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Abstract

Implicit Neural Representations (INRs) have emerged as

a powerful framework for representing continuous signals.

However, generating diverse INR weights remains challeng-

ing due to limited training data. We introduce Few-shot Im-

plicit Function Generation, a new problem setup that aims

to generate diverse yet functionally consistent INR weights

from only a few examples. This is challenging because even

for the same signal, the optimal INRs can vary significantly

depending on their initializations. To tackle this, we pro-

pose EQUIGEN, a framework that can generate new INRs

from limited data. The core idea is that functionally simi-

lar networks can be transformed into one another through

weight permutations, forming an equivariance group. By

projecting these weights into an equivariant latent space,

we enable diverse generation within these groups, even

with few examples. EQUIGEN implements this through

an equivariant encoder trained via contrastive learning

and smooth augmentation, an equivariance-guided diffu-

sion process, and controlled perturbations in the equivari-

ant subspace. Experiments on 2D image and 3D shape

INR datasets demonstrate that our approach effectively gen-

erates diverse INR weights while preserving their func-

tional properties in few-shot scenarios. Code is available

at https://github.com/JeanDiable/EquiGen.

1. Introduction

Open-sourced models have been the driving force behind

the incredible progress of Artificial Intelligence (AI) [27,

52, 64]. Beyond just making powerful models acces-

sible, this openness has created new opportunities for

meta-learning: treating model weights themselves as data

sources. Recent works have demonstrated the potential of

learning from [13, 24, 36, 46, 71] and generating neural net-

work weights [15, 28, 51, 80] to promote further research.

One type of neural network well-suited for the weight

generation paradigm is the Implicit Neural Representation

(INR). These networks use a simple multi-layer perceptron
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Figure 1. Illustration of the Few-shot Implicit Function Genera-

tion setting with 3D INR data examples. The goal is to generate

diverse INR weights from limited target samples. Source samples

(top) show previously observed INRs of diverse shape categories.

In practice, only limited target samples (bottom left) are available

for training. The framework aims to learn a generator that can pro-

duce diverse generated samples (right) despite the limited training

data. This setting addresses the practical scenario where only a

few examples of new shapes are available for training.

(MLP) to fit continuous signals [8, 54, 61]. INRs serve as

powerful tools for representing continuous data, offering

several advantages: high-fidelity reconstruction [44, 49],

smooth interpolation properties [8, 75], and infinite out-

put resolution [3]. Their consistent and comparative simple

architecture makes them ideal candidates for weight-based

generative modeling.

However, training generative model on weight comes

with its challenges, primarily due to a shortage of data.

Currently, collecting large-scale INR data is costly, as it in-

volves time-consuming gradient-based optimization. Exist-

ing datasets for INR data are limited from the diversity of

sources [40, 46]. This data gap imposes restrictions on fur-

ther investigation of weight space.

Given these constraints, an intuitive motivation is to tar-

get on a more practical task of Few-shot Implicit Function

Generation. As illustrated in Fig. 1, with only a few new

INR checkpoints, we aim to train a generative model that

can produce diverse weights while preserving the original

distribution’s function of these few INR data. These gener-

ated checkpoints serve multiple purposes: they can be uti-

lized as new data sources for weight space learning, or they

can be directly applicable for practical downstream tasks

like 3D shape generation.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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This new problem comes with two fundamental chal-

lenges. First, the curse of dimensionality [4] exacer-

bates data demands. Since model weights reside in high-

dimensional spaces, a limited number of samples cannot

adequately capture the full weight distribution, resulting in

poor generalization. Second, conventional few-shot learn-

ing methods assume that similar samples have element-wise

similarity [26, 69]. However, this assumption doesn’t hold

for INR checkpoints. INR data can vary significantly in

individual weights yet still yield similar input-output be-

havior, especially under weight permutations[2, 53]. This

structural difference makes it difficult to apply standard

knowledge transfer techniques effectively, results in poten-

tial mode collapse.

Previous approaches to parameter generation, while po-

tentially applicable to Few-shot Implicit Function Gen-

eration, face significant limitations and fail to address

these fundamental challenges. Some methods use gener-

ative models to directly reconstruct the weight distribu-

tions [16, 51], they struggle with the curse of dimension-

ality. While some other methods attempt to address this

through autoencoder-based dimensionality reduction [13,

59, 67], they fail to respect the inherent symmetry of the

weight space, leading to poor generalization performance.

To address these challenges, we resort to the principle of

equivariance, i.e., weight space symmetry [22, 46, 76]. It

means that, for arbitrary neural networks, permuting output

channels in one layer and reversing this permutation in the

next layer preserves the network’s functionality. Thus, all

weights that result from such permutations form an equiv-

ariance group [46]. Leveraging this property, we aim to de-

sign a generative model capable of producing all samples

within an equivariance group from a few checkpoints. In

this way, we significantly reduce the data requirements in

the few-shot setting.

Based on that, we design a framework named EQUIGEN.

Our key insight of equivariance in few-shot setting is that,

by projecting weights into an equivariant latent space, we

could achieve diverse generation inside an equivariance

group from limited examples.

The complete framework contains three stages.

• Equivariant Encoder. We design an encoder that

projects weights into an equivariant latent space. Us-

ing contrastive learning with smooth augmentations, the

encoder maps functionally equivalent weights to similar

representations. This establishes a structured latent space

that captures the concept of equivariance.

• Equivariance-Guided Diffusion. We develop a diffu-

sion process guided by equivariance. The denoising steps

are conditioned on previous equivariant features and are

regularized using an equivariant loss, ensuring that the

generated weights retain both distributional properties

and equivariance.

• Controlled Perturbations for Diversity. To address the

challenge of generating diverse yet consistent weights,

we apply controlled perturbations in the equivariant sub-

space. These perturbations enable us to explore the full

equivariance group of each example, generating weights

that are both diverse and functionally consistent.

We evaluate EQUIGEN on various INR data includ-

ing 2D images and 3D shapes. Our findings reveal that

EQUIGEN not only boosts high quality generation, but also

encourages diversity. Ablation studies support the effective-

ness of each designed module, emperically prove the impor-

tance of equivariance.

Our contributions are summarized as follows:

• We introduce a practical setting named Few-shot Im-

plicit Function Generation with an equivariance-based

framework EQUIGEN that respect to weight equivariance

to enable diverse yet functionally consistent weight gen-

eration from limited samples.

• We present three key innovations that systematically ex-

ploit equivariance: 1) An equivariant encoder learned

through a contrastive learning paradigm with smooth

augmentation for robust equivariant feature learning; 2)

Equivariance-guided diffusion with explicit equivariance

regularization; 3) Controlled equivariant subspace pertur-

bation for diverse generation.

• We demonstrate the effectiveness of our EQUIGEN

through comprehensive experiments on INR data from

both 2D images and 3D shapes.

2. Related Work

2.1. Implicit Neural Representation

Implicit Neural Representations (INRs) have demonstrated

remarkable efficacy in representing diverse forms of com-

plex signals, including spatial occupancy [43, 58, 61], 3D

geometric morphology [5, 9, 20], signed distance func-

tions [34, 49], 3D scene appearence [10, 32, 38, 45, 70] and

some other complex signals [8, 39, 42, 72] with the help of

a small neural network, usually a MLP with few layers.

2.2. Equivariant Architectures

A wide range of studies have tried to build equivariant ar-

chitecture to respect underlying symmetries in the data.

This leads to advantages including smaller parameter space,

efficient implementation, and better generalization abili-

ties [12, 29, 46, 82]. The standard construction pattern

involves identifying basic equivariant functions which are

often linear [22, 41, 76], and composing them with point-

wise nonlinearities to build deep networks. Of particular

relevance to our work are architectures designed for set-

structured data, where the input represents ordered elements

requiring equivariance to permutations. A recent study in-

corporates advantages of several previous works to build
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Figure 2. Overview of our EQUIGEN framework. The method consists of three stages: (1) Equivariant Encoder Pre-training through

contrastive learning with smooth and INR-based augmentations, (2) Distribution Modeling via a diffusion process conditioned on learned

equivariant features, and (3) Few-shot Adaptation using equivariant subspace disturbance for diverse weight generation. Our framework

leverages the inherent equivariance of neural network weights to address both generalization and mode collapse challenges.

an efficient and highly expressive architecture [46]. These

foundations prove crucial for our work, as neural network

weight spaces naturally exhibit similar symmetry structures.

2.3. Neural Network Weight Generation

Recently, neural network weight generation has gained sig-

nificant attention, from early meta-learning approaches [19,

21] to recent generative modeling techniques. Existing

methods broadly split into two categories: direct weight

space diffusion methods [16, 51], which struggle with

high-dimensional spaces, and dimensionality reduction ap-

proaches using autoencoders [13, 59, 67], which often fail

to preserve the inherent structural characteristics of weight

spaces. The key distinction of our method lies in its system-

atic implementation of equivariance, which aims at preserv-

ing these inherent characteristics.

3. Preliminaries

In this part, we formalize the Few-shot Implicit Function

Generation problem, interpret fundamental properties of

equivariance and corresponding equivariant architectures.

3.1. Problem Definition

Consider a class space F where each f ∈ F represents a

category of signals (e.g., images of a specific digit or 3D

shapes from a particular object class such as cars or planes)

that can be encoded by implicit neural representations. Let

W denotes the weight space of MLPs with a fixed archi-

tecture, and Φ : W → (X → Y) maps weights to their

corresponding implicit functions. We define two key distri-

butions: 1. Ssource: The source distribution from which we

have abundant training data. 2. Starget: The target distribu-

tion for which we have only a few examples and want to

generate more samples.

Definition 1 (Few-shot INR Generation). Given k exam-

ple weights Sf = {w1, ..., wk} from the target distribution

Starget that encode valid instances of a target class f , the

objective is to generate new weights that encode diverse yet

valid instances of the same class. Formally, we aim to learn

a generator G : Sf 7→ p̃f (w) that estimates the weight dis-

tribution of class f in Starget, where validity requires the

reconstructed signal Φ(w) to maintain class-specific prop-

erties while allowing intra-class variation.

3.2. Equivariance and Equivariant architecture

Previous studies revealed that neural networks exhibit in-

herent equivariance in their weight space. Different weight

configurations can represent the same function due to the

permutation invariance of neurons within each layer [41, 55,

68, 73]. Understanding and leveraging this equivariance is

crucial for Few-shot Implicit Function Generation, as it en-

ables efficient learning from limited examples by exploiting

the underlying structure of the weight space [12, 17, 29, 81].

Since INR encoding networks typically employ MLPs that

inherently possess this property, we present key concepts of

it and corresponding equivariant architectures.

Equivariance. Consider a shallow network with weight

matrices W1 and W2. For any permutation matrix P , the

transformed weights PW1 and W2P
T yield a function-

ally equivalent network. This symmetry emerges from the

equivariance of pointwise activation functions:

Pσ(x) = σ(Px). (1)

This property implies that the space of functionally equiva-
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lent networks forms orbits under permutation groups, effec-

tively reducing the sample complexity required for learning.

Equivariant Architectures. To exploit this equivariance,

we construct architectures that respect the inherent structure

of the weight space. A function L : V → W is equivariant

if it commutes with group actions ρ1 and ρ2 for all v ∈
V, g ∈ G:

L(ρ1(g)v) = ρ2(g)L(v), (2)

where V and W are vector spaces, and G is a group. Fol-

lowing previous works [22, 41, 76], we define the canonical

form of an equivariant encoder:

Fequi(x) = Lk ◦ σ ◦ · · · ◦ σ ◦ L1(x), (3)

where each Li is an equivariant affine transformation and σ

is a pointwise activation function. By incorporating these

symmetries into our architecture, we significantly enhance

sample efficiency in few-shot learning. The generator learns

to explore the entire orbit of functionally equivalent weights

from a few examples, amplifying the limited training data.

4. Methodology

4.1. Overview

Follow the definition of Few-shot Implicit Function Gener-

ation problem, our goal is to learn how to generate weights

that follow a specific distribution, using only a small num-

ber of samples as reference. This problem presents two fun-

damental challenges as stated in Sec. 1: (1) poor generaliza-

tion due to the high dimensionality of weight space, and (2)

ineffective knowledge transfer and potential mode collapse

due to weak element-wise similarity between functionally

equivalent weights. We address both challenges through

equivariance which is interpreted in Sec. 3.2.

Our key insight is that by projecting weights into an

equivariant latent space, we can generate diverse samples

within an equivariance group using only a few reference

examples inside this latent space. This projection effec-

tively reduces dimensionality while preserving functional

relationships, enabling both better generalization and mean-

ingful knowledge transfer. As illustrated in Fig. 2, we sys-

tematically leverage equivariance across three stages:

Equivariant Feature Learning: We establish a founda-

tion through an equivariant encoder trained via contrastive

learning with weight space smooth augmentations, ensur-

ing learned representations preserve essential equivariance

property while remaining expressive.

Equivariance-Guided Distribution Modeling: A

diffusion-based generator, conditioned on these equivariant

features, models the weight distribution while preserv-

ing symmetry properties through a designed explicit

equivariance regularization.

Equivariant Few-shot Adaptation: For k-shot generation,

we introduce controlled disturbances in the equivariant sub-

space, enabling diverse yet functionally consistent genera-

tion by exploiting the inherent symmetry structure from the

equivariant features.

4.2. Equivariant Encoder Pre­training

A compact and expressive latent space of equivariant fea-

tures is crucial for effective distribution modeling, improv-

ing diffusion convergence and stability. To learn such fea-

tures, we employ a contrastive learning framework specifi-

cally adapted for our equivariant architecture. Additionally,

we introduce a weight-specific smooth augmentation strat-

egy to enhance the robustness and representation power of

the equivariant encoder.

Equivariant Architecture. Similar to previous work, our

equivariant encoder, inspired by the symmetry structure

of deep weight spaces, operates directly on weight matri-

ces through a carefully designed architecture that preserves

functional equivariance [46, 76]. The encoder decomposes

the input weight space into meaningful sub-representations

corresponding to different components of a neural network

and implements equivariant mappings between these sub-

representations through a combination of linear equivariant

layers, invariant layers, and efficient pooling and broadcast-

ing operations. Formally, the encoder can be denoted as a

mapping Eφ : V → V parameterized by φ following the

canonical form demonstrated in Sec. 3.2.

This architecture enables effective projection of the in-

put weight space into an expressive low-dimensional equiv-

ariant subspace while preserving the underlying functional

relationships. Detailed architecture design can be found in

Appendix.

Smooth Augmentation.

The key idea of this encoder is to map weights from an

equivariance group to a compact cluster in the equivariant

subspace. Yet it can indeed learn from unconstrained weight

spaces, recent studies reveal that modern neural networks

fundamentally rely on smooth signal modeling [53, 73].

Consequently, to enhance our encoder’s feature learning ca-

pability, we introduce a smooth augmentation technique for

the input weight space. This augmentation could be seen

as an optimization of the starting point, and could lead to

better representation power of the pre-trained encoder. The

procedures are as follows: 1. We represent neural networks

as dependency graphs G = (V,E) [18], where each node

vi ∈ V represents an operation with weight Wi and each

edge eij ∈ E indicates inter-connectivity between vi and

vj . 2. Each graph clique C = (VC , EC) ⊂ G is fully

connected, representing a group of interconnected opera-

tions. Each clique C corresponds to a unique permutation

matrix P . 3. Our objective is to determine all permutation

matrices P in a way that minimizes the total variation [57]

across the whole network. This complex optimization can

be broken down into multiple independent optimizations,
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Figure 3. Equivariant architecture Eφ aims to map weights from

the same equivariance group to similar representations, creating

a structured latent space that captures the inherent symmetries of

neural networks. By leveraging this equivariant subspace, we can

implement a controlled disturbance strategy that sample diverse

equivariant features while maintaining class consistency.

each focused on a single clique [73]. 4. We define this as

a multi-objective Shortest Hamiltonian Path (mSHP) prob-

lem [23]. To address each mSHP problem, we transform

it into a Traveling Salesman Problem (TSP) by adding a

dummy node with zero-distance edges to all other nodes

in the clique. 5. We solve this TSP using a 2.5-opt local

search algorithm [63]. The resulting optimal permutation

P ∗ is applied to all weight matrices within the clique.

Contrastive Learning. Following the SimCLR frame-

work [7], we pre-train our equivariant encoder to maximize

similarity between different augmented views of the same

weight data in the equivariant latent space. The process in-

volves three key steps:

1) We generate positive pairs by applying stochastic INR-

based augmentations to smoothed weights w̄, obtaining

augmented weights ŵ. These augmentations include rota-

tion, translation, scaling, and our proposed color jittering

and bias perturbation (see Appendix for details).

2) Extract equivariant features through pre-trained equivari-

ant encoder Eφ: ψ̄ = Eφ(w̄) and ψ̂ = Eφ(ŵ).
3) Optimize using contrastive loss:

ℓi,j = − log
exp(sim(Eφ(w̌i), Eφ(w̌j))/τ)∑
k ̸=i exp(sim(Eφ(w̌i), Eφ(w̌k))/τ)

, (4)

where sim(u, v) denotes cosine similarity, τ is a tempera-

ture parameter. {w̌k} contains both the smoothed weights

{w̄k} and the augmented weights {ŵk}. Negative pairs are

implicitly formed within the contrastive loss.

4.3. Equivariance Guided Diffusion

Within this stage, we employ an equivariance-conditioned

diffusion model to reconstruct the input weight distribu-

tions, utilizing their corresponding equivariant features.

This approach enables a robust reconstruction of the weight

space, while maintaining the equivariance inherent in the

original data structure.

Original weight space

Smoothed weight space
Smooth

augmentation

Figure 4. To optimize the equivariant feature extraction, we

seek permutations that minimize the weight matrix’s total varia-

tion. This smoothing operation reduces abrupt discontinuities in

the weight space, facilitates more effective learning of inherent

equivariant properties by starting from an optimized point. The

smoother weight manifold (bottom) enables better equivariant fea-

ture capture compared to the original space (up).

Weight-Space Diffusion. The modeling begins by trans-

forming each set of smoothed weights {w̄i} into a flattened

one-dimensional vector representation. Subsequently, these

smoothed weights w̄i undergo a diffusion process, yield-

ing noised samples w̄T . We leverage the transformer ar-

chitecture [50, 66, 74] Gθ as the denoising network. This

choice leverages transformers’ established capability to ef-

ficiently process long vector sequences, advantageous for

weight space manipulation [16, 51]. Our denoising network

follows previous works to predict the denoised weightsdi-

rectly [51], to faster the convergence. The architecture also

incorporates cross-attention layers following each trans-

former block [56], enabling the sampled weights w̃i to be

conditioned on equivariant features ψi. These features are

derived by processing the smoothed weights w̄i through the

former pre-trained equivariant encoder Eφ. The compre-

hensive denoising procedure can be expressed as:

w̃i = Gθ(w̄T , Eφ(w̄i)). (5)

During inference, we use the DDIM sampler with 1000

steps to generate the final weights, transforming w̄T into

w̃i through a series of intermediate denoising steps.

Training and Optimization. The primary goal of our ap-

proach is to optimize the denoising network to model the

input distribution accurately. We apply a simple Mean

Squared Error (MSE) loss between the denoised weights w̃i

and the smoothed weight w̄i denoted as Lrecon(w̄, w̃).

However, in order to leverage the characteristic of equiv-

ariance in the following few-shot generation stage, we also

designed a specific loss to regulate the approximation of the

equivariant features of the generated weights and the origi-

nal smoothed weights:

Leq(w̄, w̃) =
1

N

N∑

i=1

∥Eφ(w̄i)− Eφ(w̃i)∥
2

2
. (6)
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By composing these two different objectives, our final

target is to minimize the composite objective by sampling

all the smoothed weight and generated weight:

min
θ

Ew̄i,ŵi
[Ltotal] = min

θ
Ew̄i,ŵi

[Lrecon + λLeq] . (7)

This loss function not only ensuring accurate distribution

reconstruction, but also boosting the generalization.

4.4. Few­shot Fine­tuning

Through latent space guidance, the diffusion model demon-

strates adaptability to previously unseen distributions, given

only a limited set of weights {w′
1
, . . . , w′

k} from the target

distribution. This adaptation is facilitated through the uti-

lization of equivariant features {ψ′
1
, . . . , ψ′

k} extracted via

the pre-trained equivariant encoder, serving as novel guid-

ance vectors that enable knowledge transfer. The adaptation

process need only a few iterations of fine-tuning, following

the same procedures in Sec. 4.3.

Subspace Disturbance. To enhance the diversity of gen-

erated weights, we introduce an equivariant subspace dis-

turbance strategy during the final generation. This ap-

proach is motivated by the observation that the diffu-

sion model’s training process inherently embeds knowledge

within the equivariant subspace through feature-guided de-

noising. Consequently, the diversity of the guiding equiv-

ariant features directly influences the variability of the gen-

erated weights, establishing a foundation for controlled di-

versity in weight generation.

Specifically, we apply a random Gaussian noise ϵ ∼
N (0, I) on the equivariant feature ψ′

i with a controlling pa-

rameter γ: ψ̃′
i = ψ′

i + γϵ. We impose this constraint on the

magnitude of the disturbance to make it bounded and con-

trollable. Finally, the generation of target weights is accom-

plished through a denoising procedure applied to k indepen-

dent Gaussian noise vectors E = {ϵ1, . . . , ϵk}. This process

is guided by disturbed equivariant features {ψ̃′
1
, . . . , ψ̃′

k}
derived from the support set.

5. Experiments

5.1. Experimental Setup

We establish two Few-shot Implicit Function Generation

scenarios: 1) Given a set of MLP encoded INRs of different

2D images, we split them into two disjoint parts: the seen

categories Ssource and the unseen categories Stest, where

category is defined by their rendered image. 2) Similarly,

given a set of MLP encoded INRs of different 3D shapes,

which are split into two disjoint parts: the seen categories

Ssource and the unseen categories Stest, where category is

defined by their rendered 3D shape.

Datasets. For the 2D image scenario, we evaluate our

methodology on two benchmark datasets: MNIST (2D

greyscale images) [31] and CIFAR-10 (2D RGB im-

ages) [30]. We utilize the pre-overfitted INR dataset

for MNIST (MNIST-INRs) provided by [46] and the

corresponding dataset for CIFAR-10 (CIFAR-10-INRs)

from [40]. MNIST-INRs encompasses 50K INR instances,

with 5K samples per category, while CIFAR-10-INRs con-

tains 60K INR instances, comprising 6K samples per cate-

gory. For the 3D shape domain, we evaluate our approach

on the ShapeNet dataset [6], focusing on three representa-

tive categories: airplane (4045 shapes), car (6778 shapes)

and chair (3533 shapes). These shapes are encoded into

MLPs, denoted as ShapeNet-INRs. Regarding architectural

specifications, CIFAR-10-INRs employs a 3-layer SIREN

MLP with a width of 64 [61], while MNIST-INRs utilizes a

3-layer SIREN MLP with a width of 32 [61]. For ShapeNet-

INRs, it implements a 3-layer standard MLP with a width

of 128, incorporating ReLU activation functions and input

positional encoding [16].

In the context of few-shot weight generation, we parti-

tion each dataset into two distinct subsets [14, 48, 78, 79].

The unseen category support set Stest comprises randomly

sampled INR data from a single category, with the sample

size varying from 1 to 10 to evaluate different levels of dif-

ficulty. The remaining data from other categories constitute

the seen category support set Ssource.

Implementation We provide important configurations here,

please refer to Appendix for more detailed information.

Our equivariant architecture is implemented with four hid-

den equivariant layers [46], with the output equivariant fea-

ture dimension set to 128. Across the three stages: In the

equivariance-guided diffusion stage, we utilize a squared

cosine beta scheduler [47] across 1000 timesteps and im-

plement DDIM [62] for sampling. The equivariance loss

proportion parameter λ is set to 0.1 unless otherwise spec-

ified. Finally, during the generation process, the subspace

disturbance parameter γ, which controls the noise intensity,

is set to 0.3 by default.

Metrics. Since there is no direct evaluation metrics for

generated weights, we adopt an indirect evaluation strategy

aligned with existing works [13, 15, 16, 59, 67]. For 2d

images, a direct rendering is applied and for 3d shape sce-

nario, we extract the underlying isosurface from the MLPs

with Marching Cubes [35]. Our evaluation framework as-

sesses both the quality and diversity of generated results for

both two scenarios: For the 2D image scenario, we employ

FID [25] and LPIPS [77] as the metrics. Specifically, we

apply the intra-cluster version of LPIPS to quantify the di-

versity of generated unseen images in our few-shot genera-

tion context like many other few-shot image generation set-

tings do [14, 56, 79]. Lower FID indicates better quality

and higher LPIPS indicates enhanced diversity. For the 3D

shape scenario, we follow prior works [37, 60, 65, 83] in

evaluating MMD, COV, and 1-NNA. For MMD, lower is

better; for COV, higher is better; for 1-NNA, 50% is the op-
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Table 1. Quantitative comparison of 10-shot generation perfor-

mance on ShapeNet-INRs, where each test set consists of INRs

from a single unseen object class. Bold indicates the best result

and underline indicates the second best result.

Category Method MMD↓ COV(%)↑ 1-NNA(%)↓

Airplane

PVD [83] 5.6 26 84.7

DPC [37] 4.1 29 84.6

INR2Vec [13] 5.1 29 80.9

Voxel Baseline [16] 8.5 20 98.3

HyperDiffusion [16] 5.0 33 80.6

EQUIGEN (Ours) 3.4 35 73.0

Car

PVD [83] 4.7 24 82.1

DPC [37] 4.2 20 85.3

INR2Vec [13] 4.8 19 87.0

Voxel Baseline [16] 5.8 11 97.9

HyperDiffusion [16] 4.4 22 83.4

EQUIGEN (Ours) 3.5 31 76.5

Chair

PVD [83] 7.1 21 80.0

DPC [37] 6.5 23 81.5

INR2Vec [13] 6.8 25 71.7

Voxel Baseline [16] 12.4 13 88.5

HyperDiffusion [16] 7.2 28 73.1

EQUIGEN (Ours) 4.2 41 67.1

Table 2. Quantitative comparison of 10-shot generation perfor-

mance on MNIST-INRs and CIFAR-10-INRs.

Dataset Method FID↓ LPIPS↑

MNIST-INRs

FIGR [11] 160.26 0.1399

DAGAN [1] 149.77 0.2001

DAWSON [33] 164.90 0.1830

INR2Vec [13] 157.20 0.2185

HyperDiffsion [16] 165.91 0.2727

EQUIGEN (Ours) 121.24 0.4133

CIFAR10-INRs

FIGR [11] 225.05 0.1728

DAGAN [1] 200.11 0.2250

DAWSON [33] 204.62 0.2191

INR2Vec [13] 188.39 0.2712

Hiperdiffusion [16] 186.58 0.3104

EQUIGEN (Ours) 164.14 0.4926

timal. We compute these metrics using Chamfer Distance

(CD) as the underlying distance measure, with reported CD

values scaled by a factor of 102 for clarity.

Baselines. Our method is benchmarked against two differ-

ent types of methods: modality-based methods and INR-

based methods. In the first category, we benchmark against

methods that directly manipulate domain-specific represen-

tations. For the 2D image domain, we compare our ap-

proach with representative few-shot image generation meth-

ods, including FIGR [11], DAGAN [1] and DAWSON [33].

Similarly, in the 3D shape domain, we evaluate against

prominent 3D shape generation methods such as PVD [83]

and DPC [37]. In the second category, we evaluate against

methods that operate directly on INR representations rather

than domain-specific data formats. Specifically, we com-

pare our approach with two representative frameworks:

INR2Vec [13] and HyperDiffusion [16], both of which are

assessed across 2D image and 3D shape scenarios to en-

sure comprehensive evaluation. Specifically, HyperDiffu-

Input few-shot sample Generated sample

Figure 5. Visualizations of generated ShapeNet-INRs from the

few-shot airplane example. The outputs exhibit diverse shape vari-

ations while preserving the airplane category characteristics.

Input few-shot samples Generated samples

Figure 6. Visualizations of generated ShapeNet-INRs: few-shot

examples and generated samples for both chair and car categories.

sion has a voxel version (Voxel Baseline) whose INR data

are designed to encode voxel information instead of meshes.

5.2. Main Results

The empirical results illustrated in Tab. 1 and Tab. 2 demon-

strate the consistent superior performance of our method

across all evaluation metrics in the 10-shot setting. In

Tab. 2, our comprehensive evaluation on both MNIST-INRs

and CIFAR10-INRs reveals that our approach surpasses

both modality-based and INR-based methods in terms of

quality and diversity metrics. Notably, while most existing

few-shot generation frameworks address style transfer, our

method is designed to tackle the more challenging task of

cross-class knowledge transfer. Similar evaluation results

are observed in the 3D domain, as demonstrated in Tab. 1.

Qualitative results are shown in Fig. 5 and Fig. 6. There

are various differences between input INR and output INR’s

rendered results, indicating the effectiveness of our method.

5.3. Indepth Analysis

Exploration of equivariant subspace. The efficacy of

our proposed method is fundamentally rooted in the ex-

pressive power of the equivariant subspace, which enables

the incorporation of category-specific knowledge into dis-

tribution modeling. To illustrate the learning dynamics

within the weight space, we conduct a 2D t-SNE visual-

ization of the equivariant subspace, as shown in Fig. 7. We

present comparative visualizations both with and without
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Figure 7. 2D t-SNE visualization of equivariant subspace. Smooth

augmentation (right) produces more compact and discriminative

category clusters compared to baseline (left), demonstrating en-

hanced equivariant feature learning.
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Figure 8. The evaluation on ShapeNet-INRs chair and car cat-

egories with respect to different subspace disturbance intensity.

(a) Higher disturbance leads to increased COV, indicating greater

sample diversity. (b) However, larger disturbances result in higher

MMD, reflecting decreased generation quality.

smooth augmentation of the original weight space. The re-

sults demonstrate that the pre-trained equivariant encoder

successfully projects the original weight space into a dis-

criminative manifold where categories exhibit clear cluster-

ing behavior. Furthermore, the application of smooth aug-

mentation to the original space alleviates the complexity of

equivariant subspace learning, resulting in more compact

and category-specific embeddings.

Impact of subspace disturbance. We conduct a system-

atic analysis of equivariant subspace disturbance intensity

and its impact on generation performance, as illustrated in

Fig. 8. Our findings demonstrate a clear trade-off between

sample diversity and functional fidelity. The intensity of

subspace disturbance exhibits a direct correlation with final

generation variance. As shown in Fig. 8(a), higher distur-

bance intensities lead to increased COV, indicating greater

diversity among generated samples. However, Fig. 8(b) re-

veals that this enhanced diversity comes at a cost to genera-

tion quality, as measured by increasing MMD.

Ablation study. To evaluate the importance of equivari-

ance, we conduct ablation studies comparing three vari-

ants: (1) our full EQUIGEN framework, (2) a variant that

omits the equivariant encoder and uses unconditional diffu-

sion, and (3) a variant that replaces equivariant features with

class-label conditioning. As shown in Tab. 3, the framework

with equivariance modules demonstrates superior perfor-

mance in both generation quality and diversity. The uncon-

Table 3. Ablation study of the equivariant encoder on MNIST-

INRs. The incorporation of equivariance largely enhances the

overall generation quality and diversity compared to different vari-

ants that omit equivariance.

Methods FID↓ LPIPS↑

EQUIGEN w/o condition 164.78 0.2432

EQUIGEN w/ label condition 162.56 0.2437

EQUIGEN w/ equivariant condition 121.24 0.4133

Table 4. Ablation study of weight space smooth augmentation and

equivariant subspace disturbance on ShapeNet-INRs, where each

test set consists of INRs from a single unseen object class.

Category Smooth Disturbance MMD↓ COV(%)↑ 1-NNA(%)↓

Airplane

5.5 29 79.4

3.2 30 77.5

5.7 35 75.2

3.4 35 73.0

Car

4.7 22 83.9

3.4 25 78.4

4.8 33 78.5

3.5 31 76.5

Chair

7.4 30 77.5

4.2 30 76.3

7.9 38 77.0

4.2 41 67.1

ditional variant exhibits mode collapse, and class-label con-

ditioning variant offers only minimal improvement, demon-

strating the limitations of direct class conditioning.

Another more fine-grained ablation study is conducted to

discern the individual contributions of weight space smooth

augmentation and equivariant subspace disturbance. The

results are presented in Tab. 4. Our analysis reveals that

smooth augmentation alone enhances both generation qual-

ity and diversity. This empirical evidence supports the

idea that starting from an optimized start point, the equiv-

ariant encoder could gain better expressive power through

contrastive learning. Conversely, applying subspace dis-

turbance yields increased diversity, although a modest de-

crease in generation quality appears when smooth augmen-

tation is absent. This trade-off can be attributed to the

fact that equivariant features with same disturbance may

locate at different category clusters with and without the

smooth augmentation. The simultaneous employment of

both smooth augmentation and subspace disturbance en-

ables our method to achieve optimal performance.

6. Conclusion

In this work, we present a practical setting named Few-shot

Implicit Function Generation and introduce solution to it by

leveraging the principle of equivariance. Our three-stage

framework addresses both the generalization and mode col-

lapse challenges inherent in weight space generation. Ex-

tensive experiments across INR data for 2D image and 3D

shape domains validate our approach, demonstrating supe-

rior performance in both generation quality and diversity.
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