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Abstract

Recent years have seen a significant increase in video
content creation and consumption. Crafting engaging con-
tent requires the careful curation of both visual and audio
elements. While visual cue curation, through techniques like
optimal viewpoint selection or post-editing, has been central
to media production, its natural counterpart, audio, has not
undergone equivalent advancements. This often results in a
disconnect between visual and acoustic saliency. To bridge
this gap, we introduce a novel task: visually-guided acoustic
highlighting, which aims to transform audio to deliver appro-
priate highlighting effects guided by the accompanying video,
ultimately creating a more harmonious audio-visual experi-
ence. We propose a flexible, transformer-based multimodal
framework to solve this task. To train our model, we also in-
troduce a new dataset—THE MUDDY MIX DATASET, leverag-
ing the meticulous audio and video crafting found in movies,
which provides a form of free supervision. We develop a
pseudo-data generation process to simulate poorly mixed
audio, mimicking real-world scenarios through a three-step
process—separation, adjustment, and remixing. Our ap-
proach consistently outperforms several baselines in both
quantitative and subjective evaluation. We also systemati-
cally study the impact of different types of contextual guid-
ance and difficulty levels of the dataset. Our project page is
here: https://wikichao.github.io/VisAH/.

1. Introduction
Be it amateur recordings of memorable moments or profes-
sionally created content—telling a story and delivering the
best audio-visual experience with a video requires the right
balance of audio and visual elements in the scene. Consider
for example, the scene in Fig. 1c that depicts a video of a
man talking in the sea. The scene is best represented when
the focus is on the person and the sea at the appropriate
moments. While there are several ways to visually highlight
the intended objects during capture or in post-production
[50, 62], they remain relatively under-explored and limited
for the acoustics. In our case above, the man’s speech can

Figure 1. We propose a new task that aims to transform poorly
mixed audio into a well-balanced mix using visual guidance. One
of our key insights is to use well-curated audio-visual content
from a movie database as free supervision to learn the appropriate
highlighting effect for audio (L2H).

be obscured by the sound of crashing waves. Is it possible to
automatically adjust the levels of the speech and the wave
sounds according to the video content to ensure they are both
acoustically salient and well-balanced?

A naive approach would involve first demixing the sounds
into different source components and then remixing them
at their respective intended levels. But doing so has two
major drawbacks: (i) imperfect demixing could lead to the
highlighting of undesired sources, and (ii) ensuring the right
temporal variations and alignment with the video manually
is a laborious process. Some research efforts, such as in mu-
sic remixing [26, 36, 66], focus on adjusting the levels and
effects of individual instruments to recompose music tracks.
However, this approach is limited to the music domain, ne-
glecting the broader needs of natural audio composition
across varied media contexts.
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In this paper, we aim to bridge this gap by introducing
a novel task, visually-guided acoustic highlighting. Our
approach builds on the hypothesis that the visual stream
in media is often curated with intent, implicitly conveying
highlighted content. In contrast, due to the limitations of
recording devices, such as microphones attached to video
cameras that capture all sounds indiscriminately, audio often
lacks intentional mixing, resulting in a poorly balanced track.
The goal of our task is to use the video as guidance to trans-
form the poorly mixed audio with appropriate highlighting
effects, ensuring a better output audio mix.

Dataset is a key requirement for training a learning-based
model to perform this task. We observe that movies are
inherently well-curated where audio is meticulously crafted
alongside video to create intentional highlighting effects.
This provides us with free supervision for the acoustic high-
lighting effect as illustrated in Fig. 1. Consequently, we build
a new dataset using movie clips spanning several generes
from the Condensed Movie Dataset (CMD) [2]. To simulate
real-world scenarios where audio may be poorly mixed or
require enhancement, we introduce a pseudo-data generation
process that begins with high-quality movie audio and then
applies imperfect separation, followed by adjustment and
remixing of individual audio sources.

We tackle acoustic highlighting as an audio-to-audio
translation problem and propose a transformer-based
Visually-guided Acoustic Highlighting (VisAH) model.
VisAH uses a U-Net-like audio backbone with a dual en-
coder [7] that takes both the spectrogram and the waveform
as inputs to extract latent representations from the poorly
mixed audio. In this latent space, a transformer encoder pro-
cesses context, such as the video stream or its corresponding
caption, and a transformer decoder with cross-attention in-
tegrates this video context to guide the transformation. The
decoder then converts the poorly mixed audio representation
into highlighted audio. This design is flexible, supporting
easy adjustments in both the backbone and latent modules.
Specifically, our model combines video context encoding
and visually-guided audio decoding, enabling it to fully cap-
ture temporal and semantic trends in the video and leverage
them for effective audio highlighting.

To summarize, our main contributions are threefold:

• We propose to intelligently highlight the audio content in
a video guided by visual cues, and we design VisAH, a
mutimodal transformer-based model to achieve that goal.

• Leveraging the free supervision from movies, where both
audio and video are already meticulously crafted, we intro-
duce THE MUDDY MIX DATASET, a new dataset curated
for this task.

• Our method outperforms a series of baselines, effectively
highlighting audio across different types of video content.

2. Related Work

Audio Remixing. Highlighting a mixed audio track is iden-
tical to rebalancing its individual sources, i.e., transferring
from one mixing style to another. In previous research, mu-
sic mixing [26, 38, 49, 59] has been extensively studied,
including creative manipulations that shape a song’s emo-
tive and sonic identity. Reproducing the mixing style of
a target song typically involves balancing tracks using au-
dio effects to achieve harmony and aesthetic appeal, often
through knowledge-based [44] or learning-based [38, 54, 59]
approaches. Related but different from these methods that fo-
cus on music, we handle a broad range of sounds, including
speech, music, and sound effects. Moreover, we propose to
use visual cues in videos to guide the highlighting process.

Video Highlight and Saliency Detection. Web videos, of-
ten created by professionals, are typically edited, such as
trimming to capture key moments or adjusting camera focus
to highlight engaging regions. This has led to the develop-
ment of video understanding tasks, including video highlight
detection [29, 33, 35, 40], which identifies key temporal
segments, and video saliency prediction [16, 22–24, 28],
which identifies salient regions within a scene. Developing
methods to smartly emphasize the right visual content in a
video and the the development of corresponding benchmark
datasets [15, 29] have become essential areas of study. In our
work, we focus on the mirror side of the problem: assuming
the video is already well-curated to visually convey highlight
information, as in movies, we leverage this visual narrative
to highlight the audio stream accordingly.

Audio-Visual Learning. Exploring connections between
acoustic and visual signals has been widely studied across
various tasks, including audio-visual localization [17, 19, 39,
46, 56–58], representation learning from cross-modal super-
vision [1, 12, 42], audio-visual learning for 3D scenes [21,
30, 31], audio-spatialization leveraging visual cues [9, 13,
41], and sound generation from videos [3, 5, 32, 43]. Dif-
ferently, we tackle a new challenging audio-visual learning
task, visually-guided acoustic highlighting.

Most closely related to our task is visually-guided audio
separation [10, 11, 18, 20, 42, 68], which addresses a specific
case of our problem by isolating a target sound and suppress-
ing others to zero, thereby achieving separation. However,
these methods lack a well-defined output for a balanced mix
and do not address the creation of poorly mixed inputs. Our
approach offers a new perspective by focusing on remixing
audio to produce a coherent, visually aligned output.

3. Approach

We introduce the task of visually-guided acoustic highlight-
ing, which aims to transform audio using visual guidance
to achieve an appropriate highlighting effect. In Sec. 3.1,
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Figure 2. Overview of VisAH: (a) Our model takes a poorly mixed audio waveform as input and produces the highlighted audio using a dual
U-Net architecture. For simplicity, skip connections are omitted in the illustration. (b) The latent highlighting transformer incorporates
vision and text encoders to integrate temporal information, guiding the transformer decoder to transform audio features effectively.

we elaborate on the task formulation and Sec. 3.2 discusses
design of our proposed multimodal model VisAH.

3.1. Task Formulation

Let v ∈ RTv×H×W×3 represent the visual stream, a se-
quence of Tv RGB images, and let a ∈ RTa be the corre-
sponding audio sequence. Here a is considered a poorly
mixed audio sequence that lacks the intended highlighting
effect, as is common in raw daily recordings where audio is
directly captured without deliberate curation. Our goal is to
predict an audio signal s that preserves the content of a but
conveys the appropriate highlighting effects. In other words,
we learn a mapping from the poorly mixed audio and the
video sequence to a corresponding highlighted audio signal:

a,v 7→ s. (1)

Creating a highlighting effect in audio involves rebalanc-
ing the sources at different levels to reflect their relative
prominence. When describing system design next we will
assume access to data tuples of the form (a,v, s). How such
a dataset is created and utilized in practice will be the subject
of our discussion in Sec. 4.

3.2. VisAH: Visually-guided Acoustic Highlighting

To address the problem formulated in Eq. (1), we focus on
two primary design choices: (i) how to structure the au-
dio framework to accept poorly mixed audio as input and
produce highlighted audio, and (ii) how to effectively incor-
porate contextual information, such as video streams or other
modalities like text, to guide the acoustic highlighting. In
this section, we elaborate on our framework design, present-
ing a flexible approach that includes both an audio backbone
and a context-aware module. The overall architecture of
VisAH is illustrated in Fig. 2.

3.2.1 Audio Backbone

The audio backbone is designed to produce an output with
the same shape as the input, making U-Net [51] archi-
tectures particularly suitable. We consider two common
types of audio input: time-domain and frequency-domain.
Frequency-domain input, often used in audio-visual separa-
tion tasks [4, 58, 68], captures distinct frequency patterns of
sounds, while time-domain input, frequently employed in
audio-only separation [37, 55], provides higher accuracy in
reconstructing the final waveform. In this work, we unify the
advantages of both input types within our audio backbone,
offering flexibility for future studies to utilize either or both.
Based on the HybridDemucs architecture [7], we implement
a dual U-Net model with two branches: one for spectrogram
inputs and the other for waveform inputs.
Spectrogram U-Net Encoder. Given an input audio signal
a ∈ RTa , we apply a Short-Time Fourier Transform (STFT)
to a with a window size of 4096 and hop length of 1024 to
obtain its spectrogram. Specifically, we use the magnitude
spectrogram as input, denoted by A. In the original Hybrid-
Demucs [7], the spectrogram is normalized using its mean
and standard deviation. However, we omit this normaliza-
tion, as we found that mean normalization can significantly
suppress ambient sounds, reducing the model’s sensitivity to
sound effects. The magnitude encoder consists of 5 layers,
with each layer reducing the number of frequency bins by
a factor of 4, except for the final layer, which reduces it by
a factor of 8. After passing through the magnitude encoder,
the frequency dimension is reduced to 1, aligning it with
the output shape from the waveform branch. Details of the
encoder design can be found in the supplementary materials.
Waveform U-Net Encoder. In this framework, the wave-
form branch acts as a residual path to capture fine-grained
temporal details. To facilitate processing, we normalize the
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waveform input a. The encoder design mirrors that of the
spectrogram U-Net encoder, with the main difference being
the use of 1D convolutions instead of 2D convolutions.
Latent Highlighting Module. With both the magnitude
and waveform embeddings in the same shape, we add them
element-wise to create a unified audio embedding. An addi-
tional encoder layer then reduces the temporal dimension by
half, producing fa ∈ RCa×L, where L represents the tem-
poral dimension of the latent audio features. To transform
fa into highlighted audio representations, we design a latent
highlighting module that incorporates both the audio features
and contextual information c (such as the encoded features
of video streams or other multi-modal input) to output the
features representing the highlighted audio, denoted as:

f̂a = Hθ(fa, c), (2)

where θ is the model parameters. Since both the latent
audio features and the contextual input are temporal signals,
we utilize a transformer-based framework to process them
effectively, as depicted in Fig. 2(b).
Waveform/Spectrogram U-Net Decoder. The refined fea-
tures f̂a will first pass through an additional decoder layer to
double the temporal length. Next, the output features serve
as the input to both the waveform and spectrogram U-Net
decoders, each mirroring the structure of the correspond-
ing encoder. The spectrogram decoder outputs a predicted
ratio mask, denoted as M, which represents the highlight-
ing information. We multiply the mask with the original
magnitude spectrogram element-wise to obtain a refined
magnitude M ⊙ A. Then we apply inverse STFT on this
refined magnitude, using the phase information from the
input to reconstruct the output waveform. In addition, the
audio output from the waveform decoder is then combined
with the spectrogram-based waveform output, producing the
final prediction ŝ.

3.2.2 Latent Highlighting Transformer

We now discuss the design of latent highlighting module Hθ

introduced in Eq. (2).
Latent audio features fa from the audio backbone capture

temporal and semantic characteristics of the poorly mixed
audio. To transform these features into representations that
convey appropriate highlighting effects, we consider two
key insights: (i) Audio captures information from the en-
tire surrounding environment, while the visual field-of-view
is narrower, focusing on salient regions and content. This
necessitates leveraging the temporal dynamics of the vi-
sual context as guidance for acoustic highlighting. (ii) In
movies, complex interactions often occur between different
sources (such as speech, music, and sound effects), with mu-
sic saliency, in particular, driven by emotional cues. Relying
solely on visual signals may not fully convey these nuanced
relationships. This prompts the question: can additional

modality enhance this process? To study this, we design a
transformer-based latent highlighting module Hθ that can
flexibly incorporate various types of temporal context, such
as video streams or text captions.
Context Encoding. Given the video sequence v, we use
CLIP ViT-L/14 [47] to transform each frame into a feature
vector, denoted as fvid ∈ RCvid×Tv . To address the second
insight mentioned above, we incorporate text captions as
an additional modality. Vision Language Models (VLMs)
have demonstrated impressive capabilities in summarizing
images and reasoning about text. We leverage text captions
as a bridge to convey deeper sentiment and context beyond
raw visual features. To generate captions automatically for
each frame, we use InternVL2-8B [6]. Each caption is then
embedded using T5-XXL encoder [48], resulting in textual
embeddings denoted as ftext ∈ RCtext×Tv . Since raw frame
and text features are extracted at a per-frame level and lack
temporal interaction, we apply a transformer encoder for
each modality to capture the temporal context, denoted as
Evid and Etext. To preserve temporal order, we add sinusoidal
positional encoding [60] to the input of each transformer en-
coder layer. We can concisely define contextual information
encoding as a sequence of the following operations:

f̂i = Ei(Gi(fi)), (3)

where i ∈ {video, text}, Gi(·) is a linear projection layer to
project Ci to C, the same channel dimension as fa.
Context-aware Acoustic Highlighting. We use a trans-
former decoder, D, to generate highlighted acoustic repre-
sentations. Sinusoidal positional encoding is added to fa.
The transformer decoder D consists of multiple layers, each
containing a self-attention layer, a cross-attention layer, and
a feed-forward layer. Rather than directly treating the de-
coder’s output as the final prediction, we interpret it as an
offset to the original features, adding it back to fa to preserve
the audio’s semantic content while adjusting inter-source dif-
ferences. Additionally, we incorporate a zero-initialized
convolution layer [67], denoted Z(·). This layer is a 1×1
convolution with both weights and biases initialized to zero.
The overall process is described as:

f̂a = fa + Z(D(fa, f̂i)), (4)

where the context f̂i can include visual, textual, or both
types of contextual information. In relation to Eq. (2), Hθ

acts as the integrative component that connects D, Evid, and
potentially Etext.

3.2.3 Training and Inference

Our VisAH framework takes the input audio a along with
visual context v or its textual captions to predict the high-
lighted audio ŝ. The loss is computed at the waveform level
and backpropagated through the network. In this work, we
use a multiscale STFT (MR-STFT) loss [65] between the
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Figure 3. We generate poorly mixed audio from the well-mixed
movie audio through the following steps: 1) Separation: We sepa-
rate the ground truth movie audio into individual tracks for speech,
music, and sound effects, allowing for some imperfections in the
separation process; 2) Adjustment: For each separated track, we
apply either suppression or emphasis, with the intensity selected
from three levels: [high, moderate, low]; 3) Remixing: Finally, we
combine the adjusted tracks through simple addition to create the
poorly mixed input audio.

predicted audio ŝ and the ground truth audio s, which is
implemented by computing the ℓ1 distance between their
amplitude spectrograms:

L = MR-STFT(̂s, s). (5)

The window sizes are set to 2048, 1024, and 512. It is worth
noting that the training loss is intentionally simple, and any
arbitrary waveform or spectrogram loss could be applied.
We demonstrate that even a standard loss can effectively
drive training, leaving further exploration of loss design to
future work.

At test-time, given badly mixed input audio and the
associated video frames as context, VisAH outputs well-
highlighted audio that is coherent both temporally and se-
mantically with the provided visual guidance.

4. THE MUDDY MIX DATASET

It is worth reiterating that training our model requires access
to badly mixed input audio, well-highlighted output audio
and the associated visual frames, as shown in Eq. (1). Our
key observation is that movies serve as a reliable source of
well-mixed data, implicitly conveying what good highlight-
ing and its synchronization with video sounds like. Our final
requirement of having access to the corresponding badly
mixed input audio is satisfied through the data modifica-
tion process described in this section. It essentially involves
demixing, adjusting and then remixing movie audio so as to
disturb its original highlighting effect.

We select the CMD [2] as our data source, which includes
33,976 clips from 3,605 diverse movies spanning various
genres1, countries, and decades, covering salient parts of
each film. Each clip is approximately two minutes long.
We concentrate on films tagged in the “Action” category,
ensuring good presence of multiple acoustic sources beyond
speech and music. As a movie in CMD may belong to
multiple categories, our selection still remains diverse and
covers a range of genres. We leave further expansion of
the dataset to future work. To prepare the data for training
and evaluation, we segment each movie clip into 10-second
segments and extract the video stream at 1 fps using ffmpeg,
while filtering out segments that lack an audio stream.

Separate, Adjust, and Remix. Given a high-quality movie
audio s, we prepare the poorly mixed input a through a
three-step process as shown in Fig. 3:

1. Separation. In practice, audio may consist of an infinite
variety of sources, making it impractical to separate and
remix every possible source individually. We follow the
Cinematic Sound Demixing Challenge [8], which seg-
ments audio into three broad categories: speech, music,
and sound effects. Accordingly, we apply a three-stem
separation model trained for cinematic audio source sep-
aration on the DnR v3 dataset [63], to decompose s into
three substreams: ŝh (speech), ŝm (music), and ŝe (sound
effects). Additionally, we calculate any residual compo-
nent, ŝr, to ensure that s = ŝh + ŝm + ŝe + ŝr. This
formulation guarantees that even if the separation is im-
perfect, the sum of all components matches the original
audio track.

2. Adjustment. Using these imperfect separations, we alter
their original relative levels, creating an input audio sig-
nal that intentionally mismatches the video’s highlighting
effect. Specifically, we adjust the relative loudness of
each stream. We first measure the original loudness of
each separated source using the pyloudnorm library [53].
For the source with the highest loudness, we apply a
“Suppress” action, reducing its loudness by a randomly
selected strength from the categories [high, moderate,
low]. For the other two sources, we apply a “Highlight”
action, increasing their loudness by a value chosen from
[high, moderate, low]. To retain the original mixture’s
content, we use the combined track ŝe + ŝr for the sound
effects input signal. We implement the loudness adjust-
ments as follows: [high, moderate, low] for highlighting
corresponds to increases of {12, 9, 6} dB, while for sup-
pressing, we apply decreases of {−12,−9,−6} dB.

3. Remixing. After adjusting loudness, we remix the three
sources linearly to create a poorly mixed input that con-
trasts with the ground truth highlighting effect.

1Some videos are unavailable due to inactive YouTube links
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Table 1. Main comparison: The best results are highlighted in bold, while the second best are highlighted with underline. We report metrics
on waveform distance, semantic alignment, and time alignment. All results are multiplied by 100.

Method MAG ↓ ENV↓ KLD↓ ∆IB↓ W-dis↓

Poorly Mixed Input 22.69 6.30 20.61 1.52 1.94
DnRv3 [63]+CDX [8] 26.32 (−16%) 7.62 (−21%) 15.87 (+23%) 1.78 (−17%) 2.84 (−46%)

Learn2Remix [66] 19.07 (+16%) 4.16 (+34%) 61.76 (−199%) 8.27 (−444%) 1.20 (+38%)

LCE-SepReformer [25] 17.18 (+24%) 4.28 (+32%) 30.99 (−50%) 1.88 (−24%) 1.28 (+34%)

VisAH (Ours) 10.08 (+56%) 3.43 (+46%) 11.01 (+47%) 0.80 (+47%) 0.79 (+59%)

Following this procedure, we generate input audio for
each video clip, resulting in 15,078/1,927/1,789 clips for
train/validation/test sets, respectively.

5. Experiments
5.1. Experimental Setting

Implementation Details. In our experimental setup, the au-
dio waveform is sampled at 44 kHz in stereo. We convert the
input to mono by averaging the two stereo channels. Within
the encoders, we set the dimensionality of the audio latent
representation fa to Ca = 768, with the original channel
dimensions for visual and text features set to Cvid = 768 and
Ctext = 4096, respectively. During training, we use a batch
size of 12 per GPU and the Adam optimizer with a learning
rate of 0.0001. The model is trained for 200 epochs. All
experiments are conducted on two RTX 4090 GPUs, with
training taking approximately 18 hours to complete.

Evaluation Metrics. We employ the following groups of
objective metrics to evaluate output quality:
• Waveform distance: The simplest way to assess the close-

ness of the prediction to the target is through waveform dis-
tance. We use magnitude distance (MAG) [64] to evaluate
audio quality in the time-frequency domain and envelope
distance (ENV) [31] to assess quality in the time domain.

• Semantic alignment: Since our goal is to adjust the rela-
tive distribution of audio across three categories: human
speech, music, and sound effects. We apply KL divergence
(KLD) [34, 61] using the pre-trained PaSST [27] model
to compare the label distributions of the target and gen-
erated audio. Additionally, given that the video provides
guidance, we assess audio-to-video semantic relevance
using the ImageBind [14] model, calculated as the cosine
similarity between audio and video embeddings, denoted
as IB score. Since we have the target movie audio, we use
the difference between the target and predicted IB scores:

∆IB = IB(v, s)− IB(v, ŝ). (6)

• Time alignment: The relative variation between underly-
ing sources (speech, music, and sound effects) can lead
to significant timing differences, as each track follows its
own temporal pattern. To test how well the model high-
lights all sources, we measure the minimum cost to align

Table 2. Ablation study on different context types. We compare a
no-context baseline with models using semantic (single frame or
text caption) and temporal context (multiple frames or captions).

Context MAG ↓ KLD↓ ∆IB↓

No Context 10.35 11.95 0.99

+Semantic Vision 10.35 11.67 0.91
+Semantic Text 10.32 11.83 0.84

+Temporal Vision 10.24 11.18 0.88
+Temporal Text 10.08 11.01 0.80

the predicted audio distribution with the target distribution.
This is quantified using Wasserstein Distance (W-dis)2.

5.2. Baselines

This is a novel task with no prior works. We adapt several
methods for relevant and fair comparison with VisAH:
• Poorly Mixed Input: This is the manually created poorly

mixed input according to our dataset creation strategy,
serving as a reference point for comparison.

• DnRv3 [63]+CDX [8]: To remix speech, music, and
sound effects from the input and generate highlighted au-
dio, we include an empirical baseline that adheres to the
loudness distribution of these sources as specified by the
CDX [8] challenge. We first apply the DnRv3 [63] separa-
tor to split the input audio into three tracks: speech, music,
and sound effects. Next, we sample loudness values for
each track according to their respective distributions. Fi-
nally, we adjust the loudness of each source and remix
them to create the output audio.

• Learn2Remix [66]: Learn2Remix (L2R) utilizes Con-
vTasNet [37] as its backbone model to predict and remix
different audio sources within feature spaces, making it
well-suited for our task of adjusting and rebalancing the
underlying speech, music, and sound effects. In our imple-
mentation, we adopt the more advanced SepReformer [52]
model to replace the ConvTasNet backbone. We use the
official code and train it on our dataset.

• Listen, Chat and Edit (LCE) [25]: LCE is a text-guided
sound mixture editor capable of performing various au-
dio editing tasks, such as adjusting the volume of specific

2https : / / en . wikipedia . org / wiki / Wasserstein _
metric.
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Table 3. Ablation study on transformer encoders Evid and Etext. V
and T represent vision frames and text captions, respectively. Note
that the text captions are obtained automatically from the video.

#layers #params context MAG ↓ KLD↓ W-dis↓

0 55.3M V 10.36 10.91 0.83
3 61.6M V 10.24 11.18 0.81
6 67.9M V 10.69 12.42 0.83

0 55.4M T 10.66 12.53 0.85
3 61.7M T 10.34 11.75 0.81
6 68.0M T 10.08 11.01 0.79

sources based on text instructions. However, in our setup,
we assume that explicit instructions on which sounds to
highlight are unavailable and instead should be inferred
from visual cues. To ensure a fair comparison, we provide
text captions as guidance for LCE. Originally, LCE uses
ConvTasNet [37] and Sepformer [55] as the SoundEdi-
tor models. For a fair comparison, we also replace the
backbone with the SepReformer [52] model.

5.3. Quantitative Results

5.3.1 Comparison with Baselines

We compare our method with the baselines, and the results
are presented in Tab. 1. The empirical baseline DnRv3+CDX
performs worse than the input in waveform distance and time
alignment metrics because it relies on a non-specific statisti-
cal distribution rather than data-dependent remixing. How-
ever, it outperforms the other two baselines in KLD, which
we hypothesize is due to the versatile loudness distributions
of the movies in CDX; remixing the speech, music, and
sound effects at those levels shifts the distribution toward
real movies. On the other hand, Learn2Remix, an audio-
only baseline, struggles to enhance audio without guidance.
It improves the poorly mixed input in terms of waveform
distance, which occurs because it learns the global loud-
ness distribution of our dataset. However, it fails to achieve
the necessary semantic alignment, reinforcing the need for
contextual input. For LCE, we utilize text captions as guid-
ance for acoustic highlighting, resulting in better outcomes
compared to Learn2Remix. However, it still underperforms
significantly when compared to our approach. This is be-
cause it is not a method designed for acoustic highlighting
and lacks the ability to capture the global trends required
for the task. In contrast, VisAH demonstrates strong perfor-
mance across all metrics, showcasing the effectiveness of
our proposed framework.

5.3.2 Ablations

In this section, we review the design of context encoding and
context choice, providing further insights into the task setup.
Does Contextual Information Matter? In Tab. 2, we
present a naive baseline that does not utilize any contex-

Table 4. Ablation study on dataset difficulty. We report the perfor-
mance of Input (-I) and our Predictions (-P) at the three different
levels of dataset difficulty.

Level MAG ↓ ENV↓ KLD↓ ∆IB↓ W-dis↓

High-I 27.70 7.64 32.52 2.35 2.38
High-P 12.03 3.93 16.11 1.25 0.97

Moderate-I 22.70 6.25 20.59 1.50 1.92
Moderate-P 8.73 3.23 11.08 0.81 0.65

Low-I 16.40 4.48 9.89 0.75 1.37
Low-P 9.55 3.20 7.16 0.35 0.80

tual guidance. This means that the model relies solely on
the input audio to learn how to highlight relevant informa-
tion. However, when we incorporate a single frame or its
corresponding text caption, the semantic alignment metrics,
KLD and ∆IB, show improvement. This indicates that con-
text plays a crucial role in enhancing the model’s perfor-
mance. Since audio is a time sequence, the highlighting
effects should ideally capture certain temporal patterns. We
further conduct ablation experiments using the full length
of video frames and captions, referring to this as temporal
vision or text. The performance shows a significant boost,
underscoring the importance of temporal context.
Number of Transformer Encoder Layers. We evaluate the
impact of encoding temporal context by varying the number
of transformer encoder layers. Without transformer encoders,
video and text features are encoded frame by frame, which
results in a lack of interaction across time steps. As shown
in Table Tab. 3, we find that increasing the number of layers
generally improves performance, suggesting that temporal
context reasoning is essential for effectively understanding
video-level content. Specifically, we observe continuous im-
provement when using text context, while performance with
vision context initially improves but then deteriorates when
the number of layers further increases, which we hypothesize
that the CLIP vision features are already compact.
Analysis of Dataset Difficulty. In Sec. 4, we outline three
levels of adjustments that can be made during the creation
of the dataset, which are randomly selected. In Tab. 4, we
provide an ablation of the impact of these difficulty levels.
We create three test sets that consist solely of low, moderate,
or high levels of adjustments. Our observations show contin-
uous improvements in metrics as the difficulty of the dataset
decreases. This supports both the design of our dataset and
metrics, as well as the generalization capability of training
on randomly selected levels.

5.4. Qualitative Analysis

Qualitative Visualizations. We display the magnitude spec-
trograms and waveforms of the highlighted audio produced
by various methods, along with the input and ground truth
in Fig. 4. These visualizations illustrate that our method ef-
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Figure 4. We perform a qualitative comparison by visualizing the waveform and magnitude spectrograms of the highlighted audio results
from different methods, along with the input and ground truth. Our method produces results that are closest to the movie GT. The orange
box denotes suppressed snippets, and green box indicates highlighted snippets.

Figure 5. Subjective test: We ask users to rank the four methods
based on audio-visual balance to evaluate acoustic highlighting.

fectively captures temporal variations and performs acoustic
highlighting across speech, music, and sound effect sources.

Subjective Test. We conduct a subjective test to compare
the highlighting results of our model with those of the LCE
baseline, as well as the input and ground truth. Nine par-
ticipants evaluated ten videos, each featuring four different
audio tracks generated by various methods. They ranked the
four methods based on perception of the balance between
audio and visual quality. Our method achieves a top-2 rank-
ing rate of 77%, outperforming the LCE baseline and the
input by 63% and 62%, respectively, as shown in Fig. 5.
Interestingly, our method even surpasses the GT for 34%
of the videos, indicating strong highlighting performance,
comparable to actual films at times.
Application: Refinement of Video-to-Audio Generation.
Our VisAH has several potential downstream applications,
one of which is refining video-to-audio generation. In Fig. 6,
we demonstrate that by using the audio from MovieGen [45]
as input, along with the video as guidance, our VisAH pro-

Figure 6. We demonstrate that our VisAH method enhances the
quality of video-to-audio generation results.

duces audio that achieves a better IB score. This indicates
enhanced audio-visual alignment, and human preferences
confirm these improvements. We encourage the readers to
see and listen to examples on our demo webpage in the
attached supplementary materials.

6. Conclusion

We presented a new task—visually-guided acoustic
highlighting—to bridge the gap between visual and acoustic
saliency in video content. To address this task, we have pro-
posed VisAH, a transformer-based multimodal framework
that uses visual information to guide audio highlighting.
By leveraging movies for free supervision, we develop a
pseudo-data generation process that simulates real-world
video quality, allowing for a labor-free training setup. Our
evaluations show that our approach outperforms several base-
lines in both objective and human perceptual assessments.
This framework enhances the alignment of audio-visual cues,
offering a more cohesive viewing experience.
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