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“The person is standing straight as she 
puts the piece of clothing on the hanger.”

“The person turns around then 
walks out of the bedroom.”

Input #1: Sparse
Motion Sensors

Input #2: Egocentric Videos

Figure 1. We propose EgoLM, a multi-modal language model that unifies egocentric motion tracking and understanding from wearable
sensor data, i.e., sparse motion sensors and egocentric videos.

Abstract

As wearable devices become more prevalent, understand-
ing the user’s motion is crucial for improving contextual
AI systems. We introduce EgoLM, a versatile framework
designed for egocentric motion understanding using multi-
modal data. EgoLM integrates the rich contextual informa-
tion from egocentric videos and motion sensors afforded by
wearable devices. It also combines dense supervision sig-
nals from motion and language, leveraging the vast knowl-
edge encoded in pre-trained large language models (LLMs).
EgoLM models the joint distribution of egocentric motions
and natural language using LLMs, conditioned on observa-
tions from egocentric videos and motion sensors. It unifies a
range of motion understanding tasks, including motion nar-
ration from video or motion data, as well as motion gener-
ation from text or sparse sensor data. Unique to wearable
devices, it also enables a novel task to generate text descrip-
tions from sparse sensors. Through extensive experiments,
we validate the effectiveness of EgoLM in addressing the
challenges of under-constrained egocentric motion learn-
ing, and demonstrate its capability as a generalist model
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through a variety of applications. Project page: https:
//hongfz16.github.io/projects/EgoLM .

1. Introduction
Smart wearable devices, such as Ray-Ban Meta [33] and
Spectacles [48], offer new opportunities for developing per-
sonal AI assistants by capturing the world from the user’s
perspective. They provide real-time egocentric observa-
tions about the user’s environment and actions. On the
other hand, large language models (LLMs) [2, 53] encode
such context through text in their latent space, which can be
leveraged for common-sense reasoning and human under-
standing. The fusion of egocentric perception and common-
sense reasoning presents a unique and exciting opportunity
for advancing contextual AI research, among which, ego-
centric motion understanding is an essential task [41].

However, a key challenge in utilizing egocentric per-
ception is the lack of direct observations of the wearer.
Two types of observations are available from wearable de-
vices, i.e., 1) egocentric videos and 2) sparse motion sen-
sors. Egocentric videos, captured by cameras mounted on
smart glasses, provide rich contextual information of the
wearer’s environment and interactions. But the wearer’s
body is rarely visible in the video, due to constrained cam-
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Table 1. Comparison with Related Works. EgoLM uses novel techniques to effectively unify a wide range of multi-modal motion
understanding tasks. “Vid.”: egocentric videos. “Mot.”: motions. “P.T.”: pre-training.

Method Motion Backbone Type Pre-Training Instruction Tuning Modalities
Tokenizer 3pts 1pt Mot. Vid. Text

T2M-GPT [62] Vanilla VQ-VAE Transformer Text-to-Motion Gen N/A ✓ ✓
MotionGPT [21] Vanilla VQ-VAE Encoder-Decoder LM Text-to-Motion Gen Motion-Text Translation ✓ ✓
LLaVA [28] N/A Decoder-Only LM N/A Image Understanding ✓ ✓

EgoLM (Ours) Motion Product Decoder-Only LM Motion-Aug LM P.T. 3pts/1pt/Vid. Motion Tracking
✓ ✓ ✓ ✓ ✓Quantization(PQ) VAE w/ only Motion Data 3pts/Mot./Vid. Motion Narration

era mounting position and angle. Sparse motion sensors
provide low-level kinematic motion of a few important body
parts, i.e., head motions from glasses and wrists movements
from smart watches. However, they are insufficient to in-
form the full body pose, especially for the lower body.

Our insight is that these two types of indirect obser-
vations are complementary to each other. Egocentric
videos can provide strong clues of the environment, and
help disambiguate the lower body motion. For example,
a laptop placed on an office table is a strong indication that
the wearer is sitting rather than squatting. Sparse motion
sensors, on the other hand, offer precise tracking of impor-
tant body parts, such as hand movements, which can help
in scenarios where no body part is visible in the video. For
example, sparse motion sensors can differentiate between
jumping jacks and simple jumps, where egocentric video
may appear identical.

Another key challenge in egocentric human understand-
ing is aligning motion and language representations, so
that we can leverage the vast contextual knowledge embed-
ded in LLMs to describe motion. While motion signals
are continuous, low-level kinematic representations, natu-
ral language consists of discrete tokens. To bridge this gap,
we treat motion as a form of language. By tokenizing mo-
tions and repurposing a pre-trained LLM to model the joint
distribution of motion and language, we facilitate an effec-
tive alignment between these two distinct representations.

With the above insights, we introduce EgoLM, a ver-
satile framework for egocentric motion understanding that
leverages rich sensor observations and strong contextual
understanding from LLMs. As shown in Fig. 1, EgoLM
takes sparse motion sensor data and egocentric videos as
inputs, and generates motion and natural languages as out-
puts. The framework unifies a range of motion understand-
ing tasks, at both the kinematic and semantic levels. At the
kinematic level, EgoLM can perform motion tracking from
three-points [22] or one-point [25] sensor data, incorporat-
ing egocentric videos for disambiguation. At the semantic
level, EgoLM can generate motion narration from various
combinations of input modalities. More importantly, we
highlight a novel task of motion narration from three-points
and egocentric videos, unique to AR use cases.

Compared with recent VLMs [27, 28], our approach
tackles a more complex and challenging problem involv-
ing more modalities and tasks with greater disparities.
In particular, both our input modalities and output tasks

encode information at varying levels of granularity. To
tackle it, we employ multi-modal multi-task joint train-
ing through instruction tuning. Multiple input modalities
are aligned to LLM latent space with rich contextual infor-
mation, and interleaved between text instructions. Multi-
task training exploits connections between tasks and bene-
fits each other. For instance, three-points motion tracking
bridges the gap between sparse motion sensors and natural
languages, improving the performance of motion narration
from three-points and videos. Moreover, the performance
of motion tokenization and pre-training are crucial for mo-
tion tracking quality. Therefore, we propose the Motion
Product Quantization(PQ) VAE to improve the motion
reconstruction quality, and Motion-Augmented LM Pre-
Training for better motion distribution modeling.

To validate the proposed framework, we perform
extensive experiments on a large-scale motion dataset,
Nymeria [31]. Compared with previous dedicated motion
tracking and understanding models, we show better perfor-
mance in both tasks, under different combinations of input
modalities, proving EgoLM as a generalist model. Our con-
tributions are summarized below.

1) We introduce a egocentric motion generalist model
EgoLM, which integrates a variety of motion understanding
tasks at both kinematic and semantic levels. By leveraging
large language models (LLMs), we aim to enhance egocen-
tric perception, thereby contributing to the advancement of
contextual AI research. 2) We address the challenge of
under-constrained egocentric motion learning by com-
bining two complementary modalities, i.e., sparse motion
sensors and egocentric videos. This new paradigm enables
two unique applications for AR use cases: motion track-
ing and narration from sparse motion sensors and egocen-
tric videos. 3) We employ multi-modal multi-task joint
training to bridge substantial gaps between modalities
and tasks. Extensive experiments validate the effectiveness
of this training strategy.

2. Related Work

Motion Regression. Many efforts are devoted to regress
2D or 3D keypoints from human images or videos [29, 32,
39, 52]. Wearable motion sensors are also used for mo-
tion capture [23, 34, 35, 42, 60]. Recent advancements
in VR/AR have developed a new setup for motion track-
ing [3, 9, 10, 15, 22, 25, 69], i.e., three-points and one-point
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Motion PQ-VAE

1)Motions Tokenization with Product Codebooks
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2)Motion-Augmented LM Pre-Training

EgoLM

3)Multi-Modal Multi-Task Instruction Tuning

Motion Sensor
Encoder
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Instructions

Motion Narrations

Motion-Augmented LM

Figure 2. Overview of EgoLM. Three steps are designed for the training of EgoLM, i.e., motion PQ-VAE training for motion tokenization,
motion-augmented LM pre-training and multi-modal multi-task instruction tuning.

body tracking. In this work, we target motion tracking from
sparse sensors and rich semantics in egocentric videos to
disambiguate under-constrained cases.
Motion Generation. There have been many efforts in gen-
erating motions from various conditions, i.e., action la-
bels [12, 30, 40], natural languages [13, 14, 17, 43, 51,
62–65]. Recently, researchers use LLMs to model the
joint motion-language distribution for text-to-motion gen-
eration [67, 70]. EgoLM also adopts the similar idea. But
in comparison with MotionGPT [21], as listed in Tab. 1,
EgoLM improves the motion tokenizer with PQ-VAE, em-
ploys the more scalable decoder-only LM with motion-
augmented pre-training, does not rely on paired data for
pre-training and supports more egocentric motion tasks and
modalities.
Motion Understanding. There have been many setups in
motion understanding. From the input side, human videos,
either from third-person view [24, 50, 54, 55, 58] or first-
person view [5–7, 59], are used for this task. From the out-
put side, action recognition has been a classic task [5, 50].
More recently, with the development of LLMs, natural lan-
guages are used as output [4, 11, 20, 56, 57]. In EgoLM, we
highlight a new setup of motion narration from sparse mo-
tion sensors and egocentric videos, unique to AR use cases.
Language Models. LLMs have been a huge success in re-
cent years with the large-scale pre-training [2, 44] and align-
ment [1, 37]. To exploit the powerful text generation abil-
ity, image [27, 28] or video understanding [61] are defined
as conditional text generation. LLaVA [28] proposes to en-
code images with pre-trained vision encoders [45] and per-
form visual instruction tuning. EgoLM adopts the similar
idea to tackle the challenge of large modality and task gaps.
As shown in Tab. 1, compared with LLaVA, EgoLM han-
dles a more complex egocentric setup, with more modalities
and tasks with larger disparities.

3. Method
The overview of EgoLM is demonstrated in Fig. 2. There
are three key steps in EgoLM training. In the first step, we
train a motion PQ-VAE as the motion tokenizer (Sec. 3.2).
The second step is motion-augmented LM pre-training for
motion distribution learning (Sec. 3.3). The last step is
multi-modal multi-task joint training to guide the model to

perform various egocentric motion tasks (Sec. 3.4).

3.1. Preliminaries
Language Model. Language models (LMs) model the dis-
tribution of natural languages. It consists of three parts. The
first is a codebook that stores the token embeddings. The
second is the transformer backbone that takes text embed-
dings as inputs. Output features are mapped to probabilities
of the next tokens by the third part of LM head.
Motion Representation. Human motions are represented
as sequences of poses, global translations and rotations de-
fined on the root joint. Each frame of pose is represented by
joint angles, defined on a kinematic tree. For better learning
of motion dynamics, we also include joint angle velocity
in the representation. To avoid the normalization of global
translation, we use the translation velocity V r

t ∈ R3 for
each frame, which can be integrated back to global trans-
lations. To ease the regression difficulty of rotation angles,
we use 6D rotation representations [16] for the root rotation
Rr

t ∈ R6, root rotation velocity Rrv
t ∈ R6, joint angles

Rj
t ∈ R22×6, and joint angle velocity Rjv

t ∈ R22×6. For-
mally, we represent human motions with T frames as M =
{Pt}Tt=1, where Pt = [V r

t ;R
r
t ;R

rv
t ;Rj

t ;R
jv
t ] ∈ R279. For-

ward kinematics (FK) and integration of root velocity are
used to recover the joint positions J = FK(M) ∈ R23×3.

3.2. Motion PQ-VAE
To treat the motion as a form of a language and train with
LMs, a motion tokenizer is in need, which is usually re-
alized by VQ-VAE [36]. However, VQ-VAE often suffers
from inferior reconstruction quality, leading to poor gener-
ation quality. Therefore, we propose Motion Product Quan-
tization VAE (PQ-VAE) for improved motion tokenization
and decoding quality.

As shown in Fig. 3 a), the motion PQ-VAE consists of
a fully convolutional encoder E and decoder D. The fully
convolutional design enables processing motions with arbi-
trary lengths. The encoder embeds raw motion representa-
tion to latent features fm = E(M), where fm ∈ RT/r×c,
M ∈ RT×279. r is the down-sample rate. Then, mul-
tiple product codebooks are learned to quantize the mo-
tion latent features. Product quantization [18] increases the
codebook expressiveness by decomposing the latent space

5346



Reconstruction &
Regularization Loss

M
ot
io
n
Re

pr
es
en
ta
tio

ns

M
ot
io
n
En
co
de
r

M
ot
io
n
De

co
de
r

Product
Quantization

i

j

k

l

1
2
3
4
5
6
…
V
V+1
V+2
…
V+K

Tr
an

sf
or
m
er

La
ye
rs

i

j

k

l

La
ng

ua
ge

M
od

el
He

ad

Cross Entropy
1)Motion PQ-VAE 2)Motion-Augmented LM Pre-Training

Multi-Codebooks
Token Interleaving

Motion Tokens
Augmentation

M
ot
io
n
De

co
de
r

Logits-Driven Motion
Regression Loss

Figure 3. Details of a) Motion Tokenizer (PQ-VAE) and b) Motion-Augmented LM Pre-Training. Product quantization provides
high-fidelity motion tokenization. It is used for motion pre-training with a decoder-only LM, where motion augmentation is implemented.

into a Cartesian product of sub-spaces with lower dimen-
sions. Specifically, the latent feature fm is split equally into
N trucks {fm

n }Nn=1, which are quantized separately by N
codebooks {Zn}Nn=1. Each codebook with K entries is de-
fined as Zn = {zi}Ki=1, where zi ∈ Rc/N . The quantization
process for feature fm

tn at frame t and trunk n is formulated
as itn = Q(fm

tn) = argminzi∈Zn ∥fm
tn − zi∥2. To further

ensure high-fidelity motion tokenization, we also employ
exponential moving average and codebook reset [8]. After
quantization, we obtain the corresponding codebook entry
for the motion latent feature f̂m = {f̂m

t }T/r
t=1 = {zit}

T/r
t=1 .

It is input into the decoder D to decode raw motion repre-
sentation M̂ = D(f̂m).

For PQ-VAE training, two types of training losses are
used. The first is the commitment loss Lc = ∥fm − f̂m∥2
for the codebook learning. The second is motion recon-
struction loss Lr, which consists of raw representation loss
Lm, joint position loss Lj , rotation velocity loss Lv , which
are defined as

Lr = λmLm + λjLj + λvLv

= λm∥M − M̂∥1 + λj∥FK(M)− FK(M̂)∥1
+ λv∥Rrv

1:T−1 − (Rr
1:T−1)

−1Rr
2:T ∥1

+ λv∥Rjv
1:T−1 − (Rj

1:T−1)
−1Rj

2:T ∥1,

(1)

where ∥ · ∥1 is smoothed L1 loss. The total loss is Lpq =
λcLc + λrLr, where λ∗ are manually adjusted weights.

3.3. Motion-Augmented LM Pre-Training
EgoLM aims to empower egocentric motion learning with
strong prior in pre-trained LMs. However, the pre-trained
LM only models the distribution of natural languages.
Therefore, to facilitate motion generation, we perform
motion-augmented LM pre-training to learn motion distri-
butions. The motion augmentation on LM pre-training is
in two ways. The first is to augment LM networks for new
motion tokens. The second is to enforce motion awareness
with motion-augmented next-token prediction training.

Firstly, since the pre-trained LM is designed for text to-
kens only, LM network augmentation for motion tokens is
in need, as shown in Fig. 3. Firstly, we expand the LM code-
book in accordance with the size of motion codebook. The
output shape of the LM head is also expanded accordingly.

To accommodate tokens produced by multiple product
codebooks in motion PQ-VAE, we employ token interleav-
ing to arrange orders of motion tokens. Specifically, tokens
from the n-th codebook is defined as Wn = {itn}T/r

t=1 . The
interleaving operation will rearrange the tokens to W =

{[itn]Nn=1}
T/r
t=1 = {wt}LW

t=1. They are fed into the LM to
learn the motion distribution by next-token prediction [44].
Motion-Augmented Next-Token Prediction. As part of
the next-token prediction loss, we use the common cross
entropy loss Lce to maximize the log-likelihood of the next-
token probability given network parameter Θ, which is for-
mulated as Lce = −

∑LW

i=2 P(wi|w1...wi−1; Θ). Addition-
ally, to bridge the gap between the motion tokens and raw
representations, we further enforce motion awareness with
motion regression loss. However, the token sampling pro-
cess is not differentiable. As a circumvention, we pro-
pose to use predicted logits ln ∈ RT/r×K to blend motion
features fb = {Zn · softmax(ln)}Nn=1, which can be de-
coded to motion representations for regression loss. Specif-
ically, it is defined as Lreg = ∥D(fb) − M∥1. In sum-
mary, the motion-augmented next-token prediction loss is
Lnt = λceLce + λregLreg.

As the by-product of this stage training, we obtain an
auto-regressive motion generator. Given a leading motion
sequence as the prompt, it can sample an arbitrary length
of human motions that continues the given motion. More
importantly, the LM learns human motion distributions and
has the ability of sampling human motions with high qual-
ity, which lays a solid foundation for the next stage.

3.4. Multi-Modal Multi-Task Instruction Tuning
As discussed above, EgoLM addresses a more challenging
problem, involving multiple modalities and tasks with sig-
nificant disparities. On the modality side, in addition to mo-
tion and natural languages, we need to integrate data from
sparse motion sensors and egocentric videos, which capture
information at varying levels of granularity. Furthermore,
EgoLM approaches egocentric motion understanding tasks
from both kinematic and semantic perspectives. To tackle
the challenge, we propose to employ multi-modal multi-
task joint training to bridge the gaps between modalities and
uncover the inherent connections between tasks.

Recent research on multi-modal LLMs has demonstrated
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Figure 4. Details of Multi-Modal Multi-Task Instruction Tuning. Different modalities are encoded separately. Their features are
concatenated in the order of the instruction template and input into the transformer layers of the language model.

Figure 5. Qualitative Results of Three-Points Motion Tracking. Skeletons are color-coded by the joint position errors. Baseline methods
use 3pts as inputs. Ours uses 3pts and videos as inputs.

that instruction tuning [1, 28, 37, 68] effectively aligns dif-
ferent modalities and integrates multiple tasks. In our ap-
proach, various modalities are encoded differently. For mo-
tions and natural languages, both serve as inputs and out-
puts; thus, they are tokenized for auto-regressive modeling.
Sparse motion sensors and egocentric videos are used exclu-
sively as inputs. It is more efficient to encode these into con-
tinuous features that align with the LM latent space. Differ-
ent tasks are differentiated by text instructions. Specifically,
the instruction template typically includes: 1) text instruc-
tions specifying the tasks to perform; 2) inputs relevant to
the task; and 3) expected outputs. Please refer to supple-
mentary material for instruction examples and explanations.

A detailed illustration of how we organize differ-
ent modalities of data is shown in Fig. 4. The en-
coded three-points 6-DoF poses features are placed at
<TP Placeholder>. The placeholder for egocentric video
features is <CLIP Placeholder>. Texts are tokenized and
embedded to feature vectors through LM embedding. Ego-
centric videos are sampled to sequences of frames and en-
coded by CLIP image encoder [45], which are further pro-
jected by linear layers to the LM feature space. Similarly,
sparse motion sensor data, e.g., sequences of three-points
6-DoF poses, is encoded by a fully convolutional encoder.
Lastly, all the encoded features are concatenated in an inter-
leaved way and input into LM transformer layers.

With instruction templates defined, we can facilitate joint
training across the following tasks: a) motion tracking with
three-points and egocentric videos, b) motion narration us-
ing three-points and egocentric videos, c) text-to-motion
generation, and d) motion-to-text generation. During train-
ing, these four tasks are randomly sampled with equal prob-
ability. The loss function is the motion-augmented next-
token prediction loss Lnt, defined in Sec.3.3.

During inference of motion narration, natural language
is sampled in the same manner as regular LMs. For mo-
tion tracking, our auto-regressive modeling offers the ad-
vantage of online inference. At each new time step, the
incoming data is concatenated with historical data and fed
into EgoLM. A single feed-forward inference is then per-
formed to obtain the motion token for the current time step.
For further details, please refer to the appendix.

4. Experiments
4.1. Experiment Setup
Dataset. We use the Nymeria dataset [31] to train and vali-
date our method. The dataset includes: a) full-body motions
captured by the Xsens Mocap system [47], b) egocentric
videos recorded with Aria glasses [49], and c) motion nar-
rations by human annotators. Three-point 6-DoF poses are
derived from ground truth joints for comparison with prior
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Table 2. Quantitative Results of Motion Tracking. EgoLM per-
forms comparably with task-specific algorithms. Incorporating
video input can outperform methods without. “Full”, “Upper”,
“Lower” are joint position errors in mm. “J.A.”, “Root” are joint
angle errors for full body and root joint in degree. *We concatenate
CLIP embeddings with three-points input to adapt AvatarPoser.
†We replace three-points with one-point to train AvatarPoser. We
highlight the first and second scores.

Method Input Modality Full Upper Lower J.A. Root3pts 1pt Video

AvatarPoser [22] ✓ 85.89 52.78 165.18 12.41 14.78
Bodiffusion [3] ✓ 79.80 52.79 152.68 12.74 13.09
Ours ✓ 83.88 54.06 148.37 13.31 14.13

AvatarPoser* [22] ✓ ✓ 127.08 100.02 190.32 18.90 21.80
Ours ✓ ✓ 73.38 49.67 124.58 12.48 13.23

AvatarPoser† [22] ✓ 129.23 94.19 192.34 16.55 21.60
EgoEgo [25] ✓ 132.16 100.02 190.32 18.90 21.80
Ours ✓ 127.45 97.87 174.92 16.97 20.57

Ours ✓ ✓ 106.95 83.73 141.26 14.67 19.04

work. The motion tracking training set comprises 147.89
hours of data, with a test set of 41.93 hours. For motion
understanding, the training set includes 16, 673 segments
(totaling 15.77 hours), while the test set contains 7, 468 seg-
ments (totaling 6.76 hours).
Training Details. Motion PQ-VAE utilizes two codebooks,
each containing 8, 192 entries with a code dimension of 64.
The down-sample rate is set to r = 4. For motion tracking,
all experiments use a batch size of 60 frames (equivalent to
1 second), with random rotation augmentations. We employ
GPT-2 Medium [44] as the language backbone.
Evaluation Protocols. For motion tracking, we calculate
joint position errors (for full, upper and lower body), joint
angle errors (for full body and root joint). For motion nar-
ration, the outputs are natural languages. Therefore, we
adopt NLP metrics, including BERT [66], BLEU [38], and
ROUGE [26] scores. For more details about the evaluation
protocols, please kindly refer to the appendix.

4.2. Motion Tracking
Quantitative Results. We present the quantitative results
of motion tracking in Tab. 2. All methods are evaluated
using batch inference, with the size of 60 frames. We
assess various input combinations from three modalities,
i.e., three-points 6-DoF poses (“3pts”), one-point 6-DoF
poses (“1pt”) and egocentric videos (“Vid”). In the 3pts-
only and 1pt-only settings, EgoLM demonstrates compet-
itive performance compared with task-specific algorithms,
with large advantages in lower body tracking performance,
highlighting the effectiveness of LMs for precise motion
tracking. Additionally, we incorporate egocentric videos
to provide contextual information for motion tracking. For
three-points tracking, this additional modality results in a
10 mm improvement in full-body joint error. The adapted
AvatarPoser* fails to exploit the video input, highlighting
the challenge in using modalities with large disparities. For

Table 3. Quantitative Results of Motion Narration. Different
input modality combinations are tested. All metrics are higher the
better. “Mot” stands for motion. “Vid” stands for videos. We
highlight the first scores for different settings.

Method Input Modality Bert Bleu@1 Bleu@4 RougeL3pts Mot. Vid.

TM2T [14] ✓ 11.08 40.11 8.99 30.70
MotionGPT [21] ✓ 14.09 42.22 10.31 32.33
Ours (M2T&T2M) ✓ 15.90 42.68 11.06 33.71
Ours (MV2T&T2M) ✓ ✓ 20.32 45.33 12.80 35.31

Ours (TP2T) ✓ 11.94 41.70 9.85 31.47
Ours (V2T) ✓ 16.62 43.03 11.34 33.13
Ours (TPV2M + MV2T) ✓ ✓ 19.97 45.41 12.81 35.04

Ours (TPV2T) ✓ ✓ 18.38 44.55 12.12 33.80
Ours (Joint Training) ✓ ✓ 19.40 45.45 12.74 34.82

one-point tracking, the inclusion of egocentric videos leads
to a 20 mm reduction in joint error, underscoring their ef-
fectiveness in disambiguating the ill-posed problem.
Qualitative Results. The results and comparisons for three-
point motion tracking are presented in Fig. 5. Due to the in-
herent ambiguity, AvatarPoser incorrectly generates stand-
ing poses for squatting sequences (second example). BoD-
iffusion, while capable of producing correct results in some
instances (e.g., the squatting example), also faces ambiguity
issues, as demonstrated in the bending-down sequence (first
example). These examples highlight the importance of con-
textual consideration in motion tracking for effective dis-
ambiguation. Our full model reliably performs three-point
body tracking in these challenging scenarios.

The results for one-point motion tracking are presented
in Fig. 6. This task is particularly challenging for upper
body tracking. In the first example, the upper body mo-
tions generated by EgoEgo significantly diverge from the
ground truth. In the second example, EgoEgo mistakenly
produces sitting poses for standing frames and vice versa,
showing the ambiguity issue. In contrast, egocentric videos
not only help to resolve ambiguity issues but also provide
clues about hand positions. In the first example, when hands
are visible in the frames, EgoLM leverages vision clues to
generate accurate arm movements. More visual results are
provided in the appendix.

4.3. Motion Narration

Quantitative Results. We report the quantitative results
of motion narration in Tab. 3. This task involves three in-
put modalities, i.e., three-points (“3pts”), motions, and ego-
centric videos (“Vid”), with various combinations evalu-
ated. We first compare EgoLM with two existing motion
narration methods that utilize motion as their sole input,
i.e., TM2T [14] and MotionGPT [21]. TM2T trains lan-
guage generation from scratch and consequently exhibits
poor performance. MotionGPT leverages a pre-trained T5
model [46]. EgoLM(M2T&T2M) outperforms these meth-
ods, benefiting from the scalability of its decoder-only ar-
chitecture. When we combine egocentric videos with mo-

5349



Figure 6. Qualitative Results of One-Point Motion Tracking. Skeletons are color-coded by joint position errors. EgoEgo only uses
one-point as inputs. Ours includes egocentric videos as inputs.

Ours: The human is standing in the bedroom to fold the piece of clothing. The human is 
folding the piece of clothing with his left and right hand. The person is resting his left 
and right foot on the floor.

Ours: The person is standing still in the living room while talking to her peer. The 
human lifts both of his arms and then moves both hands in circular motion as she 
gesticulates. The human rests both of his feet on the ground.

Ours: The person is standing by the refrigerator while putting the pack of food inside 
the freezer. The human puts the pack of food inside the freezer with her right hand as 
her left hand holds the refrigerator door. The human is standing with both feed fixed on 
the floor.

MotionGPT: The person is standing still in front of the sofa while holding a piece of 
clothing. The human's left arm is bent and raised upward with his left hand holding a 
piece of clothing. The human is standing with both legs apart and both feet resting on 
the floor.

TM2T: The person is sitting at the table as he lays her body on the sofa then leans 
backwards while talking and looking at her colleague. The person is resting both of her 
arms on her lap, lifts and bends both of her arms as she sits down on the sofa. The 
person is sitting on the sofa with both legs bent and slightly spread apart.

MotionGPT: The person is standing straight at the living room … The human has both 
arms naturally hanging at her sides then she bends, extends and raises her right arm 
and throws the object on the living room with her right hand. … The human has both 
feet fixed on the floor with both legs stretched upright then she slightly bends and 
spreads both of her legs widely apart.

TM2T: The person is standing still in front of the cabinet while making a hanger. The 
person bends and raises her left hand then lays the hanger on her side of her chest then 
spreads both arms on her side below her chest. The person stands with both legs 
stretched upright and both feet fixed on the floor.

MotionGPT: The person stands in front of the cabinet to remove the clothes from the 
hanger. the human raises both of his arms to remove a piece of clothing from the 
hanger. the human stands with both feet fixed on the floor.

TM2T: the person stands up straight as she holds the pillow and place them on the 
table. the person then arrange the pillow in the middle of the room with her right hand 
and places it on the table, while her left arm is slightly bent in front as she holds and 
arrange the pillow in the direction of the table.

Figure 7. Qualitative Results of Motion Narration. We use green to highlight correct parts and red for mistakes.

tion inputs (MV2T&T2M), we achieve the best overall per-
formance.

Using motion as input requires precise motion tracking,
which is not always feasible, prompting us to explore sen-
sor inputs instead. We tested two variants: three-points-only
(TP2T) and egocentric videos only (V2T). The TP2T vari-
ant demonstrated a noticeable drop in performance com-
pared to the motion-only version, as three-points provide
limited information about body motion. Conversely, the
V2T variant outperformed the motion-only version because
egocentric videos capture relevant environmental context
for our motion narrations. This underscores the significance
of egocentric videos in understanding motion.

We then evaluate our highlighted setup of combining
three-points and egocentric videos for motion narration.
There are three approaches to achieve this. The first in-
volves integrating two existing setups: 1) three-points mo-
tion tracking and 2) motion-to-text generation (TPV2M +
MV2T). This variant shows a slight performance drop com-
pared to MV2T due to error accumulation and requires a
time-consuming two-pass inference. The second approach
directly trains a three-points plus egocentric videos to text
generation model (TPV2T) using our proposed multi-modal
instruction tuning. While this outperforms using only ego-
centric videos or motions, it still lags behind the MV2T

variant due to missing lower body information. To address
this, we propose joint training of four tasks to establish con-
nections between three-point poses and motion narrations,
achieving optimal performance in a single forward pass for
this new task.
Qualitative Results. We show three examples of mo-
tion narration in Fig. 7. TM2T and MotionGPT use full
body motions as inputs, while our model incorporates three-
points and egocentric videos. TM2T’s language gener-
ation is trained from scratch, leading to frequent errors
and nonsensical outputs. MotionGPT generates reason-
able descriptions; for instance, in the third example, it cor-
rectly identifies the motion as “removing a piece of cloth-
ing from the hanger”. However, our target motion narration
is closely tied to environmental context, which TM2T and
MotionGPT struggle with due to the absence of visual sig-
nals. In contrast, although EgoLM does not directly use
motions as inputs, it jointly models the distributions of dif-
ferent modalities, enabling it to generate accurate narrations
based on varying scenarios. Please refer to the appendix for
more qualitative results results.

4.4. Ablation Study

Window Size of Motion Tracking. As shown in Tab. 4,
increasing the window size for three-points motion track-
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Table 4. Ablation Study on Window
Size for Motion Tracking.

Win Vid Full Upper Lower J.A.

60 83.88 54.06 148.37 13.31
120 79.61 52.66 138.87 13.01
60 ✓ 73.38 49.67 124.58 12.48

120 ✓ 72.76 49.20 123.09 12.52

Table 5. Ablation Study on Reconstruc-
tion Results of Motion PQ-VAE. [mm]

PQ CB Dim MPJPE PA-MPJPE ACCEL

✗ 2048 512 51.60 37.55 1.09
✓ 2048 512 39.63 29.77 0.71
✓ 16384 256 39.13 29.78 1.08
✓ 16384 64 34.49 26.83 0.67

Table 6. Ablation on the
size of LM.

GPT-2 Size Medium Large

Bert↑ 18.38 19.56
Bleu@1↑ 44.55 44.48
Bleu@4↑ 12.12 12.49
RougeL↑ 33.80 35.21

Table 7. Ablation on next-
token prediction loss Lnt.

Metrics w/o Lreg w/ Lreg

Full 74.10 73.38
Upper 50.38 49.67
Lower 125.89 124.58
J.A. 12.50 12.48

Input Prompt:
The human leans forward 
and then turns right while 
walking towards the 
kitchen sink. The person 
holds and close the kitchen 
drawer with her left hand 
while the right arm rest 
beside her. The person 
bends her both legs and 
then steps backward.

Input Prompt:
The person walks toward 
the kitchen gas range and 
then grabs the fork while 
her left arm rest beside 
her. The person is walking 
forward to kitchen gas 
range with her both feet 
and then steps sideward 
with her right and left foot
respectively.

b)Motion Prediction Resultsa) Text-to-Motion Generation Results
Figure 8. More Applications of EgoLM. a) Qualitative results of text-to-motion generation. b) Qualitative results of motion prediction.

ing from 60 to 120 frames results in an improvement of 4.2
mm in joint position errors. This enhancement is expected,
as a larger window size provides more context, aiding dis-
ambiguation. When egocentric videos are included, further
improvements are observed. Notably, using 60 frames with
egocentric video outperforms using 120 frames alone, sug-
gesting that the context provided by egocentric videos is
more effective than simply increasing the window size.
Motion PQ-VAE. Ablation studies on motion PQ-VAE are
reported in Tab. 5. “PQ” indicates whether product quanti-
zation is used. “CB” denotes the number of codebook en-
tries. The first two lines indicate that significant improve-
ments can be achieved with product quantization. Addi-
tionally, increasing the number of codes and reducing code
dimensions yields further enhancements.
Language Model Size. We use GPT-2 Medium (345M) for
most of our experiments to maintain efficiency. To further
assess the potential of EgoLM in scaling up to larger LMs,
we train with GPT-2 Large (1.5B) and report performance
on TPV2T in Tab. 6. The improved scores indicate EgoLM
is a scalable and versatile framework.
Motion-Augmented Next-Token Prediction. To justify
the usage of motion regression loss Lreg in next-token pre-
diction training, as introduced in Sec. 3.3, we report the per-
formance of not using Lreg in three-points motion tracking
in Tab. 7. The improved score indicates the necessity and
effectiveness of such design.

4.5. More Applications
Text-to-Motion Generation. As part of our joint train-
ing, EgoLM is capable of generating motions from texts, as
shown in Fig. 8 a). Even with lengthy prompts describing
the upper and lower body separately, our model successfully
generates motions that align with the inputs.
Motion Prediction. As a by-product of the motion pre-
training, EgoLM can function as a motion predictor. As

shown in Fig. 8 b), given motion prompts (the red skeleton
in the left), subsequent motions can be randomly sampled.
We show three different samples in different colors.

5. Discussion
We propose EgoLM, an egocentric motion generalist
model, that empowers egocentric motion understanding us-
ing LLMs. To address the challenge of limited wearer
observation in egocentric perception, EgoLM integrates
two complementary modalities to disambiguate the under-
constrained scenarios. We also introduce multi-modal
multi-task joint training to bridge gaps between different
modalities and tasks, thereby implicitly connecting them
and improving individual task performance. We hope our
exploration of the fusion between egocentric perception and
LLMs will inspire future research in contextual AI.
Limitations. Firstly, the motion tokenizer introduces re-
construction errors and bounds motion tracking perfor-
mance. Secondly, for motion narration, each video frame
is compressed by the CLIP encoder into a one-dimensional
vector, making it difficult for the model to accurately iden-
tify the objects the person is interacting with. Furthermore,
as commonly observed in language models [19], EgoLM
also experience the hallucination problem.
Potential Societal Impact. While contextual AI presents
opportunities for societal advancement, the collection and
analysis of human data may raise privacy concerns.
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