
Masking meets Supervision: A Strong Learning Alliance

Byeongho Heo Taekyung Kim Sangdoo Yun Dongyoon Han
NAVER AI Lab

Abstract

Pre-training with random masked inputs has emerged as
a novel trend in self-supervised training. However, super-
vised learning still faces a challenge in adopting masking
augmentations, primarily due to unstable training. In this
paper, we propose a novel way to involve masking augmen-
tations dubbed Masked Sub-branch (MaskSub). MaskSub
consists of the main-branch and sub-branch, the latter be-
ing a part of the former. The main-branch undergoes con-
ventional training recipes, while the sub-branch merits in-
tensive masking augmentations, during training. MaskSub
tackles the challenge by mitigating adverse effects through
a relaxed loss function similar to a self-distillation loss.
Our analysis shows that MaskSub improves performance,
with the training loss converging faster than in standard
training, which suggests our method stabilizes the training
process. We further validate MaskSub across diverse train-
ing scenarios and models, including DeiT-III training, MAE
finetuning, CLIP finetuning, BERT training, and hierarchi-
cal architectures (ResNet and Swin Transformer). Our re-
sults show that MaskSub consistently achieves impressive
performance gains across all the cases. MaskSub provides
a practical and effective solution for introducing additional
regularization under various training recipes. Code avail-
able at https://github.com/naver-ai/augsub

1. Introduction
Supervised learning is the most basic and effective way to
train a network to achieve high performance on a target
task. To improve supervised learning, diverse regulariza-
tions are developed and used as training recipes [36, 37, 44],
which represent a group of sophisticatedly tuned regu-
larizations to maximize learning performance. Supervised
learning has always held an advantage over self-supervised
learning [2, 4] based on the benefit of supervision. However,
emergence of Vision Transformer (ViT) [9] and Masked Im-
age Modeling (MIM) [1, 15, 30] is changing this trends.
ViT, which lacks inductive bias compared to convolution
networks, poses many challenges to generalization perfor-

mance for supervised learning. On the other hand, MIMs
such as MAE [15] rise as an alternative pretraining method
for ViT by achieving competitive performance with super-
vised learning recipes. Although a recent study [37] shows
that new supervised learning outperforms MIMs, the gap is
insignificant. Thus, MIMs are still a strong competitor of
supervised learning methods.

MIM masks random areas of an input image and forces
the network to infer the masked area using the remaining
area. A representative part of MIM is high mask ratios over
50%. Although MIM also works at small mask ratios, it
shows remarkable performance when trained with a high
mask ratio. The high mask ratio is a major difference be-
tween MIM and supervised learning since this high mask
ratio, over 50%, is not beneficial in supervised learning. Su-
pervised learning also has utilized random masking as an
augmentation [11, 56], but it significantly degrades perfor-
mance when the masking ratio is high. In other words, su-
pervised learning is not applicable for strong masking aug-
mentation. We conjecture that it is a major problem of the
current supervised learning recipe, and there is room for im-
provement by enabling strong masking.

Our goal is to improve supervised learning with strong
mask augmentation over 50%. To this end, we introduce a
novel learning framework using a “sub-branch” alongside
the main-branch; throughout this paper, we use the term
“sub-branch” to describe a model with dropped inputs. The
main-branch uses standard training recipes [37, 44], while
the sub-branch utilizes mask augmentation. We name our
method as Masked Sub-branch (MaskSub).

We visualize the overview of MaskSub in Figure 1.
We consider a high masking ratio over 50% as similar in
MAE [15]. Figure 1 (b) shows that applying the strong ran-
dom masking on the main-branch may lead to degraded per-
formance. In contrast, as in Figure 1 (c), MaskSub leverages
the sub-branch for random masking, and the sub-branch re-
ceives the training signal from the main-branch similar to
the self-distillation [32, 52, 58]. While the random mask-
ing technique amplifies the difficulty of the training process,
this is counterbalanced by self-distillation loss since the out-
puts of the main-branch are relaxed and easy-to-learn objec-
tive than the ground-truth label. In summary, MaskSub ap-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20447

https://github.com/naver-ai/augsub

model model

KD lossCE loss

masking

image masked image

stop grad

model

CE loss

full image

model

masked image

CE loss

(a) Standard training (b) Mask augmentation (c) MaskSub training

no mask aug 
stable training

strong mask aug 
unstable training

strong mask aug 
stable training

✘  
✔

✔  
✘

✔  
✔

Figure 1. Overview of Masked Sub-branch (MaskSub). (a) standard supervised training; (b) masking augmentation training. The masking
is applied to the main model, which degrades performance; (c) our MaskSub training, which separates the masking from the main model
using the sub-branch and relaxes loss with self-distillation. MaskSub substantially improves the state-of-the-art training recipes [37, 44].

plies a mask augmentation separated from the main-branch,
utilizing a relaxed loss form.

We analyze MaskSub using 100 epochs training on Ima-
geNet [6]. Without MaskSub, loss convergence speed and
corresponding accuracy are significantly degraded when
mask augmentation is applied. Conversely, MaskSub mit-
igates potential harmful effects from additional regulariza-
tion, leading to a network training process that is even more
efficient than standard training procedures. Also, MaskSub
is not limited to mask augmentation and can be used for
general drop regularizations. As a result, MaskSub is ex-
panded to any random drop regularization without dis-
rupting the convergence of original train loss; we employ
three in-network drop-based options to show the applicabil-
ity: masking [1, 15], dropout [35], and drop-path [10, 19].
Corresponding to each respective regularization strategy,
we denote them MaskSub, DropSub, and PathSub. Among
the three variants, MaskSub notably exhibits a remarkable
performance enhancement, demonstrating the necessity of
mask augmentation in supervised learning.

We extensively validate the performance of MaskSub.
MaskSub is applied on various state-of-the-art supervised
learnings including DeiT-III training [37], MAE finetun-
ing [15], BEiTv2 finetuning [30], CLIP finetuning [8],
BERT training [7], ResNet-RSB [44], and Swin trans-
former [27]. MaskSub demonstrates remarkable perfor-
mance improvement in all benchmarks. We argue that
MaskSub can be regarded as a novel way to utilize regu-
larization for visual recognition.

2. Related Work
Training recipe has been considered an important ingredi-
ent in building a high-performance network. He et al. [16]
demonstrate that the training recipe significantly influences

the network performance. RSB [44] is a representative and
high-performance recipe for ResNet. With the emergence
of ViT [9], the training recipe for ViT has gained the atten-
tion of the field. DeiT [36] shows that ViT can be trained
to display strong performance with only ImageNet-1k [6].
DeiT-III [37] is an improved version of DeiT, which applies
findings from RSB to DeiT instead of distillation from CNN
teacher. It is challenging to implement stronger or additional
regularization in existing training recipes. To address this
issue, we propose our MaskSub employing sub-branchs.

CoSub [38] introduces a similar concept to ours, uti-
lizing sub-branchs. However, the sub-branch objective dif-
fers: while MaskSub aims to stabilize training through ad-
ditional regularization, CoSub aims to train the sub-branchs
by co-training [55]. We regard MaskSub as a more gen-
eralized framework since CoSub only considers the drop-
path method to employ sub-branchs, whereas MaskSub can
cover various drop-based techniques, including masking.

Self-distillation utilizes supervision from a network itself
instead of using a teacher. ONE [58] uses a multi-branch
ensemble to build superior output for the network and dis-
till ensemble outputs as supervision for each branch. Some
studies [32, 52] utilize the early-exit network for self-
distillation. Those studies improve performance by using an
entire network as a teacher and an early exit network as a
student. MaskedKD [34] utilizes masking to reduce com-
putation for knowledge distillation. From a self-distillation
perspective, MaskSub presents a new insight into construct-
ing the student model (i.e., sub-branch) from the teacher
model (i.e., main-branch) utilizing drop-based techniques.
Note that most self-distillation studies are not compatible
with recent training recipes [37, 44]. Thus, the general ap-
plicability of MaskSub is a notable contribution.

Self- and semi-supervised learning share components

20448

with MaskSub. Contrastive learning incorporates two mod-
els with self-distillation loss [3, 12]. Want et al. [41] intro-
duce a double tower with weak and strong augmentation for
each model. MAE [15] uses masked image reconstruction
as self-supervision, and supervised MAE [26] introduces
supervised learning as an additional task for MAE. MAE
and supMAE aim to reconstruct masked images using MAE
training recipe, rather than supervised learning. In contrast,
MaskSub only relies on label-related loss with a supervised
learning recipe. In semi-supervised learning, UDA [47] in-
troduces a two-branch framework, similar to the main- and
sub-branch in MaskSub. However, MaskSub is more com-
putationally efficient by using masking [15] and removing
label-consistency checks for unlabeled data. Also, MaskSub
extends the two-branch framework to supervised learning
via distillation loss, in contrast to UDA’s consistency loss.
While these studies share the fundamental concept with
MaskSub and inspired our work, the training techniques
for supervised learning differ from those in semi- and self-
supervised learning. Thus, we argue that MaskSub retains
its originality and novelty compared to these studies.

3. Method
We propose our method Masked Sub-branch (MaskSub)
with formulation and pseudo-code in Section 3.1. Sec-
tion 3.2 presents analyses of MaskSub with loss conver-
gence, accuracy, and gradient. In Section 3.3, we introduce
variants of MaskSub: DropSub, and PathSub.

3.1. Masked Sub-branch (MaskSub)
The cross-entropy loss with the softmax σ(z) =
ezi/

∑
j e

zj for images xi and one-hot labels yi(i ∈
[1, 2, ..., N]) in a mini-batch with size N is denoted as

− 1

N

N∑
i

yilog (σ(fθ(xi|rmask = 0))), (1)

where fθ represents the network used for training. rmask

means a ratio of masked patches in an input image. Since
the masking ratio can be easily changed, we denote it as a
condition for network function. Based on the value of rmask,
certain network features are dropped with probability rmask.
Note that we set the default masking ratio to zero for con-
venience. Then, loss for masking ratio r ∈ [0, 1] is

− 1

N

N∑
i

yilog (σ(fθ(xi|rmask = r))). (2)

Typically, a network with mask augmentation is trained
with Eq. (2). But, we conjecture that training using Eq. (2)
with a high masking ratio (i.e. r ≥ 0.5) may interfere with
loss convergence and induce instability in training. To en-
sure training stability, we utilize the model output of equa-
tion Eq. (1), fθ(xi|rmask = 0), as guidance for masking

Algorithm 1 MaskSub in PyTorch-style pseudo-code

for (x, label) in data_loader:
o1 = f(x) # main
o2 = f(mask(x,r)) # sub (mask ratio: r)
loss1 = CE(o1, label) / 2
loss2 = CE(o2, softmax(o1.detach())) / 2
(loss1+loss2).backward()
optimizer.step()

augmentation fθ(xi|rmask = r) instead of yi. In other
words, Eq. (2) is changed as

− 1

N

N∑
i

σ(fθ(xi|rmask = 0)) log (σ(fθ(xi|rmask = r))).

(3)
In our Masked Sub-branch (MaskSub), the average of
Eq. (1) and Eq. (3) is used as a loss function for the net-
work. We designate fθ(xi|rmask = 0) as the main-branch
and fθ(xi|rmask = r) as the sub-branch. This naming con-
vention is employed because a network with masked inputs
appears to be a subset of the entire network. In Eq. (3), the
main-branch output fθ(xi|rmask = 0) is used with stop-
gradient. Thus, the sub-branch is trained to mimic the main
model, but we want the gradient for the main-branch to be
independent of the sub-branch. This can be interpreted as
self-distillation, where knowledge is transferred from the
teacher (main-branch) to the student (sub-branch). Note that
MaskSub can easily be expanded to binary cross-entropy
loss by replacing the softmax function with the sigmoid
function, which is used for recent training recipes [37, 44].

Algorithm 1 describes PyTorch-style pseudo-code of
training with MaskSub. The masking ratio is put into the
network input. The gradients are calculated on the main
and sub-branch average losses. Note that MaskSub does not
use any additional data augmentation, optimizer steps, and
network parameters for the sub-branch. We use MAE-style
random masking [15], removing masked tokens to reduce
computation costs by default. It significantly reduces the
training cost of MaskSub. Approximately, MaskSub with
50% masking requires ×1.5 computation to standard train-
ing. In practical implementation, we separate the main and
sub-branch backward passes utilizing the gradient accumu-
lation of PyTorch. So, VRAM for the main-branch can be
released before the sub-branch computation, which elimi-
nates the need for additional VRAM for MaskSub training.
We will show the impact of MaskSub on diverse cases in
Section 4, including computation analysis in Section 4.5.

MaskSub automatically controls the difficulty of the sub-
branch. If the main-branch is close to the ground-truth la-
bel, the sub-branch loss aims to attain the ground-truth la-
bel under masking. Conversely, if the main-branch fails to
converge, the sub-branch loss becomes easy. This difficulty
design is inspired by distillation studies [5, 20, 28]. The

20449

0 20 40 60 80 100
Epoch

0

20

40

60

80

To
p-

1
ac

cu
ra

cy

Standard
Masking
MaskSub

(a) Accuracy

20 40 60 80 100
Epoch

6

8

10

12

Tr
ai

n
lo

ss
 (×

 0
.0

01
)

Standard
Masking
MaskSub

(b) Train loss (standard)

20 40 60 80 100
Epoch

8

10

12

Tr
ai

n
lo

ss
 (×

 0
.0

01
)

Standard
Masking
MaskSub

(c) Train loss (masking)

20 40 60 80 100
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

G
ra

di
en

t n
or

m
 (×

 0
.0

01
)

Standard
Masking
MaskSub-Main
MaskSub-Sub

(d) Gradient norm

Figure 2. MaskSub training analysis. We use 50%-random masking to compare three training settings: standard Eq. (1), masking Eq. (2),
and MaskSub. We visualize (a) validation accuracy; (b) train loss without masking; (c) train loss with masking; (d) gradient norm.

distillation becomes difficult when a high-performance net-
work is used as a teacher [5, 28]. An early-stage network is
easy, and an end-stage network is challenging [20]. Thus,
MaskSub can be considered as a sample-wise masking aug-
mentation that is exclusively applied to images that produce
successful output in the main-branch.

3.2. Analysis
We analyze MaskSub with ViT-B [9] for 100 epochs train-
ing on ImageNet-1k [6]. Based on DeiT-III [37], we shorten
the epoch to 100 epochs and use image resolution 224 ×
224. We compare three settings: standard, masking, and
MaskSub. The standard uses Eq. (1) as the training loss,
and masking augmentation is not used. For the masking set-
ting, the network is trained with Eq. (2). Note that it is a
common practice to use a regularization or an augmenta-
tion in supervised learning. We compare those two settings
with MaskSub. For analysis, we measured Eq. (1) ‘train loss
- standard’ and Eq. (2) ‘train loss - masking’. It shows how
losses changed by training setting.

Figure 2 shows loss and accuracy trends in random
masking 50% (i.e., rmask = 0.5) case. When random mask-
ing is applied to training (green), the masking loss (Fig-
ure 2c) converges better than the standard (blue). However,
it significantly degrades the standard train loss (Figure 2b),
resulting in a drop in accuracy (Figure 2a). Regularization
over a certain strength often causes malicious effects on
standard train loss, which decreases accuracy. As shown in
Figure 2b and 2c, MaskSub improves the loss convergence
for both losses, original and masking, which brings an im-
provement in accuracy.

Figure 2d explains the learning pattern between main-
branch and sub-branch of MaskSub (Eq. (3)) in the as-
pect of gradients magnitude for training with random mask-
ing 50%. The gradient magnitude from the main-branch
(MaskSub-Main) is similar to that of other training. In
contrast, gradients from the sub-branch (MaskSub-Sub)
have a small magnitude at the early stage. As the learning
progresses, the gradients from the sub-branch increase. It
shows that MaskSub trains the network following our inten-
tion: automatic difficulty control. During the early stage of
training, the gradients from the main-branch lead the train-

ing. Following the progress of the main-branch training, the
sub-branch adaptively increases its gradient magnitude and
produces a reasonable amount of gradients at the end of
training. In other words, the model training is relaxed from
challenging masked inputs at the early stage, while it starts
to learn masked input when the original inputs are suffi-
ciently trained. We claim that the automatic difficulty con-
trol of MaskSub could be a general solution to introduce
strong augmentation for supervised learning.

3.3. Expand to drop regularizations
We design MaskSub for masking augmentation. Due to its
simplicity, it can be expanded to drop-based regulariza-
tions [11, 19, 35]. In this section, we introduce two vari-
ants of MaskSub: DropSub for dropout [35] and PathSub
for drop-path [19]. Since the drop-based regularizations
easily adjust their strength by controlling drop probabil-
ity, MaskSub enables the model to learn dropped features
without degrading performance at a standard loss, similar to
masking augmentation. The performance of MaskSub vari-
ants is shown in Section 4.8. Note that detailed experiments
with loss convergence for various drop rates are reported in
Table A.5 in the Appendix.
DropSub. Dropout [35] is a fundamental drop regular-
ization. Dropout drops random elements of network fea-
tures with a fixed probability. Since dropout is unrelated
to feature structure, every feature element has independent
drop probability pdrop. DropSub is simply implemented
by changing rmask to the dropout probability pdrop. Thus,
the sub-branch uses strong dropout, while the main-branch
follows a standard training recipe. Due to stability issues,
dropout is not preferred in recent training recipes [36, 37].
However, DropSub enables strong dropout in ViT training
and achieves performance improvement.
PathSub. Drop-path [10, 19] randomly drops a total feature
of the network block with a probability ppath. PathSub is
also implemented by changing rmask to the drop-path prob-
ability ppath. Drop-path widely used in training recipes [36,
37, 44] to adjust the regularization strength [37]. Thus, un-
like previous cases, the main-branch uses the drop-path fol-
lowing the training recipe, and the sub-branch uses a higher
drop probability than the main-branch.

20450

4. Experiments
We validate the effectiveness of our Masked Sub-branch
(MaskSub) by applying it to diverse training scenarios. We
claim MaskSub is an easy plug-in solution for various train-
ing recipes. Thus, we strictly follow the original training
recipe, including optimizer parameters, learning rate and
weight-decay, and regularization parameters. The only dif-
ference between baseline and MaskSub is the masking aug-
mentation for the sub-branch. We simply set the masking
ratio of MaskSub to 50% across all experiments. In short,
MaskSub does not have a hyper-parameter that varies de-
pending on training scenarios.

4.1. Training from scratch (pretraining)
The training recipe in ViTs is a key factor enabling ViT
to surpass CNN; thus, the ViT training recipe is an impor-
tant and active research topic. We use a state-of-the-art ViT

Network
400 epochs 800 epochs

DeiT-III + MaskSub DeiT-III + MaskSub

ViT-S/16 80.4 81.1 (+0.7) 81.4 81.7 (+0.3)

ViT-B/16 83.5 84.1 (+0.6) 83.8 84.2 (+0.4)

ViT-L/16 84.5 85.2 (+0.7) 84.9 85.3 (+0.4)

ViT-H/14 85.1 85.7 (+0.6) 85.2 85.7 (+0.5)

Table 1. Training from scratch with ViT using the DeiT-III.
MaskSub (50%) is applied to the ViT training [37] on ImageNet-
1k. Note that the training settings are identical to the original ones.

Network Method Epochs Top-1 acc. Cost

ViT-S

DeiT [36] 300 79.8 -
MAE [15]† 1600 81.4 -
DeiT-III [37] 800 81.4 ×1.0
CoSub [38] 800 81.5 ×2.0
MaskSub 400 81.1 ×0.75
MaskSub 800 81.7 ×1.5

ViT-B

DeiT [36] 300 81.8 -
MAE [15] 1600 83.6 -
SupMAE [26] 400 83.6 -
DeiT-III [37] 800 83.8 ×1.0
CoSub [38] 800 84.2 ×2.0
MaskSub 400 84.1 ×0.75
MaskSub 800 84.2 ×1.5

ViT-L

DeiT-III [37] 800 84.9 ×1.0
CoSub [38] 800 85.3 ×2.0
MaskSub 400 85.2 ×0.75
MaskSub 800 85.3 ×1.5

ViT-H
DeiT-III [37] 800 85.2 ×1.0
CoSub [38] 800 85.7 ×2.0
MaskSub 400 85.7 ×0.75

Table 2. Pre-training methods comparison. We compare DeiT-
III [37] + MaskSub with various pre-training methods. MaskSub
shows remarkable performances compared to its training cost.

Epochs Network Baseline +MaskSub

MAE [15]
finetuning

100 ViT-B/16 83.6 83.9 (+0.3)
50 ViT-L/16 85.9 86.1 (+0.2)
50 ViT-H/14 86.9 87.2 (+0.3)

BEiTv2 [30]
finetuning

100 ViT-B/16 85.5 85.6 (+0.1)
50 ViT-L/16 87.3 87.4 (+0.1)

CLIP [33]
finetuning

50 ViT-B/16 84.8 85.2 (+0.4)
30 ViT-L/14 87.5 87.8 (+0.3)

Table 3. ImageNet-1k finetuning. We report finetuning perfor-
mance of MAE [15], BEiT v2 [30] and CLIP finetuning [8] with
MaskSub (50%). Official weights are used.

training recipe, DeiT-III [37], as our baseline. Enhancing
DeiT-III by integrating additional techniques is challenging,
so we believe improvements made over DeiT-III would rep-
resent a new state-of-the-art in ViT training.

ViTs are trained with MaskSub (50%) on 400 and 800
epochs training. The results are shown in Table 1. MaskSub
improves performance across all settings. For 400-epochs
training, MaskSub improves DeiT-III with substantial mar-
gins, which even outperforms 800-epochs trained DeiT-III
except for ViT-S/16. MaskSub also demonstrates superior
performance when training for 800 epochs. The impact of
MaskSub is impressively consistent with larger models like
ViT-L/16 and ViT-H/16. It is worth noting that ViT-H +
MaskSub (400 epochs) outperforms ViT-H/16 (800 epochs)
with +0.5pp gain, even with half the training epochs. Thus,
MaskSub is an effective way to improve ViT training.

Table 2 shows the performance and computation cost of
MaskSub compared to other pretrainings. In ViT-S and ViT-
B, MaskSub outperforms MAE [15] with a reasonable per-
formance gap. Compared to SupMAE [26], MaskSup out-
performs under the same epochs. CoSub [38] has compa-
rable performance with MaskSub; however, MaskSub re-
quires less computation costs than CoSub. Thus, we argue
that MaskSub outperforms CoSub. More comparisons with
CoSub are included in Section 4.5.

4.2. Finetuning
Following the emergence of self-supervised learning [15]
and visual-language modeling [33], the significance of fine-
tuning has notably increased. Generally, self-supervised
learning, such as MAE [15] and BEiT [1, 30], does not use
supervised labels at pretraining, which makes MaskSub in-
applicable for pretraining. However, a standard is to evalu-
ate the model’s capability using supervised finetuning after
pretraining. Thus, we apply our MaskSub (50%) to the fine-
tuning stage to verify the effect of MaskSub on finetuning.
Note that we strictly follow the original recipes mentioned
below and apply MaskSub (50%) based on it. All finetuning
is conducted using officially released pretrained weights.

We utilize three finetuning recipes: MAE [15], BEiT

20451

Network Method Top-1 acc.

CLIP-B
Linear probing [33] 80.2
Finetuning [8] 84.8
Finetuning [8] + MaskSub 85.2

ViT-B

FD-CLIP [43] 84.9
MaskDistill [31] 85.5
MVP [42] 84.4
MILAN [18] 85.4
CAEv2 [54] 85.5
BEiTv2 [30] 85.5
BEiTv2 [30] + MaskSub 85.6

Table 4. Comparison with CLIP-based training on ImageNet-
1k. Our finetuning experiment is close to the state-of-the-art of
ViT-B training. MaskSub applied to BEiTv2 [30] fine-tuning out-
performs cutting-edge studies on CLIP-based training.

v2 [30], and Finetune CLIP [8]. MAE [15] is a representa-
tive method of masked image models (MIM). Since our ran-
dom masking is motivated by MAE, MaskSub is seamlessly
integrated into the MAE finetuning process. BEiT v2 [30]
utilizes the pretrained CLIP for MIM and achieves supe-
rior performance compared to MAE. Following the masking
strategy of BEiT v2 using mask-token, we adjust MaskSub
to masking using mask-token from the pretrained weight
instead of MAE-style masking. Finetune CLIP [8] is a fine-
tuning recipe for CLIP [33] pretrained weights. MaskSub is
applied to finetuning CLIP without change.

Table 3 shows the finetuning results. MaskSub improves
the performance of all finetune practices, including large-
scale ViT models. This is notable as it shows substantial
improvement with a short finetuning phase of fewer than
100 epochs compared to the pretraining period of 1600
epochs. In MAE finetuning, MaskSub improves 0.2 - 0.3pp
in all model sizes. MaskSub is also effective on BEiT v2,
which utilizes Relative Position Encoding (RPE) [1, 27]
and block-masking strategy with mask-tokens. CLIP fine-
tuning also displays that MaskSub achieves substantial im-
provements. In finetuning CLIP, we report performance at
the last epoch rather than selecting the best performance in
early epochs. The best performance of finetuning CLIP with
MaskSub is the same as the baseline. Table 4 demonstrates
the impacts of MaskSub compared to cutting-edge CLIP-
based training recipes. It shows that MaskSub improves the
performance of state-of-the-art training recipes.

4.3. Hierarchical architecture

We extend experiments to architectures with hierarchi-
cal spatial dimensions: ResNet [13] and Swin Trans-
former [27]. Unlike ViT, which maintains spatial token
length for all layers, those networks change the spatial size
of features in the middle of layers, requiring a change in
masking strategy. We apply MaskSub (50%) to ResNet and

Recipe Epochs Network Baseline + MaskSub

RSB A2 [44] 300
ResNet50 79.7 80.0 (+0.3)

ResNet101 81.4 82.1 (+0.7)
ResNet152 81.8 82.8 (+1.0)

Swin [27] 300
Swin-T 81.3 81.4 (+0.1)
Swin-S 83.0 83.4 (+0.4)
Swin-B 83.5 83.9 (+0.4)

Table 5. ImageNet-1k with hierarchical architecture. We show
the performance of ResNet [13] and Swin Transformer [27] trained
from scratch with MaskSub (50%).

Network Method Top-1 acc.

ResNet50

Baseline [14] 76.1
ResNeXt50 [48] + ONE [58] 78.2
BYOT [52] 75.2
Self-Distillation [53] 78.3
MixSKD [49] 78.8
RSB [44] + MaskSub 80.0

ResNet101

Baseline [14] 77.4
Self-Distillation [53] 78.9
RSB [44] + SD-dropout [25] 81.2
RSB [44] + PS-KD [21] 81.7
RSB [44] + MaskSub 82.1

ResNet152

Baseline [14] 78.3
PS-KD [21] 79.2
Self-Distillation [53] 80.6
SD-dropout [25] 75.5
RSB [44] + SD-dropout [25] 81.8
RSB [44] + PS-KD [21] 82.3
RSB [44] + MaskSub 82.8

Table 6. Comparison with self-distillation methods. Based on
ResNet, we compare MaskSub with self-distillation methods.

Swin Transformer. We simply fill out masked regions with
zero pixels for ResNets and replace masked regions with
mask-tokens for Swin Transformer. It maintains the spatial
structure and enables spatial size reduction of hierarchical
architecture. Following the literature [45], we use random
masking with the patch size of 32× 32. Note that the com-
putation reduction in MAE-style masking does not apply
here; therefore, MaskSub costs double the training budget.
For ResNet, we use an effective training recipe [44] with
300 epochs. The recipe in the original paper [27] is used for
the Swin Transformer training. We strictly follow the train-
ing recipes and apply MaskSub without tuning them.

Results are shown in Table 5. MaskSub achieves impres-
sive performance gains with ResNet and Swin Transformer
as well. ResNet and Swin are substantially different archi-
tectures from ViT. Thus, the result implies that the effec-
tiveness of MaskSub is not limited to ViT architectures and
is applicable to hierarchical architectures.

20452

Model
Pretraining
+ MaskSub

Finetuning
+ MaskSub

CIFAR100
[24]

CIFAR100
[24]

Flowers
[29]

Cars
[23]

iNat-18
[39]

iNat-19
[39]

ViT-S/16
- - 98.8 90.0 94.5 80.9 70.1 76.7
✔ - 98.9 90.6 95.2 81.2 70.8 77.0
✔ ✔ 98.8 89.9 98.3 92.2 71.2 77.1

ViT-B/16
- - 99.1 91.7 97.5 90.0 73.2 78.5
✔ - 99.2 91.9 97.7 90.2 73.6 78.8
✔ ✔ 98.8 89.6 98.7 92.8 73.9 79.1

Table 7. Transfer learning. Table shows transfer learning performance with/without MaskSub. We measure the performance when
MaskSub is applied to pretraining and finetuning. The standard deviations over three runs are reported in Appendix.

Architecture +MaskSub Epochs GPU days Accuracy

ViT-S/16
- 600 22 80.7
✔ 400 22 81.2 (+0.5)

ViT-B/16
- 600 26 83.7
✔ 400 25 84.1 (+0.4)

ResNet101
- 600 24 81.5
✔ 300 20 82.1 (+0.6)

ResNet152
- 600 32 82.0
✔ 300 29 82.8 (+0.8)

Table 8. Comparison in the same training budget. Training has
been conducted with NVIDIA V100 8 GPUs. GPU days refer to
the number of days required for training when using a V100 GPU.

Method Accuracy GPU days

Baseline [37] 83.5 17.3

DataAug [17] 83.5 (+0.0) 36.8 (+113%)

GradAug [50] 83.2 (-0.3) 39.7 (+129%)

CoSub [38] 83.9 (+0.4) 35.3 (+104%)

MaskSub 84.1(+0.6) 25.1 (+45%)

Table 9. ImageNet-1k Comparison. The table shows perfor-
mance and computational costs for ViT-B’s 400 epoch training.

Single-scale mIoU Multi-scale mIoU

DeiT-III + MaskSub DeiT-III + MaskSub

ViT-B 48.8 49.4 (+0.6) 49.7 50.2 (+0.5)
ViT-L 51.7 52.2 (+0.5) 52.3 52.7 (+0.4)

Table 10. Semantic segmentation on ADE-20k. UpperNet for
ViT backbone is trained with the BEiTv2 segmentation recipe.

4.4. Self-distillation

We compare MaskSub with self-distillation methods. As
shown in Table 6, most self-distillations report their per-
formance based on weak and old recipes. Thus, they are
less effective with cutting-edge recipes (RSB [44]) or ar-
chitectures (ViT). Otherwise, MaskSub can be plugged into
strong training recipes and achieves state-of-the-art with

self-distillation loss. Thus, MaskSub has contributed to
practical self-distillation with its broad applicability.

4.5. Training budget
We have shown that MaskSub effectively improves the
performance of various architectures. However, MaskSub
requires additional computation costs for the sub-branch,
which increases training costs. Thus, we analyze MaskSub
regarding its training costs to determine if MaskSub could
be an effective solution within a limited training budget.
We compare MaskSub with training recipes with increased
epochs to align with the training budget. The training budget
is quantified regarding required GPU days when only a sin-
gle NVIDIA V100 GPU is used for training. Table 8 shows
the results. In ViT training, MaskSub outperforms baseline
with ×1.5 epochs setting. Thus, MaskSub is superior to the
long epoch training to spend computation costs for train-
ing ViT. For ResNet, we compare 300 epochs MaskSub
with 600 epochs training recipe RSB [44] A1. MaskSub
outperforms 600 epochs training recipes in ResNet101 and
ResNet152. Consequently, the results show that MaskSub
is an effective way to improve training, even considering
computation costs for the sub-branch.

We compare MaskSub with other training methods:
DataAugment [17], GradAug [50], and CoSub [38].
DataAugment [17] uses doubled data augmentations for the
same image, which is similar to contrastive learning [2, 4].
GradAug [50] utilizes a network pruning [51] to build sub-
network. CoSub introduces a sub-network based on drop-
path [19] and uses the sub-network as mutual learning [55].
Table 9 shows the 400-epochs training from scratch result.
Note that GradAug in Table 9 is a 200-epochs training re-
sult to adjust computation cost similar to other methods.
All augmentation methods require additional computation
costs. In particular, GradAug spends almost 300% of addi-
tional training costs compared to original training. On the
other hand, our MaskSub only requires a small amount of
extra costs (below 50%), which is a remarkable advantage
in training. With the smallest computation, our MaskSub
achieves substantial performance improvements. MaskSub
performs superior to CoSub in all cases.

20453

Model +MaskSub MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

BERT [7]
base

- 84.1 87.5 91.0 91.6 54.7 87.0 88.5 62.8 80.9
✔ 84.5 87.7 91.3 91.9 58.3 86.8 89.2 63.2 81.6

BERT [7]
large

- 86.8 88.2 92.3 93.8 63.3 89.3 92.0 69.7 84.4
✔ 87.1 89.0 92.7 94.0 65.2 88.6 91.5 69.3 84.7

Table 11. GLUE [40] benchmark with BERT [7]. We apply MaskSub on GLUE benchmark to validate the effect of MaskSub on language
model fine-tuning. MaskSub effectively improves BERT finetuning performance.

Training method
ImageNet-1k
Zero-shot acc.

CLIP [33] 33.5
CLIP [33] + Masking 29.8 (-3.7)

CLIP [33] + MaskSub 37.6 (+4.1)

Table 12. MaskSub on CLIP pretraining with ViT-B/32. We ap-
ply MaskSub to CLIP, vision and language, pre-training process.
MaskSub is effective for CLIP pre-training.

4.6. Transfer learning
Improvement in pretraining can boost the performance of
downstream tasks [22]. We measure the transfer learn-
ing performance of MaskSub using 800 epochs pretrained
weight from Table 1. CIFAR-10 [24], CIFAR-100 [24], Ox-
ford Flowers-102 [29], Stanford Cars [23] and iNatural-
ist [39] are used for finetuning datasets. We use the AdamW
training recipe [37] and also evaluate performance when
MaskSub (50%) is applied to the finetuning process. Table 7
shows the results. The backbone pretrained with MaskSub
consistently outperforms the DeiT-III backbone across all
cases. Moreover, when MaskSub is applied to the finetun-
ing, it further boosts performance except CIFAR [24].

We verify transfer learning to semantic segmentation
task on ADE-20k [57]. We train UperNet [46] training
recipe [30] and utilize pretrained weight from Table 1.
Table 10 shows the segmentation results of single-scale
and multi-scale evaluations. On both evaluations, the back-
bone pretrained with MaskSub demonstrates superior per-
formance, consistent for ViT-B and ViT-L.

4.7. Beyond vision domain
MaskSub can be extended to domains beyond images,
as long as the masking is applicable. Thus, we apply
MaskSub to two additional tasks beyond the image domain:
GLUE [40] benchmark and CLIP [33] pretraining. The first
task is a text-classification benchmark GLUE [40]. We use
BERT [7] as a pretrained model and apply MaskSub with
15% masking following the masking ratio of BERT. As
shown in Table 11, MaskSub improves text-classification
performance. MaskSub is also applied to CLIP [33] pre-
training. Table 12 shows the results. CLIP trained with
MaskSub (50%) shows improved zero-shot performance.

Architecture Baseline MaskSub DropSub PathSub

ViT-S/16 80.4 81.1 (+0.7) 80.6 (+0.2) 80.8 (+0.4)

ViT-B/16 83.5 84.1 (+0.6) 83.8 (+0.3) 83.8 (+0.3)

Computation ×1.0 ×1.5 ×2.0 ×2.0

Table 13. Comparison of MaskSub variants. We validate drop-
based variants of MaskSub. The sub-branch training improves per-
formance with other drop-methods. But, MaskSub shows the best
improvement with the smallest computations.

Experimental details are in Appendix. These results verify
that MaskSub has remarkable impacts not only on the vision
but also on the language and vision&language domain.

4.8. Extending to drop regularizations
In Section 3.3, we expand MaskSub with drop regulariza-
tions [19, 35]. We validate the performance of MaskSub
variants on a 400 epochs training with Deit-III. We use
masking [15] (50%), dropout [35] (0.2), and drop-path [19]
(baseline + 0.1) for MaskSub, DropSub, and PathSub, re-
spectively. Table 13 shows the results. Variants of MaskSub
outperform the baseline. Among the three, MaskSub shows
the best performance. Also, MaskSub has the lowest com-
putation costs due to MAE [15]-style computation reduc-
tion. Thus, we conclude that MaskSub (50%) is the best
in practice compared to variants with drop regularizations.
Note that Table A.5 in Appendix includes more results.

5. Conclusion
In this work, we have presented a new way to introduce
masking augmentation to supervised learning. Our method,
Masked Sub-branch (MaskSub), is designed to leverage
masking augmentation within a sub-branch, which is sepa-
rated from main training and uses a relaxed loss function.
Our extensive analysis reveals that MaskSub effectively
mitigates malicious effects of heavy masking while acceler-
ating the convergence, yielding superior performance. We
verify MaskSub on various training recipes with diverse
architecture. Notably, MaskSub demonstrates impressive
performance improvements across various scenarios. We
claim that MaskSub is a substantial advancement in train-
ing recipes and contributes to using augmentations.

20454

References
[1] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit:

Bert pre-training of image transformers. arXiv preprint
arXiv:2106.08254, 2021. 1, 2, 5, 6

[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021. 1, 7

[3] Xinlei Chen and Kaiming He. Exploring simple siamese rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
15750–15758, 2021. 3

[4] Xinlei Chen, Saining Xie, and Kaiming He. An empirical
study of training self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9620–9629, 2021. 1, 7

[5] Jang Hyun Cho and Bharath Hariharan. On the efficacy of
knowledge distillation. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 4794–
4802, 2019. 3, 4

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 248–255.
Ieee, 2009. 2, 4

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 2, 8

[8] Xiaoyi Dong, Jianmin Bao, Ting Zhang, Dongdong Chen,
Shuyang Gu, Weiming Zhang, Lu Yuan, Dong Chen, Fang
Wen, and Nenghai Yu. Clip itself is a strong fine-tuner:
Achieving 85.7% and 88.0% top-1 accuracy with vit-b and
vit-l on imagenet. arXiv preprint arXiv:2212.06138, 2022.
2, 5, 6

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 1, 2, 4

[10] Angela Fan, Edouard Grave, and Armand Joulin. Reducing
transformer depth on demand with structured dropout. arXiv
preprint arXiv:1909.11556, 2019. 2, 4

[11] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A
regularization method for convolutional networks. Advances
in neural information processing systems, 31, 2018. 1, 4

[12] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural information
processing systems, 33:21271–21284, 2020. 3

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[15] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16000–
16009, 2022. 1, 2, 3, 5, 6, 8

[16] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classifica-
tion with convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 558–567, 2019. 2

[17] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten
Hoefler, and Daniel Soudry. Augment your batch: Improving
generalization through instance repetition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8129–8138, 2020. 7

[18] Zejiang Hou, Fei Sun, Yen-Kuang Chen, Yuan Xie, and Sun-
Yuan Kung. Milan: Masked image pretraining on language
assisted representation. arXiv preprint arXiv:2208.06049,
2022. 6

[19] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In Pro-
ceedings of the European Conference on Computer Vision,
pages 646–661. Springer, 2016. 2, 4, 7, 8

[20] Xiao Jin, Baoyun Peng, Yichao Wu, Yu Liu, Jiaheng Liu,
Ding Liang, Junjie Yan, and Xiaolin Hu. Knowledge dis-
tillation via route constrained optimization. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 1345–1354, 2019. 3, 4

[21] Kyungyul Kim, ByeongMoon Ji, Doyoung Yoon, and
Sangheum Hwang. Self-knowledge distillation with progres-
sive refinement of targets. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 6567–
6576, 2021. 6

[22] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do
better imagenet models transfer better? In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2661–2671, 2019. 8

[23] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
Proceedings of the IEEE international conference on com-
puter vision workshops, pages 554–561, 2013. 7, 8

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 7, 8

[25] Hyoje Lee, Yeachan Park, Hyun Seo, and Myungjoo Kang.
Self-knowledge distillation via dropout. Computer Vision
and Image Understanding, 233:103720, 2023. 6

[26] Feng Liang, Yangguang Li, and Diana Marculescu. Supmae:
Supervised masked autoencoders are efficient vision learn-
ers. arXiv preprint arXiv:2205.14540, 2022. 3, 5

[27] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:

20455

Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 2, 6

[28] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir
Levine, Akihiro Matsukawa, and Hassan Ghasemzadeh. Im-
proved knowledge distillation via teacher assistant. In Pro-
ceedings of the AAAI conference on artificial intelligence,
pages 5191–5198, 2020. 3, 4

[29] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In 2008
Sixth Indian Conference on Computer Vision, Graphics &
Image Processing, pages 722–729. IEEE, 2008. 7, 8

[30] Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye, and Furu
Wei. Beit v2: Masked image modeling with vector-quantized
visual tokenizers. arXiv preprint arXiv:2208.06366, 2022. 1,
2, 5, 6, 8

[31] Zhiliang Peng, Li Dong, Hangbo Bao, Qixiang Ye, and Furu
Wei. A unified view of masked image modeling. arXiv
preprint arXiv:2210.10615, 2022. 6

[32] Mary Phuong and Christoph H Lampert. Distillation-based
training for multi-exit architectures. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1355–1364, 2019. 1, 2

[33] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 5, 6, 8

[34] Seungwoo Son, Namhoon Lee, and Jaeho Lee. Maskedkd:
Efficient distillation of vision transformers with masked im-
ages. arXiv preprint arXiv:2302.10494, 2023. 2

[35] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014. 2, 4,
8

[36] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021. 1, 2, 4, 5

[37] Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii:
Revenge of the vit. In Proceedings of the European Confer-
ence on Computer Vision, pages 516–533. Springer, 2022. 1,
2, 3, 4, 5, 7, 8

[38] Hugo Touvron, Matthieu Cord, Maxime Oquab, Piotr Bo-
janowski, Jakob Verbeek, and Hervé Jégou. Co-training
2L submodels for visual recognition. arXiv preprint
arXiv:2212.04884, 2022. 2, 5, 7

[39] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and
Serge Belongie. The inaturalist species classification and de-
tection dataset. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8769–8778,
2018. 7, 8

[40] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R Bowman. Glue: A multi-task

benchmark and analysis platform for natural language un-
derstanding. arXiv preprint arXiv:1804.07461, 2018. 8

[41] Xiao Wang, Haoqi Fan, Yuandong Tian, Daisuke Kihara, and
Xinlei Chen. On the importance of asymmetry for siamese
representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 16570–16579, 2022. 3

[42] Longhui Wei, Lingxi Xie, Wengang Zhou, Houqiang Li, and
Qi Tian. Mvp: Multimodality-guided visual pre-training. In
European Conference on Computer Vision, pages 337–353.
Springer, 2022. 6

[43] Yixuan Wei, Han Hu, Zhenda Xie, Zheng Zhang, Yue Cao,
Jianmin Bao, Dong Chen, and Baining Guo. Contrastive
learning rivals masked image modeling in fine-tuning via
feature distillation. arXiv preprint arXiv:2205.14141, 2022.
6

[44] Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet
strikes back: An improved training procedure in timm. arXiv
preprint arXiv:2110.00476, 2021. 1, 2, 3, 4, 6, 7

[45] Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei
Chen, Zhuang Liu, In So Kweon, and Saining Xie. Con-
vnext v2: Co-designing and scaling convnets with masked
autoencoders. arXiv preprint arXiv:2301.00808, 2023. 6

[46] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 418–434, 2018. 8

[47] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and
Quoc Le. Unsupervised data augmentation for consistency
training. Advances in neural information processing systems,
33:6256–6268, 2020. 3

[48] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1492–1500,
2017. 6

[49] Chuanguang Yang, Zhulin An, Helong Zhou, Linhang Cai,
Xiang Zhi, Jiwen Wu, Yongjun Xu, and Qian Zhang.
Mixskd: Self-knowledge distillation from mixup for image
recognition. In European Conference on Computer Vision,
pages 534–551. Springer, 2022. 6

[50] Taojiannan Yang, Sijie Zhu, and Chen Chen. Gradaug:
A new regularization method for deep neural networks.
Advances in Neural Information Processing Systems, 33:
14207–14218, 2020. 7

[51] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. arXiv preprint
arXiv:1812.08928, 2018. 7

[52] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chen-
glong Bao, and Kaisheng Ma. Be your own teacher: Improve
the performance of convolutional neural networks via self
distillation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3713–3722, 2019. 1,
2, 6

[53] Linfeng Zhang, Chenglong Bao, and Kaisheng Ma. Self-
distillation: Towards efficient and compact neural networks.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 44(8):4388–4403, 2021. 6

20456

[54] Xinyu Zhang, Jiahui Chen, Junkun Yuan, Qiang Chen, Jian
Wang, Xiaodi Wang, Shumin Han, Xiaokang Chen, Jimin
Pi, Kun Yao, et al. Cae v2: Context autoencoder with clip
latent alignment. Transactions on Machine Learning Re-
search, 2023. 6

[55] Ying Zhang, Tao Xiang, Timothy M Hospedales, and
Huchuan Lu. Deep mutual learning. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4320–4328, 2018. 2, 7

[56] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In Proceed-
ings of the AAAI conference on artificial intelligence, pages
13001–13008, 2020. 1

[57] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
633–641, 2017. 8

[58] Xiatian Zhu, Shaogang Gong, et al. Knowledge distillation
by on-the-fly native ensemble. Advances in neural informa-
tion processing systems, 31, 2018. 1, 2, 6

20457

	Introduction
	Related Work
	Method
	Masked Sub-branch (MaskSub)
	Analysis
	Expand to drop regularizations

	Experiments
	Training from scratch (pretraining)
	Finetuning
	Hierarchical architecture
	Self-distillation
	Training budget
	Transfer learning
	Beyond vision domain
	Extending to drop regularizations

	Conclusion

