an average du-

ration of 9 minutes. We use the same train-val split as [7] –

21.7k original videos for training and 2.3k for validation.

Task Setting. We follow the same task setting as [7] but

only change the optimizer. Specifically, the model takes

4 video frames as input, and is trained to predict another

4 video frames in the future, with a time displacement of

0.16s or 0.64s. We use the more challenging time displace-

ment of 0.64s. We experiment on the pixel prediction task

on both datasets, i.e. the model is trained to predict fu-

ture pixels, in a sequential way. For evaluation, we mon-

itor both the in-stream and out-of-stream performance in-

troduced in [7], in other words, we report the temporally

aggregated performance on the training video stream and

also the validation video stream. This setting can be viewed

as a test-time adaptation scenario, that a pretrained model

is expected to adapt well on one video stream (in-stream

performance), as well as keep its generalizability on other

unseen video streams (out-of-stream performance).

Architecture. We use a ViT-L backbone pretrained on

ImageNet-21K classification task as in [7]. Notice that [7]

also uses a stronger ‘Guided Future Prediction’ pretraining

checkpoint which we are not able to reproduce. The output

of the ViT-L backbone is fed to a randomly-initialized lin-

ear layer for future pixel prediction task. The entire model

including the pretrained backbone and the linear layer is

trained end-to-end.

Implementation Details. The model is trained on 24h of

training video stream at 25fps, given that at each training

step, the model takes 4 frames as input without overlap-

ping, which would be 540k training samples (24× 3600s×
25fps/4). Following [7] that accumulates gradients every

16 training steps, equivalently we train the model with a

batch size of 16, using the ‘batch-along-time’ setting. All

the experiments use a learning rate of 10−4, and a cosine-

decayed learning rate schedule with linear warm-up. We

report pixel mean squared error (MSE) and peak signal-to-

noise ratio (PSNR) for the future frame prediction task. A

lower MSE and a higher PSNR indicate better performance.

Discussion. The results are shown in Table 3. Notice

that our reproduction using the same setting as [7] (ViT-L-

I21K-CLS, with RMSProp optimzer) performs better than

the the reported results on pixel MSE (0.032 / 0.026 vs.

0.059 / 0.073 on Ego4D in/out-of-stream). The proposed

Orthogonal-AdamW optimizer further surpasses the base-

line AdamW and RMSProp optimizer on both Ego4D-

Stream and ScanNet-Stream, on both in-stream and out-of-

stream performance. The in-stream improvements observed

indicate our Orthogonal-optimizer can be used for other

test-time adaptation tasks beyond representation learning.

5. Conclusion

We propose a simple geometric modification to standard

optimizers that update with orthogonal gradients during

training, in order to decorrelate consecutive batches when

training from continuous streams of videos. We demon-

strate three training scenarios which operates on sequen-

tial videos: representation learning from a single long

video, representation learning from large-scale multi-video

datasets, and the task of future frame prediction.

Our experiments show that the orthogonal optimizer,

in particular Orthogonal-AdamW, is able to regularize the

learning process and obtain better performance than base-

line optimizers for all three tasks.
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