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Abstract

Prompt learning has attracted widespread attention in
adapting vision-language models to downstream tasks. Ex-
isting methods largely rely on optimization strategies to en-
sure the task-awareness of learnable prompts. Due to the
scarcity of task-specific data, overfitting is prone to oc-
cur. The resulting prompts often do not generalize well or
exhibit limited task-awareness. To address this issue, we
propose a novel Task-Aware Clustering (TAC) framework
for prompting vision-language models, which increases the
task-awareness of learnable prompts by introducing task-
aware pre-context. The key ingredients are as follows:
(a) generating task-aware pre-context based on task-aware
clustering that can preserve the backbone structure of a
downstream task with only a few clustering centers, (b) en-
hancing the task-awareness of learnable prompts by en-
abling them to interact with task-aware pre-context via
the well-pretrained encoders, and (c) preventing the vi-
sual task-aware pre-context from interfering the interac-
tion between patch embeddings by masked attention mech-
anism. Extensive experiments are conducted on benchmark
datasets, covering the base-to-novel, domain generaliza-
tion, and cross-dataset transfer settings. Ablation stud-
ies validate the effectiveness of key ingredients. Compar-
ative results show the superiority of our TAC over com-
petitive counterparts. The code is available at https:
//github.com/FushengHao/TAC.

1. Introduction

Large-scale visual and textual data pairs have been collected
and employed to pretrain high-capacity Vision-Language
Models (VLMs) [1, 20, 37]. Due to the alignment of the
visual and textual modalities, the resulting models have
emerged with remarkable generalization ability on vari-
ous downstream tasks such as zero-shot image classifica-
tion [37] and open-vocabulary object detection [11]. De-
spite achieving decent performance, the performance is still
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Figure 1. Motivation of our TAC. We improve the task-awareness
of learnable prompts from a new perspective, i.e., introducing task-
aware pre-context.

lower than that of the customized models [61]. Considering
the data-hungry nature of VLMs and the scarcity of task-
specific data, it is difficult to improve performance through
finetuning such models. As an alternative to finetuning,
prompting has become as a powerful paradigm for adapt-
ing VLMs to downstream tasks [4, 7, 21, 22, 29, 51].

Prompting is a technique that adapts VLMs by increas-
ing their understanding of downstream tasks. The current
methodology is to provide VLMs with task-relevant con-
text while keeping the model weights frozen. The context
is also known as prompts. Many effective prompt templates
have been engineered. For example, textual templates like
“a photo of a [class]” [37] have been hand-crafted to pro-
vide task-relevant context for the textual encoder, and vi-
sual templates like “a red circle around an [object]” [2] have
been discovered to direct the visual encoder’s attention to
the [object]. To avoid the need for large-scale trial and error
in prompt engineering, context optimization [61] has been
proposed, which treats learnable vectors as prompts and en-
sure their task-awareness by optimization. This strategy has
attracted much attention in recent years. For example, max-
imizing the ground-truth class scores [61] is proposed to
ensure the task-awareness of learnable prompts, and self-
regulating constraints [23] are further introduced to guide

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

14745



the optimization of learnable prompts for better generaliza-
tion. It is worth noting that the number of labeled images
per class used for prompt learning is not sufficient in the
setting of context optimization1. Due to the scarcity of task-
specific data, the resulting prompts are often overfitted [23]
and do not generalize well, meaning that the task-awareness
they exhibit is limited.

Instead of imposing stronger constraints [39, 45, 46], we
propose to increase the task-awareness by directly introduc-
ing task-aware pre-context; see Figure 1. Considering that
the class descriptions of a downstream task are given when
encountering the task, the class embeddings extracted by
using the well-pretrained textual encoder are good candi-
dates for task-aware pre-context. However, one big chal-
lenge arises in this practice, i.e., the number of extra em-
beddings it incurs is large and equal to that of classes in-
volved. For example, the number is 1000 for the popular
dataset ImageNet [9], which is significantly larger than the
typical values of the number of embeddings input to the tex-
tual and visual encoders, i.e., 77 and 197, respectively. This
not only incurs large additional computational overhead, but
also exceeds the maximum input limit for the textual en-
coder. These difficulties inspire us to keep only the back-
bone structure of class embeddings, which is helpful for
reducing the number of embeddings incurred significantly.
Motivated by these observations, we explore the prompting
strategy based on clustering.

In this work, we propose a novel Task-Aware Cluster-
ing (TAC) framework for prompting VLMs. The central
idea of TAC is to exploit task-aware pre-context to improve
the task-awareness of learnable prompts. To generate task-
aware pre-context, we conduct clustering on the class em-
beddings of a downstream task and perform linear trans-
formation on the clustering centers to yield task-aware pre-
context, which leads to a task-aware pre-context general-
ization module that can keep the backbone structure of the
downstream task while being lightweight. Then, the task-
aware pre-context is combined with the learnable prompts
and their interaction through the well-pretrained encoders
is exploited to reinforce the task-awareness of learnable
prompts, which leads to a task-awareness reinforcement
module. Further, a mask matrix is developed and injected
into the attention mechanism to eliminate the undesired in-
terference of visual task-aware pre-context to patch embed-
dings induced by the gap between textual and visual modal-
ities, which leads to undesired interaction masking module.
To suppress the overfitting induced by the scarcity of task-
specific data, the prompted class and visual embeddings
are encouraged to be consistent with their CLIP [37] peers,
which leads to a self-regulation module. Our TAC main-
tains simplicity in design and improves the task-awareness
of the resulting prompts, thus yielding competitive results.

1The typical value of this number is 16

In summary, our task-aware clustering framework for
prompting has the following main contributions:
• We propose to increase the task-awareness of learnable

prompts from a new perspective, i.e., introducing task-
aware pre-context.

• We propose to generate task-aware pre-context based
on task-aware clustering that can preserve the backbone
structure of a downstream task.

• We exploit the well-pretrained encoders to reinforce the
task-awareness of learnable prompts while masking out
the undesired interaction.

• We demonstrate the superiority of our TAC in the base-
to-novel, domain generalization, and cross-dataset trans-
fer settings.

2. Related Works

Vision-Language Models (VLMs) integrate the textual and
visual modalities, bridging the gap between them through
alignment. Such models are usually pretrained on large-
scale visual and textual data pairs [6, 20, 37]. They
can be broadly classified into four categories according to
their training paradigms [12]. The first category employs
contrastive-based training [19, 40], which emphasizes re-
ducing the distance between positive pairs and increasing
the distance between negative pairs. The second category
utilizes masking-based training [27, 49], which emphasizes
the reconstruction of missing patches/words by exploiting
the unmasked caption/image. The third category leverages
generative-based training [54, 55], which emphasizes the
generation of entire images or captions based on conditional
captions or images. The fourth category employs LLM-
based training [5, 63], which emphasizes the usage of large
language models to extract supervisory information. Since
the textual and visual modalities are aligned in a shared em-
bedding space, VLMs exhibits a strong ability to understand
open-vocabulary concepts, which facilitates various down-
stream tasks. Although VLMs have achieved decent per-
formance, their accuracies are still far inferior to those of
customized models [61]. Considering the data-hungry na-
ture of VLMs and the scarcity of task-specific data, fine-
tuning such models to improve their performance faces sig-
nificant challenges. As an alternative to finetuning, prompt-
ing [37, 61] has attracted much attention in adapting VLMs.
Orthogonal directions include the utilization of unlabeled
images [43] and historical test data [57].

Prompting adapts VLMs by providing them with contex-
tual information or task-aware prompts while freezing their
model weights, which has achieved good performance in
many downstream tasks [13, 17, 24, 31, 48]. Existing meth-
ods can be broadly classified into two categories according
to whether domain expertise is required. The first category
relies on hand-crafted prompt templates, which emphasizes
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the reliance on domain expertise. CLIP [37] crafts the tex-
tual template, i.e., “a photo of a [class]”. CirclePrompt [2]
engineers the visual template, i.e., “a red circle around an
[object]”. LaViP [26] grounds visual prompt with language.
ArGue [45] crafts attribute-guided prompts with the help
of large language models. The second category relies on
prompt learning [61], which emphasizes the introduction of
learnable prompts and the optimization of these prompts to
ensure their task-awareness. PromptSRC [23] guides the
optimization of learnable prompts with self-regulating con-
straints. GalLoP [28] learns global-local prompts to capture
multi-scale visual information. CoPrompt [39] improves
the generation ability of learnable prompts by encouraging
the prediction consistency between the pretrained and train-
able models. TCP [52] introduces class-aware prompts that
are produced by performing textual knowledge embedding
on class embeddings. In this work, we increase the task-
awareness by introducing task-aware pre-context, which is
different from the current practice that imposes extra con-
straints.

Clustering is a technique that can group similar data points
into clusters or groups, in which K-Means is a classic ex-
ample. Integrating clustering may improve the capabilities
of deep models in capturing backbone structures, and their
combination has attracted a lot of attention. DivClust [34]
introduces a diversity controlling loss to ensure the desired
degree of diversity for the produced multiple clusters. LCP-
GAN [56] associates intra-class clusters with learnable vi-
sual concepts to capture the class-wise and intra-class in-
formation for image synthesis. ZeroShotULD [41] clusters
random pixel locations with nearest neighbor searching for
unsupervised landmarks discovery. SPC [18] replaces the
deterministic prediction with semantic clustering for do-
main generalized semantic segmentation. MoDE [33] de-
cides clusters for data experts by a two-step clustering on
captions and uses fine-grained clusters to coarsely represent
data experts. LTE [53] clusters multiple observed motions
by establishing the mapping from trajectories to trajectory
embeddings. In this work, we perform clustering to pre-
serve the backbone structure of a downstream task repre-
sented by class embeddings.

3. Method

In this section, we begin by reviewing the preliminaries and
then detail our Task-Aware Clustering (TAC) framework for
prompting vision-language models.

3.1. Preliminaries
CLIP. CLIP [37] includes a textual encoder and a visual
encoder, and is pretrained on around 400 million visual and
textual data pairs with the contrastive-based training strat-
egy. With the hand-crafted prompt templates like “a photo

of a [class]”, it emerges strong zero-shot prediction capa-
bilities. Although CLIP has achieved good performance in
the zero-shot image recognition task, its accuracies are still
lower than those of the customized models [61]. Due to the
data-hungry nature of CLIP and the scarcity of task-specific
data, finetuning CLIP to improve its performance on down-
stream tasks is particularly challenging. Considering that
prompt engineering relies on domain expertise and needs
large-scale trial and error, prompt learning [61] has been
proposed, in which learnable vectors are treated as prompts
and their task-awareness is ensured through optimization.
For ease of comparison with existing prompt learning ap-
proaches, we follow the current practice and choose CLIP
as the foundation model.
Prompt learning. CoOp [61] is a typical approach for
adapting CLIP in the context of prompt learning. We take
a C-class image classification task as an example to show
how learnable prompts are optimized in CoOp. First, a set
of learnable vectors with a quantity of M t is introduced and
treated as textual prompts, i.e., {pt

m}Mt

m=1. Second, these
prompts are combined with the word embeddings that de-
scribe the task, which leads to a learnable version of task de-
scriptions, i.e., {pt

1, · · · ,pt
Mt , ci}Ci=1, where ci is the word

embedding(s) of the i-th class. Third, the learnable task
descriptions are fed into the textual encoder to yield their
embeddings {wCoOp

c }Cc=1, while an image x is fed into the
visual encoder to generate its embedding f . Fourth, the
probability of x that belongs to the c-th class can be calcu-
lated as:

pCoOp(c|x) = exp(cos(wCoOp
c ,f)/τ)∑C

i=1 exp(cos(w
CoOp
i ,f)/τ)

, (1)

where τ is the temperature and cos(·, ·) denotes the cosine
similarity. Finally, the task-awareness of learnable textual
prompts is ensured by minimizing the cross-entropy loss:

LCE
CoOp = −

C∑
c=1

I(c = y) log pCoOp(c|x), (2)

where y is the ground-truth label of x and I(·) denotes the
indicator function. It is worth noting that (a) only the learn-
able prompts need to be optimized and (b) the quantity of
labeled images that can be used in each class is insufficient
in the setting of prompt learning, where the typical value is
16.

Afterwards, additional constraints [23, 32, 39, 59] have
been imposed to improve the task-awareness of learnable
prompts. Different from the current practice, we increase
the task-awareness from a new perspective, i.e., introducing
task-aware pre-context.

3.2. Task-aware Clustering for Prompting
The pipeline of our TAC is shown in Figure 2 and the key
ingredients are detailed below.
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Figure 2. Pipeline of our TAC. First, the textual and visual task-aware pre-contexts are generated based on the backbone structure of
a downstream task. Second, the task-aware pre-context is combined with the learnable prompts and their interaction through the well-
pretrained encoders is exploited to reinforce the task-awareness of learnable prompts. Third, the undesired interaction is masked out with
a customized mask matrix. Further, the textual and visual consistencies are imposed to alleviate the overfitting issue.

Task-aware pre-context generation. The class embed-
dings extracted by using the textual encoder of CLIP are
task-aware and good candidates for the desired pre-context.
Considering that the number of such embeddings is equal
to that of classes involved and this number is large, apply-
ing this strategy to practice is challenging. The first chal-
lenge is that the number of extra input embeddings incurred
exceeds the maximum input limit for the textual encoder,
which would make the textual encoder unusable. The sec-
ond challenge is that the extra computational overhead in-
curred is very high due to the large number of additional
embeddings input into the visual encoder.

We address these challenges by yielding textual and vi-
sual task-aware pre-contexts based on clustering that can
preserve the backbone structure of class embeddings. A sig-
nificant additional benefit of this practice is that the number
of extra embeddings incurred can be significantly reduced.
Specifically, let {wCLIP

c }Cc=1 denote the class embeddings
extracted with the textual encoder of CLIP. Then, K-Means
is conducted on {wCLIP

c }Cc=1, which yields a set of cluster-
ing centers with a quantity of K, i.e., {µi}Ki=1. Further, the

textual and visual task-aware pre-contexts are generated as:

µt
i = W tµi, (3)

µv
i = W vµi, (4)

where W t and W v are the textual and visual linear trans-
formations. It is worth noting that (a) the dimensions of µt

i

and µv
i are set to be the internal dimensions of the textual

and visual encoders, correspondingly, and (b) since only the
weights of linear transformations needs to be optimized, our
task-aware pre-context generation module is lightweight.
Task-awareness reinforcement. After obtaining the tex-
tual and visual task-aware pre-contexts, the task-awareness
of learnable prompts is reinforced by enabling them to in-
teract with the corresponding pre-contexts via the well-
pretrained textual and visual encoders. Specifically, let L
denote the quantity of transformer blocks contained in the
visual/textual encoder. We construct the input embeddings
to the l-th transformer block of the textual encoder as:

{tsosl ,µt
1, · · · ,µt

K ,pt
l1, · · · ,pt

lMt , cli, t
eos
l }. (5)
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Here, l = 1, · · · , L, tsosl is the start token input to the l-
th transformer block, teosl is the end token input to the l-th
transformer block, {pt

li}M
t

i=1 is the set of learnable textual
prompts input to the l-th transformer block with a quantity
of M t, and cli is the word embedding(s) input to the l-th
transformer block. It is worth noting that (a) tsosl , teosl , and
cli are the outputs of the previous transformer block and (b)
{pt

li}M
t

i=1 and {µt
i}Ki=1 are not the outputs of the previous

transformer block; see Figure 2.
Similarly, we construct the input embeddings to the l-th

transformer block of the visual encoder as:

{eclsl ,xp
l1, · · · ,x

p
lM ,µv

1, · · · ,µv
K ,pv

l1, · · · ,pv
lMv}. (6)

Here, l = 1, · · · , L, eclsl is the class token input to the l-th
transformer block, {xp

lm}Mm=1 is the set of patch embed-
dings input to the l-th transformer block with a quantity of
M , and {pv

li}M
v

i=1 is the set of learnable visual prompts in-
put to the l-th transformer block with a quantity of Mv .
It is worth noting that (a) eclsl and {xp

lm}Mm=1 are the out-
puts of the previous transformer block and (b) {pv

li}M
v

i=1 and
{µv

i }Ki=1 are not the outputs of the previous transformer
block; see Figure 2.
Undesired interaction masking. There is a modal gap be-
tween patch embeddings and visual task-aware pre-context.
Allowing patch embeddings to interact with visual task-
aware pre-context may weaken the discriminative ability of
patch embeddings. To avoid this phenomenon, the informa-
tion flow from visual task-aware pre-context to patch em-
beddings is prohibited, which is achieved by exploiting the
masked attention mechanism: A= softmax(QKT +M).
Here, Q and K denote the query and key matrices, with the
first dimension specifying the quantity of input embeddings,
i.e., Nv = 1 + M + K + Mv . They are the linear trans-
formations of input embeddings. A ∈ RNv×Nv denotes the
attention matrix. M ∈ RNv×Nv is the customized mask
matrix, which is defined as:

Mij=

{
−∞ if 1<i≤1+M and1+M<j≤1+M+K
0 otherwise .

(7)
Here, Mij = −∞ is equal to Aij = 0, meaning that the
i-th input embedding does not interact with the j-th peer. In
effect, with M, patch embeddings are made to not interact
with visual task-aware pre-context. It is worth noting that
(a) M is injected into the visual encoder in a layer-wise
manner; see Figure 2, and (b) the learnable prompts acts
as a glue between visual task-aware pre-context and patch
embeddings.
Self-regulation. Due to the scarcity of task-specific data,
overfitting can easily occur. We address this issue by ex-
ploiting the strong generation ability exhibited by the well-
pretrained encoders, i.e., encouraging the prompted class
and visual embeddings to be consistent with their CLIP

peers. Specifically, let {wTAC
c }Cc=1 denote the class embed-

dings extracted by using our TAC. The textual consistency
is imposed by:

Lt =

C∑
i=1

|wTAC
c −wCLIP

c |. (8)

Data augmentations are applied Nd times on x. Then,
the augmented images are fed into our visual encoder to
extract their embeddings, i.e., {fTAC

i }Nd

i=1. Correspondingly,
the visual consistency is imposed by:

Lv =

Nd∑
i=1

|fTAC
i − fCLIP|. (9)

Here, fCLIP denotes the embedding extracted by using the
visual encoder of CLIP on x.
Overall loss. The probability of fTAC

i that belongs to the
c-th class can be calculated as:

pTAC(c|fTAC
i ) =

exp(cos(wTAC
c ,fTAC

i )/τ)∑C
j=1 exp(cos(w

TAC
j ,fTAC

i )/τ)
. (10)

Then, the following cross-entropy loss can be constructed:

LCE
TAC = −

Nd∑
i=1

C∑
c=1

I(c = y) log pTAC(c|fTAC
i ). (11)

After combining self-regulation, the overall loss becomes:

LOverall = LCE
TAC + λLt + βLv. (12)

Here, λ and β are hyper-parameters that play a balancing
role.
Complexity. The discussion is three-fold. First, the
clustering on {wCLIP

c }Cc=1 and the extraction of original
class and visual embeddings are pre-computed and cached.
Thus, the extra computational overhead incurred by them
is marginal. Second, the textual task-aware pre-context
does not incur extra computational overhead since the tex-
tual encoder of CLIP only accepts a sufficiently large fixed-
number of input embeddings. Third, with the visual task-
aware pre-context, the quantity of embeddings input to the
visual encoder only increase by a very small mount, i.e.,
2.5%. Thus, the extra computational overhead incurred is
very limited. In summary, the extra computational overhead
incurred by our TAC is marginal.

4. Experiments
4.1. Experiment setup
Evaluation and datasets. The evaluation is conducted
in the base-to-novel, domain generalization, and cross-
dataset transfer settings, and the average accuracy of three
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Table 1. Comparative results in the base-to-novel setting. Bold accuracies are the highest. HM denotes the harmonic mean of the base and
novel accuracies.

(a) Average
Base Novel HM

CLIP [37] 69.34 74.22 71.70
CoOp [61] 82.69 63.22 71.66
Co-CoOp [60] 80.47 71.69 75.83
ProGrad [62] 82.48 70.75 76.16
RPO [29] 81.13 75.00 77.78
MetaPrompt [58] 83.38 76.09 79.57
KAPT [21] 78.41 70.52 74.26
KgCoOp [51] 80.73 73.60 77.00
MaPLe [22] 82.28 75.14 78.55
PromptSRC [23] 84.26 76.10 79.97
TCP [52] 84.13 75.36 79.51
CoPrompt [39] 84.00 77.23 80.48
ArGue [45] 83.69 78.07 80.78
TAC (Ours) 85.24 77.60 81.24

(b) ImageNet
Base Novel HM

CLIP [37] 72.43 68.14 70.22
CoOp [61] 76.47 67.88 71.92
Co-CoOp [60] 75.98 70.43 73.10
ProGrad [62] 77.02 66.66 71.46
RPO [29] 76.60 71.57 74.00
MetaPrompt [58] 77.39 71.06 74.09
KAPT [21] 71.10 65.20 68.02
KgCoOp [51] 75.83 69.96 72.78
MaPLe [22] 76.66 70.54 73.47
PromptSRC [23] 77.60 70.73 74.01
TCP [52] 77.27 69.87 73.38
CoPrompt [39] 77.67 71.27 74.33
ArGue [45] 76.92 72.06 74.41
TAC (Ours) 78.57 71.03 74.61

(c) Caltech101
Base Novel HM

CLIP [37] 96.84 94.00 95.40
CoOp [61] 98.00 89.81 93.73
Co-CoOp [60] 97.96 93.81 95.84
ProGrad [62] 98.02 93.89 95.91
RPO [29] 97.97 94.37 96.03
MetaPrompt [58] 98.28 94.58 96.39
KAPT [21] 97.10 93.53 95.28
KgCoOp [51] 97.72 94.39 96.03
MaPLe [22] 97.74 94.36 96.02
PromptSRC [23] 98.10 94.03 96.02
TCP [52] 98.23 94.67 96.42
CoPrompt [39] 98.27 94.90 96.55
ArGue [45] 98.43 95.20 96.79
TAC (Ours) 98.57 95.27 96.89

(d) OxfordPets
Base Novel HM

CLIP [37] 91.17 97.26 94.12
CoOp [61] 93.67 95.29 94.47
Co-CoOp [60] 95.20 97.69 96.43
ProGrad [62] 95.07 97.63 96.33
RPO [29] 94.63 97.50 96.05
MetaPrompt [58] 95.71 96.98 96.34
KAPT [21] 93.13 96.53 94.80
KgCoOp [51] 94.65 97.76 96.18
MaPLe [22] 95.43 97.76 96.58
PromptSRC [23] 95.33 97.30 96.30
TCP [52] 94.67 97.20 95.92
CoPrompt [39] 95.67 98.10 96.87
ArGue [45] 95.36 97.95 96.64
TAC (Ours) 95.93 98.17 97.04

(e) StanfordCars
Base Novel HM

CLIP [37] 63.37 74.89 68.65
CoOp [61] 78.12 60.40 68.13
Co-CoOp [60] 70.49 73.59 72.01
ProGrad [62] 77.68 68.63 72.88
RPO [29] 73.87 75.53 74.69
MetaPrompt [58] 75.43 74.43 74.93
KAPT [21] 69.47 66.20 67.79
KgCoOp [51] 71.76 75.04 73.36
MaPLe [22] 72.94 74.00 73.47
PromptSRC [23] 78.27 74.97 76.58
TCP [52] 80.80 74.13 77.32
CoPrompt [39] 76.97 74.40 75.66
ArGue [45] 75.64 73.38 74.49
TAC (Ours) 81.63 74.17 77.72

(f) Flowers102
Base Novel HM

CLIP [37] 72.08 77.80 74.83
CoOp [61] 97.60 59.67 74.06
Co-CoOp [60] 94.87 71.75 81.71
ProGrad [62] 95.54 71.87 82.03
RPO [29] 94.13 76.67 84.50
MetaPrompt [58] 97.53 74.54 84.50
KAPT [21] 95.00 71.20 81.40
KgCoOp [51] 95.00 74.73 83.65
MaPLe [22] 95.92 72.46 82.56
PromptSRC [23] 98.07 76.50 85.95
TCP [52] 97.73 75.57 85.23
CoPrompt [39] 97.27 76.60 85.71
ArGue [45] 98.34 75.41 85.36
TAC (Ours) 97.97 76.87 86.15

(g) Food101
Base Novel HM

CLIP [37] 90.10 91.22 90.66
CoOp [61] 88.33 82.26 85.19
Co-CoOp [60] 90.70 91.29 90.99
ProGrad [62] 90.37 89.59 89.98
RPO [29] 90.33 90.83 90.58
MetaPrompt [58] 90.76 91.77 91.26
KAPT [21] 86.13 87.06 86.59
KgCoOp [51] 90.50 91.70 91.09
MaPLe [22] 90.71 92.05 91.38
PromptSRC [23] 90.67 91.53 91.10
TCP [52] 90.57 91.37 90.97
CoPrompt [39] 90.73 92.07 91.40
ArGue [45] 92.33 91.96 92.14
TAC (Ours) 90.87 91.87 91.37

(h) FGVCAircraft
Base Novel HM

CLIP [37] 27.19 36.29 31.09
CoOp [61] 40.44 22.30 28.75
Co-CoOp [60] 33.41 23.71 27.74
ProGrad [62] 40.54 27.57 32.82
RPO [29] 37.33 34.20 35.70
MetaPrompt [58] 39.38 37.59 38.46
KAPT [21] 29.67 28.73 29.19
KgCoOp [51] 36.21 33.55 34.83
MaPLe [22] 37.44 35.61 36.50
PromptSRC [23] 42.73 37.87 40.15
TCP [52] 41.97 34.43 37.83
CoPrompt [39] 40.20 39.33 39.76
ArGue [45] 40.46 38.03 39.21
TAC (Ours) 44.60 37.70 40.86

(i) SUN397
Base Novel HM

CLIP [37] 69.36 75.35 72.23
CoOp [61] 80.60 65.89 72.51
Co-CoOp [60] 79.74 76.86 78.27
ProGrad [62] 81.26 74.17 77.55
RPO [29] 80.60 77.80 79.18
MetaPrompt [58] 82.10 79.01 80.53
KAPT [21] 79.40 74.33 76.78
KgCoOp [51] 80.29 76.53 78.36
MaPLe [22] 80.82 78.70 79.75
PromptSRC [23] 82.67 78.47 80.52
TCP [52] 82.63 78.20 80.35
CoPrompt [39] 82.63 80.03 81.31
ArGue [45] 81.52 80.74 81.13
TAC (Ours) 83.70 80.03 81.82

(j) DTD
Base Novel HM

CLIP [37] 53.24 59.90 56.37
CoOp [61] 79.44 41.18 54.24
Co-CoOp [60] 77.01 56.00 64.85
ProGrad [62] 77.35 52.35 62.45
RPO [29] 76.70 62.13 68.61
MetaPrompt [58] 82.52 60.10 69.55
KAPT [21] 75.97 58.30 65.97
KgCoOp [51] 77.55 54.99 64.35
MaPLe [22] 80.36 59.18 68.16
PromptSRC [23] 83.37 62.97 71.75
TCP [52] 82.77 58.07 68.23
CoPrompt [39] 83.13 64.73 72.79
ArGue [45] 81.60 66.55 73.31
TAC (Ours) 83.37 64.27 72.58

(k) EuroSAT
Base Novel HM

CLIP [37] 56.48 64.05 60.03
CoOp [61] 92.19 54.74 68.69
Co-CoOp [60] 87.49 60.04 71.21
ProGrad [62] 90.11 60.89 72.67
RPO [29] 86.63 68.97 76.79
MetaPrompt [58] 93.37 78.34 85.20
KAPT [21] 84.80 67.57 75.21
KgCoOp [51] 85.64 64.34 73.48
MaPLe [22] 94.07 73.23 82.35
PromptSRC [23] 92.90 73.90 82.32
TCP [52] 91.63 74.73 82.32
CoPrompt [39] 94.60 78.57 85.84
ArGue [45] 94.43 88.24 91.23
TAC (Ours) 94.37 82.60 88.10

(l) UCF101
Base Novel HM

CLIP [37] 70.53 77.50 73.85
CoOp [61] 84.69 56.05 67.46
Co-CoOp [60] 82.33 73.45 77.64
ProGrad [62] 84.33 74.94 79.35
RPO [29] 83.67 75.43 79.34
MetaPrompt [58] 84.70 78.56 81.51
KAPT [21] 80.83 67.10 73.33
KgCoOp [51] 82.89 76.67 79.65
MaPLe [22] 83.00 78.66 80.77
PromptSRC [23] 87.10 78.80 82.74
TCP [52] 87.13 80.77 83.83
CoPrompt [39] 86.90 79.57 83.07
ArGue [45] 85.56 79.29 82.31
TAC (Ours) 88.07 81.67 84.75

Table 2. Comparative results in the cross-dataset transfer setting. Bold accuracies are the highest. Optimization is conducted on ImageNet
and evaluation is performed on other datasets.

Source Target

ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average

CoOp [61] 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
Co-CoOp [60] 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
MaPLe [22] 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
Bayesian Prompt [10] 70.93 93.67 90.63 65.00 70.90 86.30 24.93 67.47 46.10 45.87 68.67 65.95
PromptSRC [23] 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81
TCP [52] 71.40 93.97 91.25 64.69 71.21 86.69 23.45 67.15 44.35 51.45 68.73 66.29
CoPrompt [39] 70.80 94.50 90.73 65.67 72.30 86.43 24.00 67.57 47.07 51.90 69.73 67.00

TAC (Ours) 72.77 94.53 90.67 65.30 72.20 85.83 23.53 67.63 47.57 48.07 70.00 66.53

runs is reported as the final performance. The datasets
involved are as follows: ImageNet [9], Caltech101 [30],
OxfordPets [36], StanfordCars [25], Flowers102 [35],
Food101 [3], FGVCAircraft [44], SUN397 [50], DTD [8],
EuroSAT [14], UCF101 [42], ImageNet-A [16], ImageNet-
R [15], ImageNet-Sketch [47], and ImageNetV2 [38].
Implementation details. Our TAC is built on top of

CoOp [61] and PromptSRC [23]. The ViT-B/16 based
CLIP [37] is used as the foundation model. The optimizer
is SGD, with a learning rate of 2.5× 10−3, a weight decay
of 5 × 10−4, and a momentum of 0.9. The cosine anneal-
ing is used for learning rate scheduling. The random flip
and resized crop are used for data augmentation. The batch
size is 8. K = 5, M t = 4, Mv = 4, Nd = 4, λ = 20,
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Table 3. Comparative results in the domain generalization setting. Bold accuracies are the highest. Optimization is conducted on ImageNet
and evaluation is performed on datasets with domain shifts.

Source Target

ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R Average

CLIP [37] 66.73 60.83 46.15 47.77 73.96 57.17
RPO [29] 71.67 65.13 49.27 50.13 76.57 60.27
LaViP [26] 65.95 61.60 47.23 48.91 83.93 60.41
TCP [52] 71.20 64.60 49.50 51.20 76.73 60.51
CoOp [61] 71.51 64.20 47.99 49.71 75.21 59.28
Co-CoOp [60] 71.02 64.07 48.75 50.63 76.18 59.90
ProGrad [62] 72.24 64.73 47.61 49.39 74.58 59.07
KgCoOp [51] 71.20 64.10 48.97 50.69 76.70 60.11
MaPLe [22] 70.72 64.07 49.15 50.90 76.98 60.26
Bayesian Prompt [10] 70.93 64.23 49.20 51.33 77.00 60.44
PromptSRC [23] 71.27 64.35 49.55 50.90 77.80 60.65
CoPrompt [39] 70.80 64.25 49.43 50.50 77.51 60.42
ArGue [45] 71.84 65.02 49.25 51.47 76.96 60.67

TAC (Ours) 72.77 65.97 50.30 51.73 78.50 61.63

Table 4. Ablation on the textual and visual task-aware pre-
contexts. HM denotes the harmonic mean of the base and novel
accuracies.

Pre-context Base Novel HM

None 84.70 75.55 79.86
Textual 84.57 76.48 80.32
Visual 84.67 76.06 80.13
Textual & visual 85.24 77.60 81.24

β=25, and τ =0.07. In the base-to-novel setting, the num-
ber of epochs is 20 and the scale of random resized crop is
(0.4, 1.0). In the domain generalization and cross-dataset
transfer settings, the number of epochs is 5 and the scale
of random resized crop is (0.8, 1.0). The learning rate is
warmed up for one epoch with a rate of 1.0× 10−5.

4.2. Comparative results

Base-to-novel. In this setting, optimization is conducted
on the base set and evaluation is performed on the base and
novel sets. Table 1 shows the comparative results. Our TAC
achieves the best average base accuracy, the second-best av-
erage novel accuracy, and the best harmonic mean. These
results demonstrate the generalizability of our task-aware
clustering prompting framework.

Cross-dataset transfer. In this setting, optimization is
conducted on ImageNet and evaluation is performed on
other datasets. Table 2 shows the comparative results.
Our TAC achieves the best accuracy on ImageNet. Also,
our TAC yields the second-best average accuracy on other
datasets, which is slightly worse than CoPrompt [39]. It
is worth noting that our TAC beats CoPrompt in the base-
to-novel and domain generalization settings. These results
demonstrate the transferability of our task-aware clustering
prompting framework.
Domain generalization. In this setting, optimization
is conducted on ImageNet and evaluation is performed on

Table 5. Ablation on the number of clustering centers. HM de-
notes the harmonic mean of the base and novel accuracies.

Number of clustering centers Base Novel HM

K = 0 84.70 75.55 79.86
K = 1 84.95 77.39 80.99
K = 2 84.94 77.41 81.00
K = 3 85.30 77.32 81.14
K = 4 85.40 77.34 81.17
K = 5 85.24 77.60 81.24

datasets with domain shifts. Table 3 shows the comparative
results. Our TAC achieves the best accuracy on ImageNet
and the best average accuracy on the datasets with domain
shifts. These results demonstrate the domain generalizabil-
ity of our task-aware clustering prompting framework.

4.3. Ablation studies
Ablation studies are conducted in the base-to-novel setting.
The average base accuracy, the average novel accuracy, and
their harmonic mean are reported. More is shown in the
appendix.
Task-aware pre-context. We ablate the effect of the task-
aware pre-context by removing the textual pre-context, the
visual pre-context, or both. It is worth noting that the other
ingredients are kept in this experiment. Table 4 shows the
results. Our observations are as follows: (a) both the tex-
tual and visual task-aware pre-contexts can improve the har-
monic mean and (b) their combination achieves the greatest
performance gains. These observations demonstrate the ef-
fectiveness of introducing task-aware pre-context.
Number of clustering centers. We ablate the effect of
the number of clustering centers by setting K to different
values. It is worth noting that (a) the maximum value of
K is 5 since the dataset EuroSAT [14] only has 5 classes
and (b) the other ingredients are kept in this experiment.
Table 5 shows the results. Our observations are as fol-
lows: (a) K = 0 means that the task-aware pre-context is
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Table 6. Ablation on the self-regulation. HM denotes the harmonic
mean of the base and novel accuracies.

Self-regulation Base Novel HM

LCE
TAC 85.29 74.18 79.34

LCE
TAC + λLt 83.52 73.73 78.32

LCE
TAC + βLv 84.48 73.89 78.83

LCE
TAC + λLt + βLv 85.24 77.60 81.24

Table 7. Ablation on the undesired interaction masking. HM de-
notes the harmonic mean of the base and novel accuracies.

Undesired interaction masking Base Novel HM

✗ 85.00 77.05 80.83
✓ 85.24 77.60 81.24

not exploited, (b) the introduction of task-aware pre-context
can improve performance by a noticeable margin, and (c)
the biggest performance gains are achieved when K = 5.
These observations demonstrate the effectiveness of intro-
ducing task-aware pre-context and lead us to set the default
value of K to 5.
Self-regulation. We ablate the effect of the self-regulation
by removing the textual consistency, the visual consistency,
or both. It is worth noting that the other ingredients are kept
in this experiment. Table 6 shows the results. Our observa-
tions are as follows: (a) without imposing self-regulation,
the accuracy on the novel set is very poor, which also leads
to a low harmonic mean, (b) imposing the textual consis-
tency or visual consistency alone brings a noticeable perfor-
mance drop, and (c) imposing the two consistencies simul-
taneously leads to a significant performance gain. The rea-
son for these observations might be that the alignment be-
tween textual and visual modalities is well preserved by im-
posing the two consistencies, while it is difficult to achieve
this with only one consistency. These observations demon-
strate the necessity of self-regulation.
Undesired interaction masking. We ablate the effect
of the undesired interaction masking by removing it. It is
worth noting that (a) the mask matrix is inserted into the vi-
sual encoder in a layer-wise manner and (b) the other ingre-
dients are kept in this experiment. Table 7 shows the results.
With the undesired interaction masking, the harmonic mean
is improved by a margin of 0.41%. Considering the perfor-
mance gain is achieved in a experiment setting involving 11
datasets, this observation demonstrates the effectiveness of
undesired interaction masking.
Complexity. We evaluate the complexity by comparing
our TAC with the competitive counterparts. It is worth not-
ing that (a) PromptSRC [23] inserts learnable prompts into
the textual and visual encoders in a layer-wise manner and
(b) our TAC inserts the learnable prompts, along with the
task-aware pre-contexts, into the textual and visual encoders
in the same way. Table 8 shows the results. Since the task-
aware pre-context generation is lightweight and the quan-

Table 8. Ablation on the complexity. Evaluation is performed on
a RTX 3090 GPU.

Method Optimization (ms/image) Inference (ms/image)

CLIP [37] - 1.7
CoOp [61] 68.1 3.0
CoCoOp [60] 269.0 126.6
MaPLe [22] 70.2 1.7
PromptSRC [23] 71.5 3.8

TAC (Ours) 73.2 4.1

Table 9. Ablation on the number of learnable prompts. HM de-
notes the harmonic mean of the base and novel accuracies.

Number of learnable prompts Base Novel HM

1 84.15 75.63 79.66
2 84.67 76.61 80.44
4 85.24 77.60 81.24
6 85.02 76.85 80.73

tity of additional input embeddings incurred by the task-
aware pre-context is small, the extra computational over-
head incurred by our TAC is marginal compared to Prompt-
SRC [23]. Moreover, it is worth noting our TAC outper-
forms PromptSRC with noticeable performance gains in all
experiment settings.
Number of learnable prompts. We ablate the effect of
the number of learnable prompts by setting M t and Mv to
different values. It is worth noting that (a) M t and Mv are
set to be equal by default and (b) the other ingredients are
kept in this experiment. Table 9 shows the results. Our
observations are as follows: (a) increasing the number of
learnable prompts can improve the harmonic mean and (b)
the greatest performance gain is achieved when M t = 4
and Mv = 4. These observations lead us to set the default
value of M t and Mv to 4.

5. Conclusion
Prompt learning has emerged as a powerful tool for adapt-
ing vision-language models. However, due to the scarcity of
task-specific data, the resulting prompts often exhibit lim-
ited task-awareness. In this work, we propose to increase
the task-awareness by introducing task-aware pre-context,
which results in a novel task-aware clustering framework
for prompting. The key ingredients are three-fold. First, the
backbone structure of a downstream task is preserved by
task-aware clustering, based on which the task-aware pre-
context is generated. Second, the task-awareness of learn-
able prompts is enhanced by allowing them to interact with
task-aware pre-context via the well-pretrained encoders. Fi-
nally, the undesired interference of visual task-aware pre-
context to patch embeddings is eliminated by masked at-
tention mechanism. Extensive ablation studies confirm the
effectiveness of key ingredients. Comparative results in
the base-to-novel, domain generalization, and cross-dataset
transfer settings show the advantage of our task-aware clus-
tering for prompt learning.
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