
Category-Agnostic Neural Object Rigging

Guangzhao He1,∗,† Chen Geng 1,∗ Shangzhe Wu1,2 Jiajun Wu1

1Stanford University 2University of Cambridge

Encoder

Quadruped

Decoder

Blobs Edited Blobs Edited Result

Encoder Decoder

Fish Blobs Edited Blobs Edited Result

Edit Blobs

Edit Blobs

Encoder Decoder

Glasses Blobs Edited Blobs Edited Result

Edit Blobs

Figure 1. We introduce Category-Agnostic Neural Object Rigging (CANOR), a novel approach that learns to discover a low-dimensional
pose space for dynamic objects. The representation is learned from animated 3D sequences of a deformable object category in an unsu-
pervised fashion without relying on any category-specific expert knowledge. By decomposing each object’s geometry into a sparse set
of feature-embedded blobs, CANOR enables intuitive manipulation of object poses by editing the blobs. This representation captures
interpretable motion structures for a diverse range of dynamic object categories.

Abstract

The motion of deformable 4D objects lies in a low-
dimensional manifold. To better capture the low dimension-
ality and enable better controllability, traditional methods
have devised several heuristic-based methods, i.e., rigging,
for manipulating dynamic objects in an intuitive fashion.
However, such representations are not scalable due to the
need for expert knowledge of specific categories. Instead,
we study the automatic exploration of such low-dimensional
structures in a purely data-driven manner. Specifically, we
design a novel representation that encodes deformable 4D
objects into a sparse set of spatially grounded blobs and an
instance-aware feature volume to disentangle the pose and
instance information of the 3D shape. With such a represen-
tation, we can manipulate the pose of 3D objects intuitively
by modifying the parameters of the blobs, while preserv-

∗Equal contribution. †Work was done when G. He was a visiting stu-
dent at Stanford University. G. He is currently with Zhejiang University.

ing rich instance-specific information. We evaluate the pro-
posed method on a variety of object categories and demon-
strate the effectiveness of the proposed framework. Project
page: https://guangzhaohe.com/canor.

1. Introduction
We live in a dynamic 4D world populated by diverse, ever-
moving beings — not just humans, but also pets, wild ani-
mals, and other dynamic entities that can move and deform.
Modeling and understanding the structure of motion across
different categories of deformable objects has been a long-
standing challenge in Computer Graphics and 3D Computer
Vision, with applications in character animation, 4D recon-
struction, and AR/VR.

One fundamental property of the motion structure shared
by almost all dynamic objects is their inherent low-
dimensionality, often captured using various rigging rep-
resentations [31]. Historically, extensive efforts have been

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

22078



dedicated to crafting such representations with domain-
specific expertise. For commonly-studied categories, such
as humans, domain-specific skeleton structures and skin-
ning methods [5, 19] have been developed. These structured
representations significantly facilitate downstream tasks by
offering an interpretable motion structure and reliable cor-
respondences across different dynamic states.

While domain-specific representations have been suc-
cessful for certain dynamic object categories, their develop-
ment requires extensive expertise, making it impractical to
design such structures for every categories of interest. Re-
cently, several methods have attempted to discover similar
structures for other dynamic categories without extensive
manual intervention [45, 49, 51]. However, most of these
approaches still rely on some level of category-specific prior
knowledge, which limits their applicability to generic cate-
gories.

In this paper, we study the automatic exploration of rig-
ging representations for any dynamic object category, using
minimal 3D data, and without any category-specific prior
knowledge. Given several animated 3D shape sequences of
instances from a certain deformable object category, such
as bears, we propose an algorithm that extracts the shared
pose space within the category. This exploration process
is entirely category-agnostic, assuming no prior knowledge
of the category, correspondences, or other instance-specific
information.

To achieve this, we exploit the key property of rigging
representations: their low dimensionality. Drawing inspira-
tion from traditional skeleton-based motion modeling, we
introduce a sparse set of spatial-grounded blobs to repre-
sent the dynamic poses of moving instances. Given the 3D
shape of an instance in a specific pose, we train an encoder
to decompose it into dynamic blobs encoding pose informa-
tion along with instance-aware features capturing instance-
specific details. These disentangled bottleneck representa-
tions can be further decoded back into the 3D shape.

Once this representation is obtained, we can manipulate
the deformable objects in an intuitive manner, where the
user can directly drag the extracted blobs to modify ob-
ject’s pose. Moreover, the learned representation reveals
a low-dimensional and intuitive structure underlying the
high-dimensional deformation space for dynamic objects.
To demonstrate these, we apply our method to several di-
verse object categories that are rarely addressed by prior
work, and show significant improvements over state-of-the-
art baselines.

In summary, our contributions are:

• We explore a novel task of exploring a category-specific
rigging representation in a category-agnostic manner.

• We develop a representation that automatically encodes
the 3D shape information into spatially grounded blobs
and instance-aware features.

• We evaluate the proposed pipeline on several different
deformable object categories and demonstrate significant
improvements compared to the State of the Art.

2. Related work
Traditional Rigging Representations. Crafting expres-
sive yet intuitive rigging representations for deformable ob-
jects remains a fundamental challenge in the character an-
imation community. For rigging humanoid characters or
mammals, the most intuitive method is to annotate their
skeletal structures and associated skinning weights [27, 31,
62]. However, this process typically demands substantial
manual efforts from artists. Recent works explored on
automating the annotation process [3, 46–48]; however,
these models often exhibit limited generalization capaci-
ties due to insufficient training data. For object categories
lacking hierarchical skeleton structures, such as faces, re-
searchers have explored machine learning approaches to
develop low-dimensional parametric representations from
large databases of aligned shapes [2, 4, 10, 36]. Neverthe-
less, these approaches typically require substantial amount
of high-quality training data, making them challenging to
scale for the generic categories considered in this work.

Neural Rigging Representations. Beyond rigging repre-
sentations with explicit analytical decoding processes, re-
cent research has extensively explored neural-based rig-
ging representations. These approaches leverage deep neu-
ral networks to decode latent pose representations into de-
tailed shapes. Our work falls into this category. Within
this paradigm, keypoints or handles have emerged as a com-
mon control modality [18, 25, 26, 56, 57], which are con-
ceptually similar to the blobs utilized in this work. How-
ever, prior works have primarily focused on predicting the
deformation of static shapes, whereas our method directly
generates posed shapes and targets dynamic objects. Neu-
ral Deformation Graphs [7] optimizes node-based repre-
sentation for rigging dynamic objects, but require a se-
quence of 3D SDFs as input and lack a learned categorical
prior. In contrast, our method performs amortized inference
to predict rigging representation directly from a static 3D
shape. Another line of work represent complex shapes us-
ing learned latent codes without explicit spatial locations
[14, 33, 34, 42, 54, 61]. While effective, these representa-
tions typically lack interpretability, while our representation
encodes the spatial layout of the posed shape in a more in-
tuitive manner.

4D Representations. Prior work on 4D representations
often employ low-dimensional structures to regulate mo-
tion, including part-based [50, 52, 53], skeleton-based [12,
21, 35, 44, 45], phase-based [13], and node-based [7].

22079



Center (x)

Rotation (r)

Scale (s) 

Opacity (o) 

Feature (f)Input Point Cloud

Feature 
Extractor

Point-wise Feature

Cross Attn
K,V

Q

Blob Feature

Query Token

MLP

Blobs

(a) Encoding (Sec. 3.2)

(c) Decoding (Sec. 3.3)(b) Blob Editing (Sec. 3.1)

Blobs Edited Blobs

Editing

Grid Feature

Voxelization

Self Attn & 
Cross Attn

K,V

Q

Point-wise Feature

Output Mesh

Occupancy 
Prediction

Query Coords

Figure 2. Overview of our proposed pipeline. We use a set of feature-embeded blobs to represent the pose space of deformable objects
(Sec. 3.1). The encoder takes a point cloud as input and maps it into blobs using a learnable codebook of query tokens that cross-attend
with semantic point-wise features (Sec. 3.2). Once generated, these blobs can be edited by users to adjust the object’s pose. The edited
blobs are then voxelized into a feature volume and decoded back to a 3D shape using a transformer architecture (Sec. 3.3). Finally, the
system query the decoded volume with sampled 3D coordinates to predict occupancy values, which are used to extract the edited mesh.

While most of these works rely on rule-based scheme to
decode latent into posed shapes, our approach learns a
neural decoder directly from data. Other 4D representa-
tions [22, 30, 39, 41] directly model high-dimensional flow
between different posed shapes. However, these methods
often require dense inputs [30] or rely on manually defined
regularizations [15, 16, 55].

Mid-level Neural Representations. Our work is also in-
spired by the large body of research that leverages mid-level
neural representations to model visual contents. Most ex-
isting approaches focus on capturing scene-level object lay-
outs [8, 11]. Similar to our method, BlobGAN [11] employs
blobs as a mid-level neural representation; however, their
work is limited to 2D images of indoor scenes. Deep Latent
Particles [9] also operates in the 2D domain, demonstrating
applications in manipulating human faces using these rep-
resentations.

3. Method

Given an instance shape from a deformable object category
in the form of a point cloud P ∈ Rnp×3, such as bears,
fish, or laptops, our goal is to predict a structured and inter-
pretable representation B that captures the dynamic poses of
the object. This representation can be intuitively edited by
users to animate or re-pose the 3D object. Inspired by the
concept of skeleton-based rigging representations [27, 31],
we introduce a sparse set of blobs to implicitly encode the
spatial structure of dynamic objects. Each blob bi ∈ B is
an anisotropic sphere parameterized by its position, rota-

tion, radius, and feature, which collectively indicate how a
semantic part of a dynamic object is positioned at a certain
pose.

We learn to discover such a representation in an unsu-
pervised manner. Given the input point cloud P, we define
an encoder E(P) = B that maps P to a sparse set of blobs
representing its current pose. A decoder D(B;P) is trained
to reconstruct the object shape as a mesh. The position and
rotation of each blob can be edited to create a novel dy-
namic pose B′. This modified pose B′ can be subsequently
decoded using D(B′;P) to generate the re-posed shape of
P, as illustrated in Fig. 2.

The following subsections provide a detailed description
of our proposed model. We begin by introducing the de-
sign of the blob-based representation (Sec. 3.1). In Sec. 3.2
and Sec. 3.3, we detail the architectures for E and D, respec-
tively. Finally, the training details are discussed in Sec. 3.4.

3.1. Representing Object Pose as Blobs
In this subsection, we describe our rigging representation in
the form of a set of blobs.

Blob Parametrization. Each blob in the set captured both
spatial and local semantic information corresponding to a
specific part of the dynamic object. A blob b is defined as a
feature-embedded anisotropic sphere:

b = (x, r, s,o, f), (1)

where x ∈ R3 denotes the center position of the blob,
r ∈ H represents its orientation as a rotation quater-

22080



nion, s ∈ R is the radius of the sphere, o ∈ [0, 1] in-
dicates the blob’s opacity indicating the activation level,
and f ∈ Rd is a feature vector that encodes local seman-
tic information used for shape decoding. With a set of
such blobs B = {bi | i = 1, ..., nb}, we can decompose
the representation into pose-dependent parameters BP =
{(xi, ri) | i = 1, ..., nb} and identity-dependent parameters
BI = {(si,oi, fi) | i = 1, ..., nb}.

Remarks. Blobs offer a flexible, category-agnostic alter-
native to traditional skeleton-based representations [31] for
modeling object poses. Unlike skeletons, which impose
rigid hierarchical structures and often require manual de-
sign and tuning for different categories, blobs model objects
as collections of semi-rigid parts. This makes them easier
to learn and generalize across diverse shapes and motion
patterns. Moreover, the blob-based design enables intuitive
and flexible pose editing. For instance, users can manip-
ulate blob positions (x) and orientations (r) to adjust the
object’s pose, or modify radius (s) to resize specific parts.

3.2. From Shape to Blobs
Given an input point cloud P, we define a feed-forward en-
coding process E that maps P into a set of blobs B as de-
scribed above.

E consists of two components: EP (P) = BP , which
predicts pose-related parameters, and EI(P) = BI , which
predicts identity-related parameters. This can be formalized
as:

E(P) = {(EP (P)[i], EI(P)[i]) | i = 1, ..., nb}. (2)

Both encoding processes EP and EI begin with a shared
feature extractor that computes point-wise features F ∈
Rnp×d from the input point cloud P.

Next, we perform cross-attention between the point-
wise features F and a learnable codebook Q = {qi | i =
1, ..., nb}, where each code corresponds to a distinct blob.
This yields attention weights W ∈ Rnb×np between the
codebook tokens and input points. The attention weights
are used to compute two sets of aggregated feature vectors
FP = {f iP | i = 1, ..., nb} for pose and FI = {f iI | i =
1, ..., nb} for identity.

Finally, the blob parameters BP and BI are regressed
from FP and FI , respectively.

Further details of each component are discussed below.

Feature Extractor. To distinguish different semantic
parts of the object, maintain pose consistency, and enable
accurate shape reconstruction during decoding, the point-
wise features F must encode both semantic and geometric
information.

We adopt PointTransformer [59] as our feature extrac-
tor due to its strong performance in capturing consistent,

expressive, and discriminative features. This capability al-
lows it to recover high-quality details and effectively handle
challenging symmetric structures.

Shape Encoding with a Learned Codebook. We aggre-
gate the above-mentioned point-wise feature into a low-
dimensional sparse set by learning a shared codebook Q
and performing cross-attention-based feature aggregation.
Each token in the codebook corresponds to a distinct blob
that captures a specific semantic part. The codebook is
learned jointly with other components and shared across ob-
ject identities to ensure consistency.

To compute the cross-attention-based feature aggrega-
tion, we calculate the attention map W between each token
q ∈ Q and each point in the input. The attention weight
W[i, j] between the i-th code and j-th point is given by:

W[i, j] =
exp (Q[i] · F[j]]T /

√
d)∑np

j=1 exp (Q[i] · F[j]T /
√
d)

. (3)

The attention weights W are used to compute two differ-
ent sets of feature vectors: FP for pose and FI for identity.

For the pose-related features FP , we aggregate the posi-
tional encodings γ(·) [32] of the point coordinates to cap-
ture spatial relationships between blobs:

FP [i] =
∑np

j=1
W[i, j] · γ(P[j]). (4)

To extract identity features FI , which require detailed
geometric information, we concatenate the extracted feature
F and point-wise positional encoding γ(P), then pass the
fused vector through an MLP ϕ:

FI [i] =
∑np

j=1
W[i, j] · ϕ(F[j]⊕ γ(P)[j]), (5)

where ⊕ denotes the concatenation operator.
Finally, the aggregated feature vector sets FP and FP

are then passed through a group of five shallow MLPs, each
responsible for regressing a specific type of blob parameter.

3.3. From Blobs Back to Shape
After encoding the input shape into a set of blobs B, these
blobs can be explicitly edited to obtain B′, representing po-
tential pose changes. To reconstruct the re-posed object cor-
responding to B′, we first voxelize the blobs into a feature
volume V ∈ R(h×w×l)×d, where h, w and l are the di-
mensions of the volume. The feature volume is then itera-
tively refined through a series of self-attention layers [40],
and subsequently decoded into an occupancy field that rep-
resents the final 3D shape. During this iterative refinement,
the volume is also conditioned on the extracted features F
from the encoder to better preserve object identity. We de-
scribe the details below.

22081



Blob Feature Volume. Instead of directly passing blob
parameters to the decoder, we employ a differentiable vox-
elization process to ensure that each blob’s parameters x, r,
s and o have explicit and interpretable effects.

To voxelize the blobs, we first construct a 3D grid of co-
ordinates G ∈ R(h×w×l)×3. The feature at each grid point
gi is computed as a weighted summation of blob features fj
w.r.t. weight distribution wij :

FG[i] =

∑nb

j=0 wij · fj∑nb

j=0 wij + ϵ
, (6)

where ϵ is a small constant to prevent numerical instabil-
ity. The weights wij capture the influence of blob j on grid
point i, and are defined as:

wij = oj · exp(−c · (gi − xj

sj
)(
gi − xj

sj
)T ), (7)

where c is a constant that controls the softness of the kernel;
we set c = 1 in all our experiments.

As a special case, wi0 and fi0 represents a learnable
background weight and feature, respectively, which are
shared across all inputs.

Augmenting Blob Features. In practice, using only blob
features to construct the feature volume may lead to a loss
of fine-grained details in reconstruction due to the compact-
ness of the blob representation. To address this, we propose
to augment blob features prior to voxelization, enhancing
their expressiveness.

Specifically, we enrich each blob feature fj with point-
specific embeddings F . The augmented feature f̃ij ∈ Rd

for the i-th grid gi and blob bj is computed as:

f̃ij = fj +Wθ(γ(
gi − xj

sj
· R(rj))), (8)

where Wθ denotes an MLP with parameters θ and R(·)
denotes the conversion from a quaternion to a 3×3 rotation
matrix.

Substituting fij with f̃ij in the voxelization process de-
scribed above, we obtain the augmented feature volume
F̃G:

F̃G[i] =

∑nb

j=0 wij · f̃ij∑nb

j=0 wij + ϵ
. (9)

Feature Decoding. Given the augmented grid features
F̃G, we follow recent shape auto-encoding methods [58, 60]
to iteratively process them through a series of self-attention
layers to produce F′

G. We add positional encodings γ(G)
to the features and treat each as an individual token within
the attention mechanism.

Center (x’)

Rotation (r’)

Scale (s)

Opacity (o)

Feature (f)

Point Cloud 1

Point Cloud 2

Identity Param.

Edited Pose Param.

Point Cloud 1

Center (x)

Rotation (r)

Scale (s)

Opacity (o)

Feature (f)

Identity Param.

Pose Param.

Center (x’)

Rotation (r’)

Edited Pose Param.Point Cloud 1

(a) Training (b) Inference

Figure 3. Difference in training and inference inputs. During
training, we sample two point clouds of the same identity but with
different poses to separately predict the identity-related blob pa-
rameters BI and pose-related parameters BP . This setup enables
BP to simulate an edited pose resulting from user edits. During in-
ference, both BI and BP are predicted from a single point cloud.
The user can then explicitly edits BP to represent the desired pose
change.

To better condition the predicted shape on the identity
of the input, we further incorporate cross-attention layers
between the grid features and the point-wise features F ex-
tracted during encoding. This conditioning was found to
significantly boost the preservation of fine-grained details,
as demonstrated in the ablation studies. Addtional details on
the decoding architecture are provided in the supplementary
material.

Occupancy Prediction. Following prior works [58, 60],
for any queried coordinate xq ∈ R3, our network outputs an
occupancy value o ∈ [0, 1] using the decoded grid features
F′

G. We first perform cross-attention between the postional
encoding of xq and F′

G, and then pass it through an MLP to
obtain the final occupancy. We use Marching Cubes [28] to
extract the final mesh.

3.4. Training
Training Strategy. The pipeline described above takes an
object point cloud P and user-edited blobs B′ as input and
predicts the re-posed mesh M′ of the object. However, di-
rectly obtaining the data tuple (P,B′,M′) is impractical.
Instead, we sample two distinct frames of a deformation se-
quences and obtain their meshes M and M′ as inputs, en-
suring that they share the same object identity but differ in
pose. To derive the edited blobs B′, we separately predict
pose-related parameters BP from M′ and identity-related
parameters BI from M. Combining these parameters yields
blobs that represent the identity of M with the pose of M′,
thus capturing the pose change from M to M′.

Formally, the training tuple is expressed as:

(PM, {(EI(PM)[i], EP (PM′)[i])},M′), (10)

where PM and P′
M denote the sampled point cloud from

mesh M and M′, respectively. The difference between the
training and inference input is illustrated in Fig. 3.

22082



Table 1. Quantitative comparison on DeformingThings4D [24], FaMoS [6], Fish [38], and Refridgerator and Eyeglasses from artic-
ulated objects dataset Shape2Motion [43]. Metrics are averaged over all sequences. IoU, Chamfer Distance L1 and L2 are reported.
Our method demonstrates significant improvement compared to the state of the arts. Green and yellow cell colors indicate the best and the
second best results, respectively.

Method
DeformingThings4D [24] FaMoS [6] Fish [38] Refridgerator Eyeglasses

IoU ↑ CD1 ↓ CD2 ↓ IoU ↑ CD1 ↓ CD2 ↓ IoU ↑ CD1 ↓ CD2 ↓ IoU ↑ CD1 ↓ CD2 ↓ IoU ↑ CD1 ↓ CD2 ↓

KeypointDeformer [17] 0.536 0.060 0.044 0.923 0.029 0.020 0.499 0.062 0.047 0.744 0.060 0.042 0.452 0.047 0.034
NeuralDeformationGraph [7] 0.875 0.020 0.013 0.800 0.019 0.013 0.686 0.040 0.030 0.869 0.046 0.034 0.791 0.024 0.016
SkeRig [20] 0.802 0.057 0.041 0.790 0.045 0.031 0.782 0.049 0.035 0.803 0.105 0.074 0.544 0.128 0.096

Ours 0.937 0.017 0.011 0.960 0.018 0.013 0.860 0.024 0.017 0.903 0.031 0.022 0.770 0.020 0.014

Training Objectives. We use binary cross entropy loss
Lrecon to supervise the proposed model in an end-to-end
manner. During training, we apply a sampling mechanism
that biases towards near-surface points with a ratio of αns to
enhance high-frequency surface details of the reconstruc-
tion. To ensure robust convergence, we additionally reg-
ularize the summed grid weights WG = {Σnb

j=1wij | i =
1, ..., h × w × l} during voxelization. The regularization
term Lvox is defined as the cosine similarity between WG

and the GT occupancy of the grid OG.
The complete training objective is defined as:

L = Lrecon + λvoxLvox, (11)

where λvox is a hyper-parameter. We refer the readers to the
supplementary material for more details on training.

4. Experiments
4.1. Implementation Details
We implement the proposed framework in PyTorch and
train it end-to-end using AdamW [29] with a learning rate
of 5e−4. We use 1-Cycle scheduler with linear annealing to
accelerate training. We set near-surface sampling ratio αns
to 0.0 for the first 200k iterations to ensure stable gradients
for blob initialization, gradually increasing it to 0.5 between
200k and 250k iterations to capture high-frequency details,
and finally set it to 0.8 to accelerate convergence. Providing
good initializations of blobs before increasing near-surface
sampling ratio proved curcial for achieving better spatial
distributions of blobs and avoiding local minima. Our train-
ing typically converges after 300k iterations, requiring ap-
proximately 7 days on 2 RTX A6000 GPUs.

We set the number of blobs 1 nb to range from 8 to 24 de-
pending on the exact category being modeled. During vox-
elization, we use a spatial resolution of 8× 8× 8, which we
find sufficient to capture rich identity details. All attention
modules contain 8 self-attention layers implemented using
memory-efficient attention [37].

4.2. Evaluating Learned Rigging Representation
Experiment Setup. To evaluate the effectiveness of our
learned rigging representation and compare it with the state-

1We only need to provide an upper bound of the number of blobs.

of-the-art methods, we assess each method’s capability to
re-pose a source shape to match a target shape. We then
calculate similarity metrics between the re-posed and target
shapes. For our method, we directly regress blob positions
and orientations from the target shape, using them as pose-
related parameters for re-posing. For baselines that do not
support feed-forward pose regression, we fix their learned
rigging parameters and optimize only pose-related parame-
ters to evaluate their maximum achievable accuracy.

Datasets. We evaluate the proposed method on a diverse
set of dynamic object categories to demonstrate its ability to
learn rigging representations without relying on category-
specific priors. The data includes a quadruped animal
dataset DeformingThings4D [24], a human facial expres-
sion dataset FaMoS [6], two articulated object categories
Refrigerator and Eyeglasses from Shape2Motion [43], and
a custom Fish dataset gathered and curated from Sketch-
fab [38]. Each dataset contains animated sequences of dy-
namic objects within a single category. For each dataset,
we leave out the longest 5 sequences for testing, since
some of the baselines methods require hours of optimiza-
tion for each sequence. We then split the rest of the datasets
into training and validation sets to train amortized-inference
methods including ours. During testing, we use the first
frame from the tested sequence as the source shape and
evaluate performance based on the similarity between the
re-posed source shape and target shapes from subsequent
frames.

Baselines. We compare our method against 3 state-
of-the-art baselines with distinct rigging representations.
SkeRig [20] is a skeleton-based method that optimizes
skeleton structures and skinning weights using a small num-
ber of frames from a deformable object. It requires addi-
tional dense correspondence across frames as input, which
may not be available in our training data. Therefore, we
estimate per-frame correspondences using a non-rigid reg-
istration pipeline NDP [23] and provide them as part of the
input to this baseline. To extract the skeleton, we uniformly
sample 10 frames from the training set. Once the skeleton
is obtained, we freeze its structure and optimize only the
bone transformations using differentiable forward kinemat-

22083



Ours NDG KeypointDeformer SkeRig

Input

Target

Input

Target

Input

Target

Input

Target

Figure 4. Qualitative results. We show qualitative results for different rigging representations across four object categories. Our approach
outperforms state-of-the-art methods on both modeling object motion and generating high-quality surface meshes.

ics to best fit the target shapes. KeypointDeformer [17] is
a keypoint-based method that predicts a set of keypoints for
object deformation in a feed-forward manner. It is trained
and evaluated using under the same setting as our method.
To incorporate more diverse representations, we also im-
plemented an implicit rigging baseline based on NeuralDe-

formationGraph [7], a method that optimizes a neural de-
formation graph and per-node SDF field for dynamic shape
reconstruction. To adapt it to object rigging, we removed
its time-dependent implicit shape prediction module. In the
first stage of its training, the deformation graph is optimized
using frames from the training set. In the second stage, the

22084



first frame of the test set is used to optimize the implicit
shapes while keeping the graph fixed. After training, we fix
the implicit shape and optimize the graph’s node positions
and rotations to simulate pose editing. We refer the readers
to the supplementary materials for additional details.

Metrics. We use three metrics to evaluate the similarity
between the target shape and the re-posed source shape:
IoU for mesh similarity, and Chamfer L1 and L2 distances
for point cloud similarity. Since SkeRig and KeypointDe-
former do not estimate surface meshes from input point
clouds, we estimate the mesh surfaces for the refridgera-
tor and eyeglasses datasets — both of which lack ground-
truth meshes — using ground-truth occupancy values and
Marching Cubes [28] to compute IoU.

Results. We report quantitative comparison results for
the five longest sequences from each of the five datasets
in Tab. 1. The results show that our method out-
performs all baselines by a large margin on nearly all
datasets. Qualitative comparisons in Fig. 4 demonstrates
that our method accurately models object motion for both
rigid and nonrigid dynamic object categories, and gen-
erates high-quality surfaces across a variety of shapes.
NeuralDeformationGraph[7] produces noisy output, partic-
ularly for non-rigid objects, as it tends to overfit training
shapes and lacks priors for modeling non-rigid deforma-
tions. In contrast, our method learns such priors in a data-
driven manner, resulting in natural and accurate mesh sur-
faces after pose editing. KeypointDeformer [17] fails to
capture intricate motions involving topological changes, as
it deformes source shapes using cages. Our method miti-
gates this limitation by using a neural-network-based shape
decoder. SkeRig [20] struggles to consistently optimize
skeletons across different categories, often producing either
over-simplified or overly complex skeletons that fail to cap-
ture object motion structure accurately. On the contrary, our
method automatically discovers blobs across all categories
and consistently represents object motion with high accu-
racy.

4.3. Animating the “Clay-Monster”
We have demonstrated the effectiveness and accuracy of
our method in modeling object deformation on synthetic
datasets. To further showcase its potentials in real-world
applications—particularly for casual users without 3D mod-
eling expertise—we construct a small object category called
”clay-monster”, consisting of 12 clay figures scanned in 3
to 5 poses each using only an iPhone. The scans are cap-
tured using ARKit 6 [1], and each takes approximately one
minute to complete. Using this simple scanning pipeline,
we are able to train the proposed model for pose manipula-
tion of such artificial clay-monsters, as illustrated in Fig. 5.

Input Pose 1 Pose 2 Pose 3 Pose 4

Figure 5. Pose manipulation results for a novel category (“clay-
monster”) using our method, where no rigging tools are available.

Table 2. Ablation Study. We show ablation study on two dif-
ferent modules in our method as well as the impact of the num-
ber of blobs. All variants are trained on DeformingThings4D [24]
dataset. Metrics are averaged over all sequences. IoU, Chamfer
Distance L1 and L2 are reported.

IoU ↑ CD1 ↓ CD2 ↓

w/o Identity Conditioning 0.853 0.025 0.018
w/o Anisotropic Blobs 0.934 0.017 0.012

Ours K = 8 0.845 0.028 0.020
Ours K = 16 0.927 0.020 0.013

Ours K = 24 0.937 0.017 0.011

This demonstrates how animatable representations can be
easily obtained for object categories that lack standard rig-
ging information using the proposed pipeline.

4.4. Ablation Study
To validate the design choices of our method, we ablate
important components from the proposed pipeline and ana-
lyze their impact on performance using the DeformingTh-
ings4D [24] dataset. In particular, we ablate the iden-
tity conditioning operation and test the use of isotropic
blobs to assess their contributions to output quality. We
also examine the effect of varying the numbers of blobs,
nb, where the original setting for DeformingThings4D uses
nb = 24. As shown in Tab. 2, removing identity condi-
tioning and anisotropic blobs significantly degrades model
performance. The results also indicate that increasing the
number of blobs improves expressiveness of the model, al-
beit at the cost of higher computational cost.

5. Conclusion
In this paper, we explored the novel task of learning
category-specific rigging representations for dynamic ob-
jects in a category-agnostic manner. We introduced a data-
driven pipeline for generic object rigging that can be readily
applied to any object category. Our method learns to dis-
entangle object pose from identity by representing objects
as a set of feature-embedded blobs in a fully unsupervised
setting, and reconstruct surface meshes with rich geometric
details from these blobs. Experiments across five diverse
datasets of distinct object categories demonstrate the effec-
tiveness of our approach.

22085



Acknowledgments. This work is in part supported by
ONR YIP N00014-24-1-2117 and NSF RI #2211258 and
#2338203.

References
[1] Apple. Arkit 6 - augmented reality. https://

developer.apple.com/augmented- reality/
arkit, 2024. 8

[2] Stephen W Bailey, Dalton Omens, Paul Dilorenzo, and
James F O’Brien. Fast and deep facial deformations. ACM
Transactions on Graphics (TOG), 39(4):94–1, 2020. 2

[3] Ilya Baran and Jovan Popović. Automatic rigging and anima-
tion of 3d characters. ACM Transactions on graphics (TOG),
26(3):72–es, 2007. 2

[4] Volker Blanz and Thomas Vetter. A morphable model for the
synthesis of 3d faces. In Seminal Graphics Papers: Pushing
the Boundaries, Volume 2, pages 157–164. 2023. 2

[5] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Pe-
ter V. Gehler, Javier Romero, and Michael J. Black. Keep
it SMPL: automatic estimation of 3d human pose and shape
from a single image. In Eur. Conf. Comput. Vis., pages 561–
578, 2016. 2

[6] Timo Bolkart, Tianye Li, and Michael J. Black. Instant
multi-view head capture through learnable registration. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 768–779,
2023. 6

[7] Aljaz Bozic, Pablo R. Palafox, Michael Zollhöfer, Justus
Thies, Angela Dai, and Matthias Nießner. Neural deforma-
tion graphs for globally-consistent non-rigid reconstruction.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 1450–
1459, 2021. 2, 6, 7, 8

[8] Chad Carson, Megan Thomas, Serge Belongie, Joseph M
Hellerstein, and Jitendra Malik. Blobworld: A system for
region-based image indexing and retrieval. In Visual Infor-
mation and Information Systems: Third International Con-
ference, VISUAL’99 Amsterdam, The Netherlands, June 2–4,
1999 Proceedings 3, pages 509–517. Springer, 1999. 3

[9] Tal Daniel and Aviv Tamar. Unsupervised image represen-
tation learning with deep latent particles. arXiv preprint
arXiv:2205.15821, 2022. 3

[10] Bernhard Egger, William AP Smith, Ayush Tewari, Stefanie
Wuhrer, Michael Zollhoefer, Thabo Beeler, Florian Bernard,
Timo Bolkart, Adam Kortylewski, Sami Romdhani, et al.
3d morphable face models—past, present, and future. ACM
Transactions on Graphics (ToG), 39(5):1–38, 2020. 2

[11] Dave Epstein, Taesung Park, Richard Zhang, Eli Shechtman,
and Alexei A Efros. Blobgan: Spatially disentangled scene
representations. In European conference on computer vision,
pages 616–635. Springer, 2022. 3

[12] Chen Geng, Sida Peng, Zhen Xu, Hujun Bao, and Xiaowei
Zhou. Learning neural volumetric representations of dy-
namic humans in minutes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8759–8770, 2023. 2

[13] Chen Geng, Hong-Xing Yu, Sida Peng, Xiaowei Zhou, and
Jiajun Wu. Neural polynomial gabor fields for macro motion

analysis. In The Twelfth International Conference on Learn-
ing Representations, 2024. 2

[14] Simon Giebenhain, Tobias Kirschstein, Markos Georgopou-
los, Martin Rünz, Lourdes Agapito, and Matthias Nießner.
Learning neural parametric head models. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2023. 2

[15] Qixing Huang, Xiangru Huang, Bo Sun, Zaiwei Zhang, Jun-
feng Jiang, and Chandrajit Bajaj. Arapreg: An as-rigid-as
possible regularization loss for learning deformable shape
generators. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 5815–5825, 2021. 3

[16] Takeo Igarashi, Tomer Moscovich, and John F Hughes. As-
rigid-as-possible shape manipulation. ACM transactions on
Graphics (TOG), 24(3):1134–1141, 2005. 3

[17] Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu,
Noah Snavely, and Angjoo Kanazawa. Keypointdeformer:
Unsupervised 3d keypoint discovery for shape control. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 12783–
12792, 2021. 6, 7, 8

[18] Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu,
Noah Snavely, and Angjoo Kanazawa. Keypointdeformer:
Unsupervised 3d keypoint discovery for shape control. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12783–12792, 2021. 2

[19] Ladislav Kavan, Steven Collins, Jiřı́ Žára, and Carol
O’Sullivan. Skinning with dual quaternions. In Proceed-
ings of the 2007 symposium on Interactive 3D graphics and
games, pages 39–46, 2007. 2

[20] Binh Huy Le and Zhigang Deng. Robust and accurate skele-
tal rigging from mesh sequences. ACM Trans. Graph., 33(4):
84:1–84:10, 2014. 6, 8

[21] Jiahui Lei, Yufu Wang, Georgios Pavlakos, Lingjie Liu, and
Kostas Daniilidis. Gart: Gaussian articulated template mod-
els. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 19876–19887,
2024. 2

[22] Jiahui Lei, Yijia Weng, Adam Harley, Leonidas Guibas,
and Kostas Daniilidis. Mosca: Dynamic gaussian fusion
from casual videos via 4d motion scaffolds. arXiv preprint
arXiv:2405.17421, 2024. 3

[23] Yang Li and Tatsuya Harada. Non-rigid point cloud regis-
tration with neural deformation pyramid. In Adv. Neural In-
form. Process. Syst., 2022. 6

[24] Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng,
and Matthias Nießner. 4dcomplete: Non-rigid motion esti-
mation beyond the observable surface. In Int. Conf. Comput.
Vis., pages 12686–12696, 2021. 6, 8

[25] Minghua Liu, Minhyuk Sung, Radomir Mech, and Hao Su.
Deepmetahandles: Learning deformation meta-handles of
3d meshes with biharmonic coordinates. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12–21, 2021. 2

[26] Shaowei Liu, Saurabh Gupta, and Shenlong Wang. Building
rearticulable models for arbitrary 3d objects from 4d point
clouds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023. 2

22086



[27] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. In Seminal Graphics Papers: Pushing
the Boundaries, Volume 2, pages 851–866. 2023. 2, 3

[28] William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In SIG-
GRAPH, pages 163–169, 1987. 5, 8

[29] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In Int. Conf. Learn. Represent., 2019. 6

[30] Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and
Deva Ramanan. Dynamic 3d gaussians: Tracking by per-
sistent dynamic view synthesis. In 2024 International Con-
ference on 3D Vision (3DV), pages 800–809. IEEE, 2024. 3

[31] Nadia Magnenat-Thalmann, Richard Laperrière, and Daniel
Thalmann. Joint-dependent local deformations for hand an-
imation and object grasping. In Proceedings on Graphics
interface’88, pages 26–33, 1989. 1, 2, 3, 4

[32] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Eur. Conf. Comput. Vis., pages 405–421, 2020. 4

[33] Pablo Palafox, Aljaž Božič, Justus Thies, Matthias Nießner,
and Angela Dai. Npms: Neural parametric models for 3d de-
formable shapes. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 12695–12705,
2021. 2

[34] Pablo Palafox, Nikolaos Sarafianos, Tony Tung, and Angela
Dai. Spams: Structured implicit parametric models. CVPR,
2022. 2

[35] Sida Peng, Chen Geng, Yuanqing Zhang, Yinghao Xu, Qian-
qian Wang, Qing Shuai, Xiaowei Zhou, and Hujun Bao. Im-
plicit neural representations with structured latent codes for
human body modeling. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 45(8):9895–9907, 2023. 2

[36] Dafei Qin, Jun Saito, Noam Aigerman, Thibault Groueix,
and Taku Komura. Neural face rigging for animating and
retargeting facial meshes in the wild. In ACM SIGGRAPH
2023 Conference Proceedings, pages 1–11, 2023. 2

[37] Markus N. Rabe and Charles Staats. Self-attention does not
need o(n2) memory. CoRR, 2021. 6

[38] Sketchfab. Sketchfab - the best 3d viewer on the web.
https://sketchfab.com, 2024. 6

[39] Colton Stearns, Adam Harley, Mikaela Uy, Florian Dubost,
Federico Tombari, Gordon Wetzstein, and Leonidas Guibas.
Dynamic gaussian marbles for novel view synthesis of casual
monocular videos. In SIGGRAPH Asia 2024 Conference Pa-
pers, pages 1–11, 2024. 3

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Adv. Neural Inform.
Process. Syst., pages 5998–6008, 2017. 4

[41] Qianqian Wang, Vickie Ye, Hang Gao, Jake Austin, Zhengqi
Li, and Angjoo Kanazawa. Shape of motion: 4d reconstruc-
tion from a single video. arXiv preprint arXiv:2407.13764,
2024. 3

[42] Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich
Neumann. 3dn: 3d deformation network. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1038–1046, 2019. 2

[43] Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qin-
ping Zhao, and Kai Xu. Shape2motion: Joint analysis of
motion parts and attributes from 3d shapes. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 8876–8884, 2019. 6

[44] Shangzhe Wu, Tomas Jakab, Christian Rupprecht, and An-
drea Vedaldi. DOVE: Learning deformable 3d objects by
watching videos. IJCV, 2023. 2

[45] Shangzhe Wu, Ruining Li, Tomas Jakab, Christian Rup-
precht, and Andrea Vedaldi. Magicpony: Learning articu-
lated 3d animals in the wild. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 8792–8802, 2023. 2

[46] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, and Karan
Singh. Predicting animation skeletons for 3d articulated
models via volumetric nets. In 2019 International Confer-
ence on 3D Vision (3DV), pages 298–307, 2019. 2

[47] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Lan-
dreth, and Karan Singh. Rignet: Neural rigging for articu-
lated characters. arXiv preprint arXiv:2005.00559, 2020.

[48] Zhan Xu, Yang Zhou, Li Yi, and Evangelos Kalogerakis.
Morig: Motion-aware rigging of character meshes from
point clouds. In SIGGRAPH Asia 2022 Conference Papers,
New York, NY, USA, 2022. Association for Computing Ma-
chinery. 2

[49] Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ra-
manan, Andrea Vedaldi, and Hanbyul Joo. Banmo: Building
animatable 3d neural models from many casual videos. In
CVPR, 2022. 2

[50] Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ra-
manan, Andrea Vedaldi, and Hanbyul Joo. Banmo: Building
animatable 3d neural models from many casual videos. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 2863–2873, 2022. 2

[51] Chun-Han Yao, Wei-Chih Hung, Yuanzhen Li, Michael Ru-
binstein, Ming-Hsuan Yang, and Varun Jampani. Lassie:
Learning articulated shapes from sparse image ensemble via
3d part discovery. Advances in Neural Information Process-
ing Systems, 35:15296–15308, 2022. 2

[52] Chun-Han Yao, Wei-Chih Hung, Yuanzhen Li, Michael Ru-
binstein, Ming-Hsuan Yang, and Varun Jampani. Lassie:
Learning articulated shapes from sparse image ensemble via
3d part discovery. Advances in Neural Information Process-
ing Systems, 35:15296–15308, 2022. 2

[53] Chun-Han Yao, Wei-Chih Hung, Yuanzhen Li, Michael Ru-
binstein, Ming-Hsuan Yang, and Varun Jampani. Hi-lassie:
High-fidelity articulated shape and skeleton discovery from
sparse image ensemble. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4853–4862, 2023. 2

[54] Wang Yifan, Noam Aigerman, Vladimir G Kim, Siddhartha
Chaudhuri, and Olga Sorkine-Hornung. Neural cages
for detail-preserving 3d deformations. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 75–83, 2020. 2

[55] Seungwoo Yoo, Kunho Kim, Vladimir G Kim, and Minhyuk
Sung. As-plausible-as-possible: Plausibility-aware mesh

22087



deformation using 2d diffusion priors. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4315–4324, 2024. 3

[56] Seungwoo Yoo, Juil Koo, Kyeongmin Yeo, and Minhyuk
Sung. Neural pose representation learning for generat-
ing and transferring non-rigid object poses. arXiv preprint
arXiv:2406.09728, 2024. 2

[57] Mehmet Ersin Yumer, Siddhartha Chaudhuri, Jessica K.
Hodgins, and Levent Burak Kara. Semantic shape editing us-
ing deformation handles. ACM Trans. Graph., 34(4), 2015.
2

[58] Biao Zhang, Jiapeng Tang, Matthias Nießner, and Peter
Wonka. 3dshape2vecset: A 3d shape representation for
neural fields and generative diffusion models. ACM Trans.
Graph., 42(4):92:1–92:16, 2023. 5

[59] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H. S. Torr, and
Vladlen Koltun. Point transformer. In Int. Conf. Comput.
Vis., pages 16239–16248, 2021. 4

[60] Zibo Zhao, Wen Liu, Xin Chen, Xianfang Zeng, Rui Wang,
Pei Cheng, Bin Fu, Tao Chen, Gang Yu, and Shenghua Gao.
Michelangelo: Conditional 3d shape generation based on
shape-image-text aligned latent representation. In Adv. Neu-
ral Inform. Process. Syst., 2023. 5

[61] Keyang Zhou, Bharat Lal Bhatnagar, and Gerard Pons-
Moll. Unsupervised shape and pose disentanglement for 3d
meshes. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part XXII 16, pages 341–357. Springer, 2020. 2

[62] Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and
Michael J Black. 3d menagerie: Modeling the 3d shape and
pose of animals. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6365–6373,
2017. 2

22088


