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Figure 1. Overview of our Turbo3D text-to-3D system. Turbo3D generates high-quality 3D Gaussian Splatting (3DGS) assets from
user prompts in less than 1 second on a single A100 GPU. It’s a two-stage pipeline consisting of a highly efficient latent-space few-step
multi-view (MV) generator and single-step MV reconstructor. Note that we visualize latents as RGB images and 3DGS assets as point
clouds in the pipeline figure for clarity.
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Abstract

We present Turbo3D, an ultra-fast text-to-3D system capa-
ble of generating high-quality Gaussian splatting assets in
under one second. Turbo3D employs a rapid 4-step, 4-view
diffusion generator and an efficient feed-forward Gaussian
reconstructor, both operating in latent space, as shown in
Fig. 1. The 4-step, 4-view generator is a student model
distilled through a novel Dual-Teacher approach, which en-
courages the student to learn view consistency from a multi-
view teacher and photo-realism from a single-view teacher.
By shifting the Gaussian reconstructor’s inputs from pixel
space to latent space, we eliminate the extra image decod-
ing time and halve the transformer sequence length for max-
imum efficiency. Our method demonstrates superior 3D
generation results compared to previous baselines, while
operating in a fraction of their runtime.

1. Introduction

The recent advances in image generative models allow users
to generate detailed outputs from just a text prompt. While
initial denoising diffusion-based methods [7, 34, 36, 37, 44,
50] enabled impressive photo-realistic generation, recent
techniques [19, 22, 23, 39, 45, 60, 61] have significantly im-
proved inference efficiency of such models, allowing high-
fidelity generation in the blink of an eye. Unfortunately,
these advances in generative 2D modeling methods have not
yet been matched in the 3D domain, where ultra-fast real-
istic 3D generation remains a challenge. In this work, we
seek to bridge this gap, and present Turbo3D, a text-to-3D
generative model that can synthesize detailed 3D outputs in
a fraction of a second.

The existing approaches for text-based 3D inference can
be categorized as either generative [10, 17, 24, 30, 57, 63]
or optimization-driven [18, 32, 55]. The latter class of
methods optimize 3D representations by ‘distilling’ pre-
trained 2D diffusion models [32]. While this approach
can yield decent 3D outputs, it is highly inefficient, typi-
cally requiring several minutes or even hours to output a
single 3D representation. The alternative paradigm is to
learn a generative model that directly outputs 3D represen-
tations. While initial methods [10, 28] investigated repre-
sentations such as point clouds and SDFs, the limited avail-
ability of 3D data restricted the generation quality. Recent
approaches [9, 17, 24, 40, 41] have instead advocated for
learning generative models of multi-view images (followed
by deterministic 3D reconstruction), as these can be initial-
ized from pre-trained 2D generative models. While these
methods have resulted in impressive generations, the multi-
view finetuning on synthetic data does inhibit their gener-
ation quality. More crucially, their inference efficiency is
restricted by the iterative denoising process required for the

text-conditioned multi-view generation.

In this work, we follow the paradigm of text-to-3D via
multi-view generation, and aim to improve the efficiency
of the underlying components to enable ultra-fast genera-
tion, while enhancing the fidelity of the generated outputs.
Inspired by the recent progress in reducing inference time
by distilling 2D diffusion models into one-step or few-step
generators [38, 39, 45, 61], we adapt these for multi-view
3D generation. We first train a many-step text-to-multi-
view diffusion model and then distill it into a much faster
4-step generator using the distribution matching distillation
(DMD) loss [61]. However, we find that this process leads
to a significant quality degradation, as it fails to capture the
full range of modes present in the multi-view teacher model.
To overcome this, we propose to extend the DMD pipeline
to incorporate another single-view teacher — a 2D denois-
ing diffusion model trained on a large set of high qual-
ity aesthetic images. Our few-step multi-view generator is
thus trained with a dual-teacher distillation approach, where
the multi-view DMD loss helps our model learn multi-view
consistency, and the single-view DMD loss ensures high-
fidelity outputs. To further improve the 3D generation effi-
ciency, we note that our multi-view generator outputs latent
representations (and not pixels) for the multi-view images.
We build on this insight to adapt a prior multi-view to 3D re-
construction approach [62] to instead consume multi-view
latents as input, and show that this improves the reconstruc-
tion efficiency without any performance loss.

Our overall system thus combines an efficient few-step
multi-view generator with a multi-view latent to 3D model
to enable ultra fast 3D generation. We train our model on
the subset of Objaverse dataset [3, 4], which contains about
400k instances with Cap3D text captions [25]. We show
that our proposed Turbo3D is able to produce high-quality
3D assets in less than one second (see Fig. 1), and also
achieves comparable quality with previous state-of-the-art.

2. Related Work

In this section, we discuss the closely related prior feed-
forward 3D generation methods. Optimization-based meth-
ods [18, 32] is out of this work’s scope. We review feed-
forward 3D generative models in the following three cate-
gories: 1) methods that directly generate full 3D represen-
tation encoding geometry and appearance; 2) methods that
generate shapes and then generate the textures; 3) methods
that generate multi-view (MV) images followed by recon-
struction. We also review the diffusion distillation literature
which our method is built upon.

2.1. Directly Genereating Full 3D Representation

Several prior methods [1, 10, 30, 46, 48, 54, 58] have been
introduced that directly generate 3D representations encod-
ing both geometry and texture, e.g., implicit fields [10],
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point clouds [30], and triplanes [54]. This line of work
typically have to preprocess the source 3D data (meshes or
multi-view images) into the target representations for gener-
ative models in a lossy fashion, hence limiting their quality
and scalabilty.

Alternative methods [1, 46, 48, 58] have been proposed
to get rid of the lossy preprocessing. They implicitly bake
a 3D generative process into a multi-view diffusion frame-
work, creating a single-stage 3D generative model. How-
ever, trained only on 3D data, they suffer from the is-
sue of limited generalization, lower pixel quality and re-
duced understanding of complex text prompts, compared
with methods leveraging powerful pretrained text-to-image
models [17, 21].

Our method leverages the strong priors in a pretrained
image generative model, but we go a step further by distill-
ing the slow teacher model into a fast student generator for
ultra-fast text-to-3D.

2.2. Shape Generation + Texture Generation

Recent advancements in 3D content creation have intro-
duced innovative methods [42, 57, 63] that focus on gen-
erating high-quality 3D shapes first, followed by genera-
tive texturing [2, 35], rather than creating both simulta-
neously. CLAY [63] offers a framework using a multi-
resolution Variational Autoencoder (VAE) and a latent Dif-
fusion Transformer (DiT) to initially create detailed 3D ge-
ometries from inputs like text and images, before applying
high-resolution physically-based rendering (PBR) textures.
Direct3D [57] enhances scalability in image-to-3D genera-
tion by improving the performance of 3D VAE and DiT for
generating 3D shapes, subsequently adding textures.

However, besides the challenge of learning a compact
latent space suitable for generation, these methods are also
usually slow as a result of the two diffusion models - one for
shapes and the other for textures. In contrast, our Turbo3D
only have one diffusion model for generating multi-views
and is fast once distilled, while the reconstructor is deter-
ministic and hence fast.

2.3. MV Generation + MV Reconstruction

A large body of the 3D generation work [17, 20, 24, 41]
focus on leveraging multi-view generation and reconstruc-
tion to enhance quality and efficiency. Instant3D [17] of-
fers a fast method for creating high-quality 3D assets from
text prompts by combining sparse-view generation with
a transformer-based reconstructor [8, 53, 56, 62], signifi-
cantly reducing inference time. MVDream [41] employs
a multi-view diffusion model to improve consistency and
stability in 3D generation, integrating 2D and 3D data.
SyncDreamer [24] enhances multiview-consistency from
a single-view image using a 3D-aware feature attention
mechanism. One-2-3-45 [20] introduces an efficient ap-

proach to single image 3D reconstruction without extensive
optimization, producing consistent 3D meshes. SV3D [51]
utilizes a latent video diffusion model for novel multi-view
synthesis, incorporating explicit camera control to improve
3D reconstruction quality.

We follow the same approach of reconstructing gener-
ated multi-views to create 3D assets in this work, but we
focus on improving the efficiency of such systems. With
our novel Dual-Teacher Distillation and Latent GS-LRM
components, our Turbo3D manages to be at least an order
of magnitude faster than these baselines while maintaining
competitive quality. Concurrent work GECO [52] also use
diffusion distillation to speed up image-to-3D. However, we
differ in our dual-teacher distillation design with focus on
text-to-3D. Our pipeline is also simpler and avoids the cum-
bersome mesh reconstructions for 3D distillation in GECO.

2.4. Diffusion Distillation

Recent progress in diffusion models have focused on im-
proving the efficiency of image generation by reducing the
number of sampling steps required, leading to the develop-
ment of several innovative distillation techniques [26, 27,
29, 38, 39, 45, 59-61]. Methods like Improved Rectified
Flows [15] and InstaFlow [23] straighten the ODE trajec-
tories, making them easier to approximate with a one-step
student model. Consistency Models [45] train student gen-
erators to map any point on the teacher’s ODE trajectory to
a consistent target, enabling one-step and few-step image
generation. Distribution Matching Distillation (DMD) [61]
trains a one-step generator by minimizing the reverse KL di-
vergence between the data distribution and the generator’s
output distribution [5, 26, 55]. Building on this, DMD?2 [60]
integrates GAN losses [6] and extends the method to multi-
step generators, further enhancing generation quality.

However, most of existing approaches focus on distill-
ing pretrained 2D image diffusion models. In our work, we
adopt the popular DMD [61] approach and extend it to the
multi-view domain. Distilling multi-view models presents
unique challenges, such as increased mode collapse due to
fine-tuning and distillation processes. To address this issue,
we introduce a novel dual-teacher distillation technique, en-
abling swift, photorealistic multi-view generation.

3. Background
3.1. Multi-view Diffusion Model

Diffusion models generate data from noise by reversing a
forward noising process. Given a data sample 2o ~ p(zo)
from the data distribution, the forward process progres-
sively adds Gaussian noise over 1" timesteps. At timestep
t, the noised distribution conditioned on z is given by:

q(z4|m0) = N (4 0, B71), (1)
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where a; and ; are timestep-dependent constant that are
specified by the noise schedule [12, 44]. The diffusion
model ¢y is trained to reverse this noising process by learn-
ing to predict the added Gaussian noise €: :

L(0) = Elle — eg (x4, 1) || )

There exists other formulations, in which the diffusion
model learns to predict the clean input x( directly [11], or
a combination of x( and € [38]. Regardless of the specific
prediction target, the outputs of these models can be related
to the score function, which is the gradient of the log prob-
ability density of the data distribution [44]:

Te,t Tr — oo (T, t
se(xt,t):v_r,,logp(xt):—60( t ):_ t o (e, 1)

Bt B?

3)
where €y [7] and xy [11] represents noise and data predic-
tion diffusion models, respectively. In our paper, we adopt
the noise prediction scheme but our method generalizes to
any formulations.

In multi-view diffusion models, the generation of a 3D
scene is conditioned on a text prompt, enabling the joint de-
noising of multiple views to produce a set of 3D-consistent
output images [17, 41]. Specifically, given a text prompt
c and a set of multi-view images {z°}X | where K is the
number of view, the multi-view diffusion model learns to
predict the added noise across all views simultaneously.
The training objective is formulated as:

Elle — ea({xi}isy,t, o)l 4)

where e represents independent Gaussian noise with the
same variance applied to each view. At inference time, the
generation starts from a set of fully noisy multi-view im-
ages {24} X | sampled from a standard Gaussian distribu-
tion. The multi-view diffusion model iteratively generate a
sequence of cleaner multi-view images. Various diffusion
samplers [7, 43] can be employed during this process to op-
timize generation speed and quality.

3.2. Distribution Matching Distillation

Distribution Matching Distillation (DMD) is a widely used
diffusion distillation technique that converts teacher diffu-
sion models into a student generator requiring significantly
fewer sampling steps [60, 61]. The DMD approach trains
the student generator Gy by minimizing an approximate re-
verse KL divergence between the smoothed student’s output
distribution (denoted as pr,) and the smoothed data distri-
bution (denoted as pPreq)):

Dfake (xt)

——=)). O
Preal (Z1)

Let the score functions of the data distribution and the stu-
dent’s output distribution be denoted as S, and Sgae, re-
spectively. The gradient of this KL divergence can be ef-
fectively approximated by the difference between these two

LDMD(Q) = DKL(pfakerreal) =Eop (lOg(

score functions:

V()LDMD(G) ~ E

_/(Sreal(F(GG(G),t),t)

dGy(e)

20 de

— Sfake (F(GH(E)v t), t))

(6)

where F' represents the forward diffusion process defined in
Eq. 1. The student generator can be adapted for a multi-step
generation setting by replacing the pure noise input € with
a partially noisy image x; [60]. During training, the data
distribution’s score function is initialized from the teacher
diffusion model and kept fixed, while the student’s output
distribution score function is dynamically trained using the
student’s output and a denoising loss (Eq. 4).

4. Method

In this section, we provide the technical details of our
Turbo3D text-to-3D system, which features a highly effi-
cient multi-view (MV) generator and reconstructor. We be-
gin by describing our novel DualTeacher Distillation ap-
proach; it creates a rapid MV generator by jointly distill-
ing knowledge from both a multi-view (MV) teacher and
a single-view (SV) teacher. Following this, we discuss the
latent-space GS-LRM that instantly lifts the generated MV
latents into high-quality 3D Gaussians.

4.1. Dual-teacher Distillation for MV Diffusion

Leveraging a multi-step multi-view diffusion in a text-to-3D
generation process can be inefficient due to repeated eval-
uations of the diffusion denoiser in the sampling process.
To speed this up, one approach is to use diffusion distilla-
tion [60, 61] to train a single-step or few-step MV generator.

However, we find that naively applying diffusion distil-
lation methods to a MV teacher can cause the student model
to generate overly simplistic and cartoonish appearance,
which closely resembles the 3D Objaverse dataset used dur-
ing MV teacher finetuning and distillation [3] (shown in
Fig. 6). We call this phenomenon ‘compounding mode
collapse’ ; this happens because both finetuning and distil-
lation sacrifices generation diversity for efficiency. As the
MYV teacher is already biased towards synthetic Objverse-
style appearance, further distilling it will have compound
effect of locking the distilled generator in the mode of Ob-
javerse data that are far from the modes of photorealistic
natural images.

To address this issue, we propose to use dual teachers in
the distillation process: one MV teacher to teach the student
model about multi-view consistency, and one SV teacher to
teach about each views’ photo-realism. We illustrate this
Dual-teacher Distillation algorithm in Fig. 2. Concretely,
this is formulated as:
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Figure 2. Dual-teacher distillation framework in our Turbo3D. Note that latents are visualized as RGB images for clarity. We aim
to distill a multi-step multi-view teacher generator (right, green) into a few-step multi-view generator (left, blue). Our few-step MV
student generator is conditioned on Pliicker embeddings for better 3D awareness. Similar to [60], we optimize the student generator using
distribution matching objective (DMD loss) and train the fake score function to model the distribution of samples produced by the student
generator. In particular, we integrate two teacher models: multi-view teacher and single-view (SV) teacher to enhance both multi-view
consistency and photorealism. The MV score functions take a set of images of one object as input and calculate the MV DMD loss, while
the SV score functions treat each image separately and calculate the SV DMD loss.
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where pMY (z¢), pSY, (z+) represent MV and SV teachers, re-

spectively; A is the loss weight balancing the influence of
MYV and SV teachers on the distilled student model; K = 4
is the number of views. We set A to 1 in our experiments. As
demonstrated in Fig. 6, having the additional SV teacher in
the distillation process effectively addresses the compound
mode collapse issue, because it tries to pull each view to
look like natural images.

4.2. Latent GS-LRM for MV Reconstruction

To reconstruct 3D from the generated MV latents, one
straightforward approach is to decode them into multi-view
images, and then use the pixel-space GS-LRM [62] to pro-
duce the 3D Gaussians. However, such an approach can
suffer from efficiency and memory issue when scaling to
high resolution due to the poor performance of Conv2D op-
erators in VAE decoder [13].

We propose to skip the VAE decoding and directly in-
put the generated MV latents to a latent GS-LRM for best
efficiency. To train such a model, we supervise the recon-
structed Gaussians with pixel-space novel-view rendering
losses (¢2 and perceptual losses as in [62]). We show that
replacing pixel-space GS-LRM with a latent one does not
affect the quality of generated assets in Tab. 3 and Fig. 3,
while being faster.

a corgi wearing a v;

top hat ~
an origami |\
bulldozer sitting on

the ground

Pixel GS-LRM

Latent GS-LRM

Figure 3. We compare the renderings of pixel GS-LRM and la-
tent GS-LRM. Latent GS-LRM achieves comparable reconstruc-
tion quality as pixel GS-LRM.

5. Experiments

In this section, we first describe our experimental setup
(Section 5.1). We then compare our method with state-of-
the-art text-to-3D baselines (Section 5.2). Finally, we ablate
each component of our framework to showcase their effec-
tiveness (Section 5.3).

5.1. Experimental Setup

Datasets. We use the Objaverse dataset [3] to train both our
multi-view generation model and multi-view reconstruction
model. We scale the objects and center them to fit into a
cube [—1, 1]3. For the generation task, we render the dataset
at a fixed elevation (20 degrees) and 16 equidistant azimuths
to achieve a good coverage of the object. We render using
a field of view 50° at a distance of 2.7 and uniform light-
ing. For the reconstruction task, we render 32 views ran-
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domly placed around the object with a random distance in
the range of [1.5, 2.8]. We render a total of 730K objects.
Baselines. We adopt Instant3D [17] and LGM [47] as
our baseline text-to-3D methods. However, since the field
of fast text-to-3D is relatively underexplored, we also in-
clude recent state-of-the-art fast image-to-3D methods Tri-
poSR [49] and SV3D [51] as baseline methods. For a fair
comparison, we use a popular few-step text-to-image model
Flux [14] to generate an input image first and then feed it to
the image-to-3D models. The inference time of image-to-
3D models is a summation of the two parts.

Metrics. We adopt the CLIP score [33] and VQA score [16]
to assess the semantic alignment between the generated re-
sults and text prompts. We use 400 text prompts from
DreamFusion [32] for evaluation. We generate one object
for each prompt. For each generated 3D object, we render
10 random views and calculate the average CLIP score and
VQA score between the rendered images and the input text.
For inference time, we report it with all methods under the
same image resolution of 256. Notably, some methods, e.g.,
Instant3D [17], only support a higher resolution of 512. For
a fair comparison, we report their quantitative results under
the resolution of 512 and only inference time on the resolu-
tion of 256.

Implementation Details. The whole pipeline of our
method includes three training phases. We first train a
multi-step multi-view diffusion model on the Objaverse
dataset, by fine-tuning an internal DiT [31] based text-to-
image model. We train this model for 30k iterations with 32
80G A100 GPUs using a total batch size of 128 and a learn-
ing rate of 3e~°. Then we perform distillation to distill the
multi-step multi-view generator into a few-step multi-view
generator, which takes 10k iterations with 32 80G A100
GPUs with a global batch size of 128 and a learning rate
of 5e 6, Finally, we train a reconstruction model — latent
GS-LRM - from scratch, which takes 80k iterations with
32 80G A100 GPUs with a total batch size of 256 and a
learning rate of 4e .

5.2. Evaluation against baselines

Qualitative Comparisons. As shown in Fig. 4, our
method generates significantly better results compared with
LGM [47] and Instant3D [17]. In particular, LGM tends
to produce simple 3D assets without geometry and tex-
ture details; it also lacks robustness, oftentimes generat-
ing low-quality 3D assets that are broken, or suffer from
multi-face Janus problem [32], or do not closely follow pro-
vided text prompts. Instant3D is much more robust and able
to produce plausible 3D assets most of the time. How-
ever, its performance on text-image coherence is limited
compared with our Turbo3D. For example, in the first ex-
ample, LGM’s rendition appears oversimplified with indis-
tinct egg and yolk boundaries, while Instant3D provides a

Method Clip VQA Inference
Score T Score 1 Time |
TripoSR [49] 23.85 0.57 1.19s
SV3D [51] 24.92 0.64 12.52s
Instant3D [17] 26.23 0.65 15.02s
LGM [47] 24.73 0.58 6.56s
Turbo3D (Ours) 27.61 0.76 0.35s

Table 1. Comparison against state-of-the-art 3D generation
methods. Our Turbo3D generates 3D assets with highest CLIP
and VQA scores while using the least amount of time (bench-
marked on a A100 GPU).

closer match but lacks fine details in the egg’s structure and
wood texture and fails to capture the concept of ‘spill out’.
For complex prompts that describes a scene with multiple
objects (4th and 6th rows), LGM generates a Janus asset
while Instant3D miss a lot of concepts like blanket, bas-
ket, wildflowers etc; our generations adhere to the prompts
much more closely. These qualitative results highlight our
Turbo3D’s ability to generate high-quality, text-aligned 3D
models with a superior level of detail, realism, and coher-
ence across diverse and complex prompts, outperforming
both LGM and Instant3D by a large margin.

Quantitative Comparisons. Tab. 1 presents a quantita-
tive comparison of our proposed method, Turbo3D, against
several state-of-the-art approaches, including TripoSR [49],
SV3D [51], Instant3D [17], and LGM [47], on the text-to-
3D task. Our proposed Turbo3D achieves the highest CLIP
Score of 27.61 and VQA Score of 0.76, outperforming other
methods by a significant margin in both quality metrics. In
addition to the quality improvement, Turbo3D demonstrates
remarkable efficiency with an inference time of only 0.35
seconds, substantially faster than competing methods. Al-
though TripoSR is able to generate a 3D asset in only 1.19s,
the quality of the generated results is highly limited. As a
result, our proposed Turbo3D is able to achieve outstanding
performance in terms of both quality and inference speed
compared with state-of-the-art methods.

User Study. We run a user study by randomly selecting
80 text prompts and asking 56 users to make 1120 pairwise
comparisons (users are shown an input text prompt and two
generated 3D assets from two anonymous methods). We
show results in Fig. 5. Since the quantitative results of Tri-
poSR is not competitive with others, it is not included in the
user study. Moreover, SV3D only outputs videos instead
of 3D representations of objects, so it is hard to perform a
fair comparison. Therefore, we compare our Turbo3D with
LGM [47], Instant3D [17], and our MV Teacher. In par-
ticular, MV Teacher is the model which our Turbo3D gets
distilled from. When compared to LGM, Turbo3D achieved
a win rate of 89.8%, with only 10.2% of participants favor-
ing LGM. Against Instant3D, Turbo3D also outperformed
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A cracked egg with the yolk
spilling out on a wooden
table

An origami hippo in a
river

Wedding dress made of
tentacles

A cozy campfire
surrounded by logs for
sitting, with a small tent
set up nearby. Add a pot
hanging over the fire and
a few scattered leaves

A chimpanzee looking
through a telescope

Picnic scene with a
checkered blanket on grass,
a wicker basket with
sandwiches and fruit, a
bottle of lemonade with
glasses. An open book, a
small bouquet of
wildflowers on the blanket

LGM (6.565)

Instant3D (15.02s) Turbo3D (0.35s)

Figure 4. Comparison of our Turbo3D against baselines LGM [47] and Instant3D [17]. Among these methods, Our method generates
the most detailed and physically plausible 3D assets, closely adhering to the provided text prompts. In contrast, LGM tends to generate
broken assets with Janus issue [32], while Instant3D has poorer text alignment, oftentimes missing some concepts, e.g., ‘spilling out’ in

the first row, ‘river’ in the second row, etc.

LGM

Instant3D

MV T.

0 20 40 60 80 100
Win Rate Percentage

Figure 5. User study results comparing our Turbo3D to base-
line LGM [47], Instant3D [17], and our slow MV teacher.
Our Turbo3D is consistently preferred over baseline LGM and In-
stant3D, while having on-par preference with our MV teacher. See
Fig. 4,6 for visual comparison.

with a 74.9% win rate, indicating that users consistently
found Turbo3D’s outputs more aligned with the input text
descriptions and more visually compelling. When evaluated
against our teacher model, Turbo3D held a close win rate of
50.6%, with 49.4% preferring MV T., reflecting compara-

ble quality between the student and teacher models. The re-
sult indicates that our Turbo3D not only achieves significant
speedup with distillation, but also preserves the generation
ability from the teacher model.

5.3. Ablation Study

Effect of Single-view Teacher. In Tab. 2, we demon-
strate the effectiveness of the dual teacher distillation strat-
egy. The first line is our multi-view (MV) teacher model,
which achieves impressive results but runs slowly due to
the many diffusion sampling steps required. When per-
forming distillation only with this MV Teacher, the quality
drops by a large margin as shown in the second row. When
adding a single-view teacher model for distillation, the dis-
tilled model achieves much better results compared with
the previous one. This configuration approaches the per-
formance of the Multi-step MV Model while maintaining
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a baby dragon
hatching out
of a stone egg

a kitten
standing on top
of a giant
tortoise

a wide angle
DSLR photo
of a squirrel in
samurai armor
wielding a
katana

MYV teacher (10.18s)

MYV teacher only distillation (0.35s) Dual teacher distillation (0.35s)

Figure 6. Ablation of our Dual-teacher distillation algorithm. Naively distilling MV teacher (middle column) causes compound mode
collapse (see Sec. 4.1), producing overly smooth synthetic-looking assets. Our dual-teacher distillation (right column) fixes the issue and
generates 3D assets that are as photorealistic as, if not more than, the baseline MV teacher (left column). We also include the inference
timings for each method; the distilled model is ~50x faster than the teacher model.

Ablation CLIP VQA Ablation CLIP VQA Inference

Score T Score 1 Score T  ScoreT  Time |
Multi-step MV Model 28.04 0.77 Pixel GS-LRM [62] 27.62 0.76 0.45s
Few-step Model (MV Teacher) 26.60 0.69 Latent GS-LRM 27.61 0.76 0.35s
Few-step Model (Dual Teacher) 27.61 0.76

Table 2. Ablation of dual teacher distillation. Distillation leads
to quality drop compared with the MV teacher model. Compared
with naively distilling the single MV teacher, dual-teacher distil-
lation leads to much smaller quality drop. See Fig. 6 for visual
comparison.

the efficiency benefits of the few-step setup, showcasing the
advantages of the dual-teacher strategy in our distillation.
We also provide visualizations of the three models in Fig. 6.
These comparisons show that the dual teacher distillation
model strikes a balance between detail retention and styl-
ization, closely replicating the MV teacher model’s quality
while benefiting from the efficiency gains of distillation.
Effect of Latent GS-LRM. In Tab. 3, we showcase the ef-
fectiveness of latent GS-LRM. Compared with the original
GS-LRM which operates in pixel space, our latent GS-LRM
is able to skip the expensive image decoding process while
achieving similar image quality.

6. Conclusion

In this work, we propose Turbo3D for ultra-fast text-to-3D
generation. To enable fast multi-view generation, we pro-
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Table 3. Ablation for latent GS-LRM. We report the CLIP score,
VQA score, and overall text-to-3D inference time for comparison.
Our latent GS-LRM achieves similar image quality while enabling
better efficiency (~22% speedup).

pose to distill a multi-step multi-view generator into a few-
step multi-view generator. Moreover, to restore the multi-
view consistency and photo-realism during distillation, we
introduce a novel dual-teacher distillation framework. To
further improve the multi-view reconstruction efficiency,
we propose a latent GS-LRM which directly reconstructs
3D Gaussians from multi-view latents. Extensive experi-
ments demonstrate that our proposed Turbo3D is able to
achieve outstanding performance in terms of both genera-
tion quality and inference efficiency.
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