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Abstract

LiDAR odometry is a critical module in autonomous
driving systems, responsible for accurate localization by
estimating the relative pose transformation between con-
secutive point cloud frames. However, existing studies fre-
quently encounter challenges with unreliable pose estima-
tion, due to the lack of in-depth understanding of scenario
and the presence of noise interference. To address this chal-
lenge, we propose DiffLO, a semantic-aware LiDAR odom-
etry network with diffusion-based refinement. To mitigate
the impact of challenging cases such as dynamic, repet-
itive patterns, and low textures, we introduce a seman-
tic distillation method that integrates semantic information
into the odometry task. This allows the network to gain
a semantic understanding of the scene, enabling it to fo-
cus more on the objects that are beneficial for pose esti-
mation. Additionally, to enhance the robustness, we pro-
pose a diffusion-based refinement method. This method
uses pose-related features as conditional constraints for
generative diversity, iteratively refining the pose estima-
tion to achieve greater accuracy. Comparative experiments
on the KITTI odometry dataset demonstrate that the pro-
posed method achieves state-of-the-art performance among
existing learning-based approaches. Furthermore, the pro-
posed DiffLO method outperforms the classic A-LOAM on
most evaluation sequences. The code will be released at
https://github.com/HyTree7/DiffLO.

1. Introduction

LiDAR odometry (LO) is a well-studied problem in com-
puter vision with numerous applications in Simultaneous
Localization and Mapping (SLAM) [58], autonomous driv-
ing [54], and robotics [45]. The primary objective is to esti-
mate the relative transformation between two frames based
on the source and target point clouds.

*These authors contributed equally.
†Corresponding Author.
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Figure 1. (a) Predicts a coarse initial pose and applies iterative
MLP-based refinement to refine the initial estimate. (b) Predicts
a coarse initial pose and applies iterative Diffusion-based refine-
ment, incorporating knowledge distillation to enable semantic un-
derstanding. Here, T̂k represents the noisy pose of the kth denois-
ing step.

Most classic geometry-based methods, such as Iterative
Closest Point (ICP) [4], its variants [31] and others [35],
work by iteratively minimizing the distance between cor-
responding points in two point clouds to achieve accurate
alignment. However, they often struggle in sparse point
cloud environments, complex dynamic scenes, or when the
quality of the point cloud degrades [13, 27, 42]. This limi-
tation arises due to their reliance on precise geometric cor-
respondences.

Deep learning-based methods have garnered significant
attention in recent years. These methods learn feature rep-
resentations from large-scale data to infer relative transfor-
mation between frames in an end-to-end manner, providing
better scalability and the potential for multi-task learning.
However, the accuracy of deep learning methods still lags
behind traditional odometry techniques.

We identify the following challenges faced by Deep
Learning-based odometry methods: (1) To mitigate the ef-
fects of challenging cases such as dynamic objects and oc-
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clusions, LO-Net [21] introduces a mask prediction net-
work learning the compensation for dynamic objects to re-
move dynamic objects. Methods such as PWCLO-Net [42],
TransLO [23], and EfficientLO [44] introduce a hierarchi-
cal embedding mask and apply pose feature weighting to
filter dynamic object. However, these approach lacks a
comprehensive understanding of object structures, leading
to inaccuracies and resulting in cumulative errors; (2) Fur-
thermore, these methods [18, 23, 24, 26, 42, 44] are deter-
ministic prediction tasks, which limits their ability to adapt
to newly emerging changes or complexities in the environ-
ment. Additionally, they can not provide information about
prediction uncertainties.

Semantic segmentation network contains rich geomet-
ric information and intricate details about the scene. This
insight motivates us to integrate semantic information into
the odometry network, thereby enhancing its ability to fil-
ter out dynamic objects and manage occlusions effectively.
To achieve this, as shown in Fig. 1, we propose a knowl-
edge distillation approach that transfers semantic knowl-
edge from a segmentation model to the odometry network.
After training, the knowledge distillation component and
segmentation model are droped to avoid extra computa-
tion or network parameter. By leveraging the contextual
knowledge provided by semantic segmentation, our ap-
proach aims to improve the overall accuracy and robustness
of odometry in complex environments.

Diffusion models [11] are characterized by their robust-
ness, and have achieved significant success across various
tasks [8, 15, 22, 25]. These strengths have inspired us to
explore their potential application to the LiDAR odometry
task. In this paper, we propose reformulating the odometry
task as a diffusion process. As shown in Fig. 1, we transi-
tion from a traditional MLP-based refinement approach to
a diffusion-based refinement, shifting the task from a de-
terministic prediction framework to a probabilistic genera-
tive model. Specifically, Our approach consists of a forward
process that progressively adds noise to the residual pose of
the ground truth, followed by a reverse denoising process to
refine the noisy pose estimate. We utilize coarse pose em-
bedding, cost volume, semantic feature and geometry em-
bedding as conditions to restrict generation diversity.

In summary, our contributions are as follows:
• To enhance the network’s ability to focus on objects crit-

ical for pose estimation in the scene, we incorporate se-
mantic awareness into odometry by distilling knowledge
from a semantic segmentation model.

• We propose a novel diffusion-based refinement pipeline
and design strong conditional guidance by combining se-
mantic embedding, coarse pose embeddings, geometry
embedding and cross-frame cost volume to control gen-
eration diversity. To the best of our knowledge, this is the
first work to leverage diffusion probabilistic model in the

LiDAR odometry task.
• Extensive experiments on the KITTI odometry dataset

[7] demonstrate that our method outperforms all existing
learning-based odometry methods. On most sequences,
our performance even surpasses A-LOAM with mapping.

2. Relate Work

2.1. Deep LiDAR Odometry

The field of visual depth odometry has advanced rapidly.
However, research on LiDAR-based depth odometry re-
mains challenging due to the inherent irregularity and com-
plexity of point clouds. LO-Net [21] proposed an end-to-
end deep odometry network that enhances robustness by
learning the compensation for dynamic objects through a
mask prediction network. PWCLO [42] first introduces
a coarse-to-fine structure to LiDAR odometry, implement-
ing a hierarchical refinement approach for estimated poses.
LodoNet [52] projects 3D point clouds onto 2D spherical
depth images to extract and match keypoints for odome-
try localization. EfficientLO [44] introduces a projection-
aware representation of 3D point clouds, facilitating effi-
cient learning for large-scale datasets. TransLO [23] devel-
ops a cross-frame transformer module that associates con-
secutive frames, thereby regressing relative pose estima-
tions. DELO [1] innovatively employs partial optimal trans-
portation of LiDAR feature descriptors to achieve robust lo-
calization estimation.

2.2. LiDAR-based semantic segmentation

LiDAR-based semantic segmentation aims to assign a se-
mantic label to each point in the input LiDAR scan. These
methods can generally be categorized into several ap-
proaches: point-based [14, 32, 33, 39], voxel-based [9, 57],
projection-based [17, 29, 46], and hybrid methods that com-
bine these techniques [37, 49]. These approaches con-
sistently expand the receptive field by integrating fine-
grained point features with coarse-grained contextual infor-
mation,which enhances the network’s ability to understand
the scene structure and the unique characteristics of each
point. Semantic information has also proven to be highly
valuable in traditional non-deep learning methods, such as
[3, 5, 19, 20, 56]. By leveraging semantic labels, these sys-
tems can enhance feature matching and improve robustness
against challenging conditions like dynamic objects and oc-
clusions.

Inspired by these traditional methods, we explore inte-
grating semantics into learning-based LiDAR odometry to
address the challenges posed by dynamic objects, repetitive
patterns, and low-texture environments.
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2.3. 3D Diffusion Model

Diffusion models have garnered significant attention and re-
search in a variety of 3D point cloud processing tasks. For
instance, Luo et al. [28] introduced a probabilistic model for
point cloud generation, transforming the point cloud noise
distribution into the desired point cloud shape distribution.
Zhou et al. [55] combined a denoising diffusion model with
a mixed point-voxel representation of 3D shapes for uncon-
ditional shape generation and conditional multimodal shape
completion. Jiang et al. [15] proposed a point cloud regis-
tration framework based on an SE(3) diffusion model, fram-
ing the 3D registration task as a denoising diffusion process
that iteratively refines the pose of the source point cloud to
achieve precise alignment with the target point cloud. Dif-
flow3D [25] presented an uncertainty-aware scene flow esti-
mation network leveraging a diffusion probabilistic model,
where iterative diffusion modules refine initial estimates to
enhance the robustness of scene flow estimation. DiffLoc
[22] formulates LiDAR localization as a conditional gen-
eration of poses, employing a diffusion model conditioned
on geometric robust features and incorporating an iterative
denoising process into APR to achieve accurate LiDAR lo-
calization.

Inspired by the successful applications of diffusion mod-
els in tasks such as registration, scene flow estimation,
and localization, we investigate the integration of diffusion
models to improve the accuracy of LiDAR odometry.

3. Method
Given two consecutive point cloud frames PC1 ∈ RN×3

and PC2 ∈ RM×3, the goal of the LiDAR odometry task
is to estimate the relative transformation between the two
consecutive frames of point clouds. To solve this task, we
propose DiffLO, a semantic-aware odometry network with
diffusion-based refinement. DiffLO first hierarchically ex-
tracts point features (Sec. 3.1). Subsequently, we introduce
a Semantic Perception Module (Sec. 3.2), which enables the
odometry network to gain semantic understanding. Then,
the initial pose is generated (Sec. 3.3) in the coarsest layer.
We then utilize diffusion model with condition signals to re-
fine the initial pose by predicting pose residuals from coarse
to fine (Sec. 3.4). Lastly, the loss function will be presented
in (Sec. 3.5).

3.1. Multi-scale Feature Extraction

We utilize PointConv [47] for hierarchical feature extrac-
tion. At each level l, dense input points and their features
are first subsampled using furthest point sampling to create
a sparse point set. Then, for each subsampled sparse point,
k-nearest neighbor groups local dense points to form a local
region for feature extraction. Next, a PointConv [47] layer
aggregates features from the grouped local points, produc-

ing a local feature for each sparse point. This process results
in an L-level pyramid of point features.

3.2. Semantic Perception Module

To guide the network’s attention towards objects in the
scene that are beneficial for pose estimation, such as build-
ings and pole-like structures. We introduce Semantic Per-
ception Module (SPM). SPM consists of three compo-
nents: Semantic Module, Semantic Segmentation Modle
and Knowledge Distillation. We introduce a semantic seg-
mentation model as the teacher network. A sub-network
(the Semantic Module) within the odometry model is des-
ignated as the student model.

During the training stage, three modules collaborate
to transfer semantic knowledge into the odometry model.
Firstly, the Semantic Module takes the point cloud features
F in coarse layer as its input, the output can be expressed
as follows:

Fstu = MLP (F ) +MLP (F )⊗ σ(MLP (F )), (1)

where ⊗ indicates element-wise multiplication. σ(·) de-
notes the softmax operation along the feature dimension.

Secondly, a pretrained 3D semantic segmentation model
[16], with its network parameters frozen, is utilized here.
We extract the per-point features from the final layer, de-
noted as Fseg ∈ RN×d. These features are subsequently
downsampled to Ftea ∈ RN ′×d to ensure compatibility in
dimension with Fstu. And we adjust the output dimension
of the semantic regressor branch, ensuring that Ftea and
Fstu share the same feature dimension d for each point.

Then, we utilize knowledge distillation [10] to transfer
semantic knowledge from the segmentation module to the
odometry model.This is achieved by optimizing the follow-
ing distillation loss:

Lkd = δ(Fstu, Ftea), (2)

where δ(·, ·) measures the difference between the feature
representations from the teacher network Ftea and the stu-
dent network Fstu.

Finally, the semantic feature Fstu is propagated to the
following level for a denser optimization and simultane-
ously serves as a condition signal for diffusion-based re-
finement in Sec. 3.4, via an upsampling layer [6, 48].

During the inference stage, only the Semantic Module
is retained to avoid additional computational overhead. The
output Fstu from the Semantic Module is still propagated
to subsequent layers, serving as a conditional signal.

By embedding semantic understanding into the odom-
etry process, the model is better able to focus on objects
in the scene that are beneficial for pose estimation. Mean-
while, the close integration of knowledge distillation im-
proves both the efficiency and effectiveness of the overall
system.
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Figure 2. The overall structure of DiffLO. The proposed pipeline comprises three core components: Pose Initialization, Semantic
Perception Module, and Diffusion-based Pose Refinement. First, hierarchical point features are extracted from the input point cloud.
Then, we enable the network to acquire semantic understanding through a knowledge distillation approach. Following this, an initial coarse
pose estimate is generated. Finally, the Diffusion-based Pose Refinement module applies iterative refinement layers, conditioned on various
signals, to improve the initial pose estimate, ultimately producing a more accurate and robust final pose. To optimize inference efficiency,
the semantic segmentation component is discarded after the training phase.

3.3. Semantic-Aware Pose Estimator

We enhance the pose estimation method from the PWCLO-
Net [42] by incorporating semantic features into the pose
estimation process. Taking the lth layer as example.

El = MLP (F l ⊕ F l
stu ⊕ UEl ⊕ CEl), (3)

M l = σ(MLP (F l ⊕ F l
stu ⊕ UM l ⊕ El)), (4)

where ⊕ is the concatenation and σ(·) denotes the softmax
operation. F l is the point cloud feature from l layer, CEl

is generated by cross-frame correlation [6, 43]. F l
stu , UEl

and UM l are the results of upsampling the semantic feature
F l+1
stu , the embedding feature El+1 and the embedding mask

M l+1 respectively. The embedding features E = {ei|ei ∈
RC}ni=1 , the embedding mask M = {mi|mi ∈ RC}ni=1.
The pose is then generated by:

q =
FC(

∑n
i=1 ei ⊙mi)

|FC(
∑n

i=1 ei ⊙mi)|
(5)

t = FC(

n∑
i=1

ei ⊙mi) (6)

where FC(·) denotes the fully connected layer and ⊙ rep-
resents dot product. Following [42], the embedding features
E, embedding mask M and semantic features are also prop-
agated to denser layers for optimization.

The coarse-level point cloud is sparse and has low reso-
lution, which can lead to incorrect matches and inaccurate
initial pose estimates. Inspired by recent success and de-
noising properties of the diffusion model [11], we design a
novel diffusion-based pose refinement module to refine the
coarse pose progressively.

3.4. Diffusion-based Pose Refinement

In this section, we formulate the coarse pose residual as
the diffusion latent variable, and residual pose are generated
from the reverse process of diffusion model iteratively.

During the training stage, the diffusion model is
trained to learn the underlying distribution of residual poses
by recovering the ground truth residual pose from its cor-
rupted version. The ground truth residual pose is calculated
as follow:

T0 = Tgt · T−1
pred, (7)

where T0 is the ground truth residual pose, Tgt is the ground
truth pose and Tpred is the coarse pose generated by the
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previous layer or the initial pose.
Specifically, in each training iteration, a random diffu-

sion step, denoted as k ∈ {1, 2, . . . ,K}, is chosen. With
a predefined variance schedule β1, . . . , βk, we introduce
noises to T0, resulting in the noisy residual pose Tk.

q(Tk|T0) = N (Tk;
√
αkT0, (1− αk)I) (8)

Tk =
√
αkT0 +

√
1− αkϵ, ϵ ∼ N (0, I) (9)

denoting αk = 1 − βk and αk = Πk
i=1αi. Eventually,the

ground truth residual pose T0 is turned into Gaussion noise
when k is large enough.

During the inference stage, the denoise model approx-
imates the distribution p(T0|C) as the reversed diffusion
process of gradually cleaning Tk . Instead of predicting ϵ
as formulated by [12],we follow [34, 38] and predict the
signal itself. Also,we constrain the generation diversity and
control the reversed diffusion process by the condition in-
formation C. In this way, we utilize a denoising network to
predict the residual pose T̂0 from noisy input Tk, time step
t = k, and condition C.

T̂0 = Mθ(Tk, t, C), (10)

where Mθ(·, ·, ·) is the denoising network. The training
objective is to minimize the following loss:

Lres = ET0,t, [∥tgt − tpred∥2 + ∥qgt − qpred∥2] , (11)

where tgt and qgt are the translation vector and quaternion
from T0, and tpred and qpred are their corresponding pre-
dicted values from T̂0.

Design of Condition Signal. Inspired by [42, 43], we
introduce the geometric feature GE extracted from PC1,
along with a cost volume embedding CE constructed using
cross-frame correlation [6], with the corresponding hierar-
chical point cloud features as input, and residual pose em-
beddings PE = Tk · PC1 − PC1 and the semantic feature
Fstu as conditional signals to constrain generation diversity.
The condition signal is as follow:

C = GE ⊕ CE ⊕ PE, (12)

where ⊕ is the concatenation operation.
We employ the augmented version [6] with Gate Recur-

rent Unit (GRU) to process the condition signal C. This ap-
proach allows for the extraction of essential features from
C to generate the augmented condition signal C ′. Subse-
quently, the semantic-aware pose estimator in Sec. 3.3 is
introduced to generate the residual pose T̂0. Here, C ′ are
treated as the cost volume embedding CE in Eq. (3). Tak-
ing the lth refinement layer as example, the refined pose
T l
pred is caculated as follow :

T l
pred = T̂0

l
· T l+1

pred, (13)

the refined pose T l
pred will be the input to l−1th refinement

layer.

3.5. Training Loss

The network supervises the pose outputs from each level,
along with the residual poses predicted by the diffusion
model and the semantic features derived from the Seman-
tic Module. Drawing from previous deep odometry re-
search [21, 42], the training loss function for the odometry
at the l-th level is as follows:

Ll =
∥∥tgt − tl

∥∥ exp(−wt) + wt

+

∥∥∥∥qgt − ql

∥ql∥

∥∥∥∥
2

exp(−wq) + wq, (14)

where ∥·∥ and ∥·∥2 denotes the ℓ1-norm and the ℓ2-norm re-
spectively. tgt and qgt are the ground-truth translation vec-
tor and quaternion respectively. tl and ql are predicted pose
from each level. wt and wq are two learnable parameters,
which are introduced to eliminate the differences in scale
and units between the translation vector and the quaternion.
Then, a multi-scale supervised approach is adopted. The
total training loss function L is:

L = Lkd +

K∑
l=0

λl × (Ll + Ll
res), (15)

where K is the total number of warp-refinement levels and
λl denotes the weight of the l-th level.

4. Experiment
4.1. KITTI Odometry Dataset

The KITTI odometry dataset [7] is a widely used standard
dataset for evaluating visual odometry and SLAM algo-
rithms. It includes multiple driving scenarios, encompass-
ing urban, rural, and highway environments, with variations
in weather and lighting conditions. The dataset consists of
22 sequences of LiDAR point clouds and their correspond-
ing stereo images. In our experiments, we utilize the Velo-
dyne LiDAR point clouds provided in the dataset. Since the
ground truth poses (trajectories) are only available for se-
quences 00 to 10, we use these sequences for both training
and testing.

4.2. Implement details

In the training and evaluation process, N points are ran-
domly sampled from the point clouds of two frames sepa-
rately. It is not necessary for the original input point clouds
to have the same number of points. In the proposed net-
work, N is set to 8192. All training and evaluation experi-
ments are conducted on a single NVIDIA RTX 3090 GPU.
The Adam optimizer is employed with parameters β1 = 0.9
and β2 = 0.999.The initial learning rate is set to 0.001 and
is reduced by a factor of 0.8 every 8 epochs until it reaches
0.000001.The initial values of the trainable parameters wt
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Method 00 01 02 03 04 05 06 07† 08† 09† 10† Mean on 07-10
trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

ICP-po2po 6.88 2.99 11.21 2.58 8.21 3.39 11.07 5.05 6.64 4.02 3.97 1.93 1.95 1.59 5.17 3.35 10.04 4.93 6.93 2.89 8.91 4.74 7.763 3.978
ICP-po2pl 3.80 1.73 13.53 2.58 9.00 2.74 2.72 1.63 2.96 2.58 2.29 1.08 1.77 1.00 1.55 1.42 4.42 2.14 3.95 1.71 6.13 2.60 4.013 1.968
GICP [36] 1.29 0.64 4.39 0.91 2.53 0.77 1.68 1.08 3.76 1.07 1.02 0.54 0.92 0.46 0.64 0.45 1.58 0.75 1.97 0.77 1.31 0.62 1.375 0.648
CLS [41] 2.11 0.95 4.22 1.05 2.29 0.86 1.63 1.09 1.59 0.71 1.98 0.92 0.92 0.46 1.04 0.73 2.14 1.05 1.95 0.92 3.46 1.28 2.148 0.995
Full LOAM [50] 0.78 0.53 1.43 0.55 0.92 0.55 0.86 0.65 0.71 0.50 0.57 0.38 0.65 0.39 0.63 0.50 1.12 0.44 0.77 0.48 0.79 0.57 0.828 0.498
Full A-LOAM 0.76 0.31 1.97 0.50 4.53 1.45 0.93 0.49 0.62 0.39 0.48 0.25 0.61 0.28 0.43 0.26 1.06 0.32 0.73 0.31 1.02 0.40 0.810 0.323

LO-Net [21] 1.47 0.72 1.36 0.47 1.52 0.71 1.03 0.66 0.51 0.65 1.04 0.69 0.71 0.50 1.70 0.89 2.12 0.77 1.37 0.58 1.80 0.93 1.748 0.793
PWCLO-Net [42] 0.78 0.42 0.67 0.23 0.86 0.41 0.76 0.44 0.37 0.40 0.45 0.27 0.27 0.22 0.60 0.44 1.26 0.55 0.79 0.35 1.69 0.62 1.085 0.490
DELO [1] 1.43 0.81 2.19 0.57 1.48 0.52 1.38 1.10 2.45 1.70 1.27 0.64 0.83 0.35 0.58 0.41 1.36 0.64 1.23 0.57 1.53 0.90 1.175 0.630
TransLO [23] 0.85 0.38 1.16 0.45 0.88 0.34 1.00 0.71 0.34 0.18 0.63 0.41 0.73 0.31 0.55 0.43 1.29 0.50 0.95 0.46 1.18 0.61 0.993 0.500
EfficientLO [44] 0.83 0.33 0.55 0.21 0.71 0.25 0.49 0.38 0.22 0.11 0.34 0.21 0.36 0.24 0.46 0.38 1.14 0.41 0.78 0.33 0.80 0.46 0.795 0.395
Ours 0.60 0.27 0.36 0.15 0.71 0.26 0.57 0.40 0.30 0.17 0.33 0.22 0.28 0.17 0.37 0.27 1.12 0.44 0.68 0.28 0.66 0.32 0.708 0.328

Table 1. The LiDAR odometry experiment results on KITTI odometry dataset [7]. trel, rrel indicate the average translational RMSE
(%) and rotational RMSE (°/100m) respectively on all possible subsequences in the length of 100, 200, . . . , 800m. † means the testing
sequences. LOAM and A-LOAM is complete SLAM system,including back-end optimization. The best result for each sequence is bold,
and the second best is underlined.

Method 07† 08† Mean
trel rrel trel rrel trel rrel

LodoNet [53] 1.86 1.64 2.04 0.97 1.950 1.305
Ours 0.37 0.27 1.12 0.44 0.745 0.355

Table 2. Comparison with learning-based odometry LodoNet on
KITTI 07-08 sequences.

Method 09† 10† Mean
trel rrel trel rrel trel rrel

Nubert et al. [30] 1.54 0.68 1.78 0.69 1.66 0.685
H-VLO [2] 1.89 0.34 1.39 0.52 1.64 0.430
Ours 0.68 0.28 0.66 0.32 0.67 0.300

Table 3. Comparison with learning-based odometry on KITTI 09-
10 sequences.

and wq are set to 0.0 and -2.5, respectively, as indicated in
formula Eq. (14). For formula Eq. (15), the parameters are
set as follows: λ3 = 1.6, λ2 = 0.8, λ1 = 0.4, λ0 = 0.2,
and L = 4. The batch size is 12.

4.3. Comparison with The State-of-the-Art

We compare our network with the state-of-the-art on KITTI
dataset, including both classic methods and learning-based
ones. Since existing training and testing sequence settings
are inconsistent in different methods, we test and evaluate
our framework accordingly for a fair comparison.

00-06 as training sequences and 07-10 as testing se-
quences. Quantitative results are listed in Tab. 1. The tradi-
tional methods we compare include ICP-point2point (ICP-
po2po), ICP-point2plane (ICP-po2pl), GICP [36], CLS
[41], which rely on iterative point cloud alignment. LOAM
[50], its enhanced version A-LOAM is also included. While
LOAM and A-LOAM have been widely recognized for their
robust performance on the KITTI odometry benchmark, our
method achieves superior accuracy on most sequences. As
shown in Tab. 1, our approach outperforms Full A-LOAM,

(a) 2D Trajectory Plots of Seq.02 (b) 2D Trajectory Plots of Seq.10

Figure 3. 2D trajectories of A-LOAM, EfficientLO, and our pro-
posed method on KITTI sequences 02 and 10 with ground truth. It
can be observed that our method performs the best.

which has the mapping optimization. Additionally, the
learning-based LiDAR odometry methods we compare in-
clude LO-Net [21], DELO [1], PWCLO-Net [42], TransLO
[23], EfficientLO [44]. Compared to the current state-of-
the-art method EfficientLO, our method DiffLO achieves an
average improvement of 10.9% in transition accuracy and
16.9% in rotation accuracy.

00-06 and 09-10 as training sequences and 07-08 as
testing sequences. We compare with a recent method
LodoNet [52] in Tab. 2. Our method is trained on 00-06 se-
quences while LodoNet are trained on 00-06 and 09-10 se-
quences,even so, our method performs better than LodoNet
on the test sequences.

00-08 as training sequences and 09-10 as testing se-
quences. We compare with recent method [2, 30]. Our
method is trained on 00-06 sequences while others are
trained on 00-08 sequences. As illustrated in Tab. 3,
both our translation and rotation errors are smaller than
theirs. Although our approach utilizes only LiDAR data, we
achieve better results than the multi-modal method H-VLO.

4.4. Ablation Study

In order to analyze the effectiveness of each module, we
remove or change components of our model to do the abla-
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Method 07† 08† 09† 10† Mean on 07-10
trel rrel trel rrel trel rrel trel rrel trel rrel

(a)Semantic w/o SPM 0.52 0.46 1.19 0.53 0.53 0.18 0.93 0.42 0.793 0.398
Ours (full, with SPM) 0.37 0.27 1.12 0.44 0.68 0.28 0.66 0.32 0.708 0.328

(b)Diffusion w/o diffusion 4.83 3.82 6.77 3.05 5.29 2.22 7.09 3.97 5.995 3.265
with trans-based Mθ [40] 0.39 0.34 1.36 0.55 0.73 0.29 1.07 0.48 0.888 0.415
with ptrans-based Mθ [51] 0.45 0.28 1.19 0.45 0.54 0.22 0.72 0.41 0.725 0.340
Ours (GRU-based Mθ [6]) 0.37 0.27 1.12 0.44 0.68 0.28 0.66 0.32 0.708 0.328

(c)Condition w/o cost volume 0.45 0.35 1.20 0.49 0.70 0.28 1.09 0.95 0.860 0.518
w/o geometry feature 0.40 0.27 1.18 0.47 0.61 0.24 0.96 0.46 0.787 0.357
w/o semantic feature 0.47 0.31 1.33 0.56 0.75 0.23 0.64 0.48 0.798 0.395
w/o coarse pose embedding 0.45 0.34 1.28 0.56 0.64 0.25 0.63 0.33 0.750 0.370
Ours (full, with all conditions) 0.37 0.27 1.12 0.44 0.68 0.28 0.66 0.32 0.708 0.328

Table 4. The ablation study results of LiDAR odometry on KITTI odometry dataset[7]. The best performance of each sequence is bold.

(a) Sequence 01 (b) Sequence 05

(c) Sequence 06 (d) Sequence 09

Figure 4. 3D trajectories of A-LOAM , EfficientLO and our pro-
posed method on KITTI sequences 01, 05, 06 and 09 with ground
truth. Ours trajectory is more accurate than EfficientLO and the
Full A-LOAM, which has the mapping optimization.

tion studies on KITTI odometry dataset (00-06 as training
sequences and 07-10 as testing sequences).

Study on Semantic Perception Module. We conducted
ablation experiments to demonstrate the significance of the
Semantic Perception Module (SPM) mentioned in Sec. 3.2.
As shown in Tab. 4, SPM achieves an average improvement
of 10.7% in transition accuracy and 17.6% in rotation ac-
curacy. This indicates that SPM enhances accuracy by em-
bedding semantic understand to the network, which helps
the network to focus more on the objects in the scene that
play a key role in pose estimation.

Study on Diffusion Refinement. We conducted an ab-
lation study by comparing results with and without the

diffusion-based refinement process (w/o diffusion). As
shown in Tab. 4, the diffusion-based pose refinement signif-
icantly improved performance, reducing the average trans-
lation error by 88.2% (from 5.995% to 0.708%) and the
average rotation error by 90.0% (from 3.265°/100m to
0.328°/100m). Additionally, we explored the performance
of different denoising networks, including a transformer-
based [40] network (trans-based), a point transformer-based
[51] network (ptrans-based), and GRU-based [6] network.
The results demonstrate the advantages of our denoising
network over alternative approaches.

Study on Condition signals. To evaluate the effective-
ness of the diffusion condition signals, we conducted an ab-
lation study by individually removing each designed condi-
tion signal, as shown in Tab. 4. Removing the cost volume
led to a performance degradation (with translation error in-
creasing by 21.5% and rotation error by 57.9%), since cost
volume captures the precise per-point correlation between
two frames. The semantic feature also plays a crucial role
in guiding diffusion generation, as it provides scene under-
standing. Consequently, its removal resulted in a significant
drop in performance (led to a 12.7% increase in translation
error and a 20.4% increase in rotation error). Additionally,
removing the coarse pose embedding led to a decline in
performance, as coarse pose embedding provides essential
state information, which is closely related to the residual
pose generated by the model. Finally, the absence of ge-
ometry features as guidance also resulted in a noticeable
performance drop.

4.5. Visualization

We visualize the trajectory of our network and analyze the
benefits of Semantic Perception Module in this section.

Visualization of Trajectory. The qualitative results are
shown in Fig.3, 4 and 5. We compared our method with
full A-LOAM, which includes mapping optimization, and
EfficientLO [44]. Notably, in Seq.02 of Fig. 3, A-LOAM
exhibits significant drift due to the presence of repetitive
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Figure 5. Average translational and rotational error on KITTI se-
quences 00-10 on all possible subsequences in the length of 100,
200, ..., 800m. Our method has the best performance.

Figure 6. The visualization of semantic features is derived from
the complete LiDAR point cloud of the initial frame. Additionally,
the grayscale image captured from the camera view corresponds
to the semantic segmentation image displayed below. Bounding
boxes are utilized to delineate specific object categories.

structures and patterns in the scene, which impedes the al-
gorithm’s ability to accurately estimate pose. These fig-
ures show that our odometry can track the trajectory of the
ground truth fairly well. At the same time, our method
demonstrates the best average evaluation performance com-
pared to A-LOAM and EfficientLO.

Visualization of Semantic feature. The proposed net-
work employs an embedding feature of 8,192 points to com-
pute the pose transformation in the final pose output layer.
Consequently, we visualize the semantic features of these
8,192 points. As illustrated in Fig. 6, vehicles, street lamps,
fences, billboards, and other objects in the scene are seg-
mented. This demonstrates that the Semantic Perception
Module empowers the network with the capability of se-
mantic understanding.

Visualization of embedding mask. We visualize the
embedding mask of the 8,192 points in the final pose out-
put layer. As shown in Fig. 7, the mask of DiffLO in-
tegrated with the Semantic Perception Module (SPM) al-
locates weights more accurately compared to the mask of
DiffLO without SPM. Points sampled from static and struc-
tured rigid objects, such as buildings, fences, and pole-like
object, exhibit higher weights, while points from dynamic

W
ei
gh
t

High

Low

Figure 7. The visualization of the embedding mask is based on the
complete LiDAR point cloud of the initial frame. In the lower-left
corner, the heatmap represents the mask of DiffLO integrated with
the SPM. Conversely, the lower-right corner displays the heatmap
for the mask of DiffLO without SPM. Above these visualizations,
the corresponding grayscale image of the point cloud is presented.

and low-texture objects, including cars, shrubs, and trees,
receive lower weights. This demonstrates that the Semantic
Perception Module (SPM) effectively helps the network fo-
cus on objects in the scene that are crucial for accurate pose
estimation.

4.6. Runtime Analysis

Efficiency is another extremely significant factor in real-
time SLAM systems. The LiDAR points in the KITTI
dataset are captured at a 10Hz frequency. Our method has
only 76.9 ms inference time, which satisfy the real-time ap-
plication requirements (under 100 ms).

5. Conclusion

In this paper, we introduce a diffusion model-based odome-
try network augmented with semantic awareness, targeting
large-scale LiDAR odometry. Our approach innovatively
applies knowledge distillation to transfer semantic infor-
mation into the odometry network, thereby enhancing the
network’s semantic understanding. This allows the net-
work to effectively mitigate the challenges posed by dy-
namic objects, repetitive patterns, and low-texture environ-
ments. Additionally, we incorporate a diffusion model con-
ditioned on pose-related features to refine pose estimation.
To the best of our knowledge, this is the first instance of
utilizing diffusion models in odometry tasks. We evalu-
ated our framework on the KITTI odometry dataset, and
our method achieved state-of-the-art performance while en-
suring the real-time requirement of pose prediction.
Acknowledgements This work was supported in part by-
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