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Abstract

Robotic grasping is a cornerstone capability of embod-

ied systems. Many methods directly output grasps from

partial information without modeling the geometry of the

scene, leading to suboptimal motion and even collisions.

To address these issues, we introduce ZeroGrasp, a novel

framework that simultaneously performs 3D reconstruction

and grasp pose prediction in near real-time. A key insight

of our method is that occlusion reasoning and modeling

the spatial relationships between objects is beneficial for

both accurate reconstruction and grasping. We couple our

method with a novel large-scale synthetic dataset, which

comprises 1M photo-realistic images, high-resolution 3D

reconstructions and 11.3B physically-valid grasp pose an-

notations for 12K objects from the Objaverse-LVIS dataset.

We evaluate ZeroGrasp on the GraspNet-1B benchmark

as well as through real-world robot experiments. Zero-

Grasp achieves state-of-the-art performance and general-

izes to novel real-world objects by leveraging synthetic

data. https://sh8.io/#/zerograsp

1. Introduction

Safe and robust robotic grasping requires accurate geomet-

ric understanding of target objects, as well as their sur-

roundings. However, most previous grasp detection meth-

ods [1–6] do not explicitly model the geometry of the target

objects, which can lead to unexpected collisions and un-

stable contact with target objects. Although several meth-

ods [3, 7] leverage multi-view images to reconstruct the tar-

get objects in advance, this process introduces additional

computational overhead and requires a more complex setup.

Multi-view reconstruction is also often impractical for ob-

jects placed within confined spaces like shelves or boxes.

Furthermore, the lack of large-scale datasets with ground-

truth 3D shapes and grasp pose annotations further compli-

cates accurate 3D reconstruction from a single RGB-D im-

(a) RGB Image (b) Noisy Depth Map

(c) 3D Reconstruction and Predicted Grasp Poses

Figure 1. ZeroGrasp simultaneously reconstructs objects at high-

resolution and predicts grasp poses from a single RGB-D image in

near real-time (5FPS).

age. Recently, several works [8–10] demonstrate that sparse

voxel representations outperform volumetric and NeRF-like

implicit shape representations in terms of runtime, accuracy,

and resolution, particularly for regression-based zero-shot

3D reconstruction.

To leverage reconstruction methods using sparse voxel

representations for robotic grasping, it is essential to de-

velop new approaches that can reason about both within

a unified framework. To this end, we propose ZeroGrasp,

a novel framework for near real-time 3D reconstruction

and 6D grasp pose prediction. Our key hypothesis is that

improved 3D reconstruction quality enhances grasp pose

prediction, specifically by leveraging physics-based contact

constraints and collision detection, which are essential for

accurate grasping. Since robotic environments often involve

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Overview of ZeroGrasp, a novel method for simultaneous 3D reconstruction and 6D grasp pose predictions from a single-view

RGB-D image. The input octree x is first fed into the octree-based CVAE (components with orange boxes). The multi-object encoder

takes its latent feature ℓ to learn multi-object reasoning at the latent space. Further, 3D occlusion fields encode inter- and self-occlusion

information via simple ray casting. The output features from the multi-object encoder and 3D occlusion fields are concatenated with the

latent code z, and 3D shapes and grasp poses are predicted by the decoder.

multiple objects with inter-object occlusions and close con-

tacts, ZeroGrasp introduces two key components: a multi-

object encoder and 3D occlusion fields. These components

effectively model inter-object relationships and occlusions,

thus, improving reconstruction quality. In addition, we de-

sign a simple refinement algorithm to improve grasp poses

using the predicted reconstruction. Because the reconstruc-

tion is highly accurate, it provides reliable contact points

and collision masks between the gripper and the target ob-

ject, which we use to refine the grasp poses.

In addition to our proposed model, we also create a real-

world dataset for evaluation, the ReOcS dataset, and a syn-

thetic datasets for training, the ZeroGrasp-11B dataset. The

ReOcS dataset is a real-world evaluation dataset of 3D re-

construction, with three splits representing different degrees

of occlusion. We use this dataset to assess robustness to

occlusions. The ZeroGrasp-11B dataset is a large-scale

synthetic dataset designed to train models with zero-shot

robotic grasping capability, containing high-quality and di-

verse 3D models from Objaverse-LVIS dataset [11], as

shown in Table 1.

We evaluate both the baseline and our methods, showing

that our approach — trained on the GraspNet-1B dataset [1]

alone, as well as on a combination of the GraspNet-1B

dataset and ZeroGrasp-11B — achieves state-of-the-art per-

formance on the GraspNet-1B benchmark. Our ablation

studies further show that the proposed components enhance

both reconstruction and grasp pose prediction quality. Fi-

nally, we conduct real-robot evaluations to demonstrate its

generalizability in real-world scenarios.

Our contributions are summarized as follows:

• We propose ZeroGrasp, a novel framework for simultane-

ous 3D reconstruction and 6D grasp pose prediction us-

ing an octree-based conditional variational autoencoder

(CVAE). ZeroGrasp achieves the best performance on the

GraspNet-1B benchmark and real-robot evaluation.

• We introduce a multi-object encoder and 3D occlusion

fields to model inter-object relationships and occlusions.

• We propose a simple grasp pose refinement algorithm

that improves grasp accuracy using the reconstructed 3D

shape.

• We create two datasets, 1) the ReOcS dataset for eval-

uating 3D reconstruction under occlusions, and 2) the

ZeroGrasp-11B dataset for zero-shot robotic grasping.

2. Related Works

Regression-based 3D reconstruction. Regression-based

3D reconstruction from a single-view RGB-D image [8, 20–

47] have been a major focus of research in 3D computer vi-

sion. These methods explore different 3D representations,

including dense voxel grids [23, 31, 39, 48], sparse voxel

grids [8, 9, 49] (e.g. octree [9], VDB [49], hash table [8],

and etc.), and implicit representations [20, 33, 34, 38].

Nevertheless, dense voxel grid and implicit representations

face limitations in output resolution due to expensive mem-

ory and computational costs. On the other hand, several

works [9, 20, 21, 49] show that sparse voxel representations

such as an octree and VDB [50] enable high-resolution 3D

reconstruction with faster runtime thanks to its efficient hi-

erarchical structure. Alternatively, single-view reconstruc-

tion through novel view synthesis achieves impressive re-

sults. Recent works such as GeNVS [51], Zero-1-to-3 [52],

3DiM [53], and InstantMesh [54] leverage diffusion models

to render multi-view images given a canonical camera pose.

However, these approaches are slow (often over 10 seconds)

and inter-object occlusions degrade the performance signif-

icantly. Further, integrating grasp pose prediction is non-

trivial. Thus, we adopt an octree as a shape representation
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Table 1. Dataset comparisons. We create a large-scale grasp detection dataset for zero-shot robotic grasping using 12K 3D models from

Objaverse-LVIS dataset [11]. Our ZeroGrasp-11B dataset includes 1 million RGB-D images and physics-based dense 6D grasp annotations

of cluttered scenes.

Dataset # Images # 3D Models # Grasps # Cat. Type Modality Grasp Alg. Grasp Rep.

Cornel [2] 1K 0.2K 8K 16 Real RGB-D Manual Planar

Jacquard [12] 54K 11K 1.1M N/A Sim. RGB-D Physics Planar

Zhang et al. [13] 4.7K ≈15K 100K N/A Real RGB Manual Planar

VR-Grasping-101 [14] 10K 0.1K 4.8M 7 Sim. RGB-D Manual 6D

GraspNet-1Billion [1] 97K 0.1K 1.2B 30-35 Real RGB-D Analytical 6D

ACRONYM [15] N/A 9K 17.7M 262 Sim. N/A Physics 6D

REGRAD [16] 900K 50K 100M 55 Sim. N/A Physics 6D

HouseCat6D [17] 23.5K 0.2K 10M 10 Real RGB-D+P Physics 6D

Grasp-Anything-6D [18] 1M N/A 200M N/A Synth. RGB + ZoeDepth [19] Analytical 6D

ZeroGrasp-11B (Ours) 1M 12K 11.3B 606 Sim. RGB-D Physics 6D

and design our framework based on octree-based U-Net [9].

Regression-based Grasp Pose Prediction. Traditional

grasp pose prediction methods typically assume prior

knowledge of 3D objects and often rely on simplified an-

alytical models based on force closure principles [55, 56].

Recently, tremendous progress has been made in learning-

based approaches [1, 6, 57, 58] which have allowed models

to predict 6D grasp poses directly from RGB(-D) images

and point clouds. This has enabled the regression of grasp

poses in highly cluttered scenes without explicitly modeling

object geometries. However, this could result in unstable

grasping and unexpected collision, as accurately learning

collision avoidance and precise contact points remains chal-

lenging. Although some methods [42, 59, 60] explore 3D

reconstruction to improve grasp prediction, their choices of

shape representations and network architectures often limit

its full potential.

Zero-shot robotic grasping. Zero-shot robotic grasping

refers to the ability to grasp unseen target objects with-

out prior knowledge. To achieve this, there are mainly

two directions — (1) optimizing grasp poses at test time

based on contact points using reconstructed or ground-truth

3D shapes [3, 61], and (2) augmenting or synthesizing

large-scale grasp data to improve generalization [1, 15, 62].

For instance, Ma et al. [3] propose a contact-based op-

timization algorithm to refine initial grasp poses by us-

ing a reconstructed 3D scene from multi-view RGB-D im-

ages. Existing large-scale grasp pose datasets such as

ACRONYM [15], GraspNet-1B [1], and EGAD [62] ex-

plore the second approach. Nevertheless, they are limited

to object diversity or missing annotations like RGB-D im-

ages. Inspired by these two approaches, we aim to improve

generalization to unseen objects with a simple and efficient

grasp pose refinement algorithm that utilizes predicted re-

constructions. Further, we create a large-scale synthetic

dataset for grasp pose detection. Our dataset comprises

high-quality and diverse objects, as well as 1M photorealis-

tic RGB images and physics-based grasp pose annotations.

3. Proposed Method

Our goal is to build an efficient and generalizable model for

simultaneous 3D shape reconstruction and grasp pose pre-

diction from a single RGB-D observation, and to demon-

strate that the predicted reconstructions can be used to re-

fine grasp poses via contact-based constraints and collision

detection. In this section, we describe the network architec-

ture and grasp pose refinement algorithm.

3D shape representation. We adopt an octree as a shape

representation where attributes such as image features, the

signed distance function (SDF), normals, and grasp poses

are defined at the deepest level of the octree. For instance,

we represent an input octree as a tuple of voxel centers p at

the final depth, associated with image features f ,

x = (p, f) , p ∈ R
N×3, f ∈ R

N×D. (1)

where N is the number of voxels. Unlike point clouds,

an octree structure enables efficient depth-first search and

recursive subdivision to octants, making it ideal for high-

resolution shape reconstruction and dense grasp pose pre-

diction in a memory and computationally efficient manner.

Grasp pose representation. We represent grasp poses

using a general two-finger parallel gripper model, as used

in GraspNet [1]. Specifically, our grasp poses consist of

the following components: view graspness score s ∈ R
M ,

which indicates the robustness of grasp positions [57]; qual-

ity q ∈ R
M , computed using the force closure algo-

rithm [55]; view direction v ∈ R
3M ; angle a ∈ R

M ; width

w ∈ R
M ; and depth d ∈ R

M :

g =
[

s q v a w d
]

, (2)

where M denotes the number of total grasps in the target

octree, and the closest grasp poses within a 5 mm radius
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Figure 3. 3D occlusion fields localize occlusion information by

casting rays from the camera to the voxel centers around the target

object and performing depth tests. Specifically, if a ray intersects

the target object, a self-occlusion flag oself is set to 1. If it intersects

non-target objects, an inter-object occlusion flag ointer is set to 1.

are assigned to each point. If none exists, we set its corre-

sponding graspness to 0. In GraspNet-1B and ZeroGrasp-

11B datasets, each point is annotated with a dense set of

grasp poses covering all combinations of views, angles, and

depths (300 × 12 × 4). With the grasp poses g, the target

octree is defined as

y =
(

pgt, fgt
)

=
(

pgt,
[

ϕ n g
])

, (3)

where ϕ ∈ R
M is the SDF, and n ∈ R

M×3 is normal vec-

tors of the target octree.

3.1. Architecture

Given input octrees x, composed of per-instance partial

point clouds derived from depth maps and instance masks,

along with their corresponding image features, we aim to

predict 3D reconstructions and grasp poses ŷ represented as

octrees. ZeroGrasp is built upon an octree-based U-Net [9]

and conditional variational autoencoder (CVAE) [63] to

model shape reconstruction uncertainty and grasp pose pre-

diction, while maintaining near real-time inference. We

present two key innovations to improve its accuracy and

generalization. Specifically, we introduce (1) multi-object

encoder to model spatial relations between objects via a

3D transformer in the latent space, enabling collision-free

3D reconstructions and grasp poses, and (2) 3D occlusion

fields, a novel 3D occlusion representation which captures

inter-object occlusions to enhance shape reconstruction in

occluded regions.

Octree feature extraction. An RGB image I ∈
R

H×W×3 is encoded to extract an image feature W. We

fine-tune SAM 2 [64] to generate 2D instance masks M ∈
R

H×W and Mi represents an i-th object mask The im-

age feature map is then unprojected into 3D space by

(qi,wi) = π−1 (W,D,K,Mi) where qi and wi denote

3D point cloud and its corresponding features of an i-th
object, respectively. Here, π is the unprojection function,

D ∈ R
H×W is the depth map and K ∈ R

3×3 denotes

the camera intrinsics. The 3D point cloud features are con-

verted to an octree xi = (pi, fi) = G (qi,wi) where G is

the conversion function from the point cloud and its features

to an octree.

Octree-based CVAE. To improve the shape reconstruc-

tion quality, ZeroGrasp utilizes probabilistic modeling

through an octree-based conditional variational autoencoder

(CVAE) to address the inherent uncertainty in single-view

shape reconstruction, which is crucial for improving both

reconstruction and grasp pose prediction quality. Inspired

by [63], our Octree-based CVAE consists of an encoder E ,

prior P , and decoder D to learn latent representations of 3D

shapes and grasp poses together as diagonal Gaussian. Con-

cretely, the encoder E (zi | xi,yi) learns to predict the la-

tent code zi based on the predicted and ground-truth octrees

xi and yi. The prior P (ℓi, zi | xi) takes the octree xi as in-

put and computes the latent feature ℓi ∈ R
N ′

i
×D′

and code

zi ∈ R
D′

where N ′
i and D′ are the number of points and the

dimension of the latent feature. Internally, the latent code is

sampled from predicted mean and variance via a reparam-

eterization trick [65]. The decoder D (yi | ℓi, zi,xi) pre-

dicts a 3D reconstruction along with grasp poses. To save

computational cost, the decoder predicts occupancy at each

depth, discarding grid cells with a probability below 0.5.

Only in the final layer does the decoder predict the SDF,

normal vectors and grasp poses as well as occupancy. Dur-

ing training, KL divergence between the encoder and prior

is minimized such that their distributions are matched.

Multi-object encoder. The prior P computes features per

object, lacking the capability of modeling global spatial ar-

rangements for collision-free reconstruction and grasp pose

prediction. To address this, we incorporate a transformer

in the latent space, composed of K standard Transformer

blocks with self-attention and RoPE [66] positional encod-

ing, following in [10]. The multi-object encoder M takes

voxel centers ri ∈ R
N ′

i
×3 and its features ℓi ∈ R

N ′

i
×D′

of

all the objects at the latent space are updated as
[

ℓ1 · · · ℓL
]

←M
([

(r1, ℓ1) · · · (rL, ℓL)
])

, (4)

where L represents the total number of objects.

3D occlusion fields. Our key insight is that the multi-

object encoder primarily learns to avoid collisions between

objects and grasp poses in a cluttered scene, as collision

modeling requires only local context, making it easier to

handle. In contrast, occlusion modeling requires a com-

prehensive understanding of the global context to accu-

rately capture visibility relationships, since occluders and
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Figure 4. Example RGB images, stereo depth maps, 3D shapes and grasp poses

from the ReOcs and ZeroGrasp-11B datasets. The grasp poses of the ZeroGrasp-

11B dataset are subsampled by grasp-NMS [1] for better visibility of the 3D shapes

and grasps. More examples are found in the supplementary material.
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Figure 5. Contact-based constraints are used to

effectively refine grasp poses. We first obtain con-

tact points cL and cR. Next, the contact distance

D
(

cL|R

)

, and the depth is computed by Z
(

cL|R

)

are computed. Finally, the width and height of the

grasp is refined based on Eq. (10) and Eq. (11).

occludees can be positioned far apart. To mitigate this is-

sue, we design 3D occlusion fields that localizes visibility

information to voxels via simplified octree-based volume

rendering. Concretely, we subdivide a voxel at the latent

space into B3 smaller blocks (B blocks per axis), which are

projected into the image space. As shown in Figure 3, if a

block lies within the instance mask corresponding to the tar-

get object, a self-occlusion flag oself is set to 1. If the block

lies within the instance mask of neighbor objects, inter-

object occlusion flag ointer is set to 1. After computing the

flags of all the blocks, we construct the 3D occlusion fields

Vi ∈ R
N ′×B3×2 by concatenating the two flags of the i-th

object. Finally, we encode it by three layers of 3D CNNs

that downsample the resolution by a factor of two at each

layer to obtain an occlusion feature oi ∈ R
N ′×D′′

at the

latent space, and update the latent feature by ℓi ←
[

ℓi oi

]

to account for occlusions as well as collisions.

Training. Similar to the standard VAEs [63, 65], we

train our model by maximizing the evidence lower bound

(ELBO). Additionally, we opt for economic supervi-

sion [67] to learn grasp pose prediction efficiently. There-

fore, the loss function is defined as

Lrec = ωocc

H
∑

h

Lh
occ + ωnrmLnrm + ωSDFLSDF, (5)

Lgrasp = ωsLs + ωqLq + ωaLa + ωwLw + ωdLd, (6)

LKL = ωKLDKL (E (zi | xi,yi) ∥P (ℓi, zi | xi)) , (7)

L = Lrec + Lgrasp + LKL, (8)

where Lh
occ computes the mean of the binary cross entropy

(BCE) function of occupancy at each depth h, andLnrm, and

LSDF represent the averaged L1 distances of surface normal

and SDF, respectively, at the final depth of the octree. Ls,

Lq, La, Lw, and Ld computes the averaged L1 distance of

graspness of all the possible views, and cross entropy for

quality, angle, width, and depth respectively. Finally, the

term LKL measures the KL divergence between the encoder

E and the prior P . Each ω term is a weight parameter to

align the scale of different loss terms.

3.2. Grasp Pose Refinement

We find that a strong advantage of 3D reconstruction is its

ability to utilize the reconstruction to refine predicted grasp

poses. While Ma et al. [3] propose a contact-based opti-

mization algorithm, it requires an accurate truncated signed

distance field (TSDF) reconstructed from multi-view im-

ages and its runtime is relatively slow. In contrast, we in-

troduce a simple refinement algorithm that applies contact-

based constraints and collision detection on the 3D recon-

struction. Specifically, we first detect contact points by find-

ing the closest points on the reconstruction to the left and

right fingers of the gripper. We then adjust the predicted

width and depth so that both fingertips have contact. Fi-

nally, we perform collision detection with the reconstruc-

tion to discard grasp poses with collisions. In the following,

we explain the details of these two refinement processes.

Contact-based constraints. Accurate contacts are essen-

tial for successful grasping, as they ensure stability and con-

trol during manipulation. While our network predicts width

and depth of the gripper, we observe that even small errors

can result in unstable grasping. To address this issue, we re-

fine a grasp pose by adjusting the fingertip locations of the

gripper to align with the nearest contact points of the left

and right fingers cL and cR on the reconstruction. Based on

the contact points the width w is refined as

∆w = min (D (cL) , D (cR)) , (9)

w← w + 2 (max (γmin,min(∆w, γmax))−∆w) , (10)

so that the contact distance ∆w remains within the range

γmin to γmax. Note that D (c) denotes the contact distance
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Figure 6. Comparisons of 3D reconstruction methods using sparse voxel representations on the ReOcS dataset. Except OctMAE [10],

an RGB-D image and predicted instance mask are given as input, and the methods output per-object reconstructions. For OctMAE, we

visualize its results with normal maps since it is designed to predict a scene-level reconstruction. For a fair comparison, all the models are

trained only on the ZeroGrasp-11B dataset. The red rectangles highlight the regions with major differences.

Table 2. Quantitative evaluation of 3D reconstruction on the GraspNet-1B [1], and ReOcS datasets with different difficulties. Chamfer dis-

tance (CD), F1-Score@10mm (F1), and normal consistency (NC) are reported in the unit of mm. Seg. denotes an output 3D reconstuction

is segmented or not.

Method Seg.
GraspNet-1B [1]

ReOcS (Ours)

Easy Normal Hard

CD↓ F1↑ NC↑ CD↓ F1↑ NC↑ CD↓ F1↑ NC↑ CD↓ F1↑ NC↑

Minkowski [8] ✓ 6.84 81.45 77.89 5.59 85.40 84.74 6.05 82.15 82.68 9.11 77.10 80.86

OCNN [43] ✓ 7.23 82.22 78.44 5.26 85.43 85.66 5.96 82.33 84.25 8.69 77.58 82.08

OctMAE [10] 7.57 78.38 75.19 5.53 87.62 86.90 5.93 83.98 83.45 6.76 80.24 80.58

Ours ✓ 6.05 84.08 78.46 4.76 88.71 86.74 5.54 84.67 85.13 6.73 80.86 82.95

from c. We further adjust the depth d by

d← max (Z (cL) , Z (cR)) , (11)

where Z (c) compute depth of the contact point c. These

simple refinement steps help ensure stable grasps.

Collision detection. We implement a simple model-free

collision detector using the two-finger gripper, following

GS-Net [57]. Although the previous method uses partial

point cloud obtained from a depth map, it fails to discard

predicted grasp poses that result in collisions with occluded

regions. To overcome this limitation, we instead leverage

the reconstructed shapes, which allows more precise colli-

sion detection. To justify this approach, we perform exten-

sive analysis in our experiments and show the advantages.

4. Datasets

We create two datasets for evaluation and training — 1)

the ReOcS dataset is designed to evaluate the quality of

3D reconstruction under varying occlusion levels, and 2)

the ZeroGrasp-11B dataset is intended for training base-

lines and our model for zero-shot robotic grasping. Figure 4

highlights several examples of the datasets.

4.1. ReOcS Dataset

The ReOcS dataset contains 1,125 RGB-D images and

ground-truth instance masks, 6D poses, and 3D shapes. To

obtain accurate depth maps of metalic and transparent ob-

jects, we use a learning-based stereo depth estimation algo-

rithm [71]. There are three splits — easy, normal and hard

— based on the extent of occlusions. We use this dataset to

compare the robustness of baselines and our method under

different occlusion conditions. For the details, please refer

to the supplementary material.

4.2. ZeroGrasp­11B Dataset

As shown in Table 1, the ZeroGrasp-11B dataset leverages

12K 3D models and create 1M photorealistic RGB images,

ground-truth and stereo depth maps of 25,000 scenes with

BlenderProc [72]. In addition, it provides ground-truth

3D reconstructions and 6D object poses. While Grasp-

Anything-6D [18] has 6D annotations of a larger number

of objects, 3D models are missing, which is crucial for

reconstruction. Further, its synthesized images and pre-

dicted depth maps have no guarantee that they are physi-

cally valid, and grasp pose annotations are sparse and gener-

ated from planar grasp poses. We solve these issues with the

ZeroGrasp-11B dataset to enable zero-shot robotic grasp-

ing. In the following, we describe the procedure of grasp

pose generation.

Grasp pose generation. Following [6], we begin by ran-

domly sampling Ns surface points on ground-truth 3D re-

constructions. Ns is determined by Ns = A/ρ with
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Figure 7. Qualitative results on grasp pose prediction of ZeroGrasp. Following GSNet [57], we show the best 50 grasp predictions after

grasp-NMS [1] from six different scenes (two scenes per split). Red and blue grasps denote high and low grasp quality scores, respectively.

Table 3. Quantitative evaluation of grasp pose prediction on the GraspNet-1Billion

benchmark. Similar to the other baseline methods, we report the average precision

(AP), AP0.4, and AP0.8. Note that 0.4 and 0.8 denote the friction coefficients, and

the lower the more difficult. G and R in the output column indicate whether the

reconstructed posture prediction are predicted or not.

Method
Output Seen Similar Novel

G R AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4

GG-CNN [5] ✓ 15.48 21.84 10.25 13.26 18.37 4.62 5.52 5.93 1.86

Chu et al. [68] ✓ 15.97 23.66 10.80 15.41 20.21 7.06 7.64 8.69 2.52

CenterGrasp† [59] ✓ ✓ 16.46 20.24 11.74 9.52 11.92 5.71 1.60 1.89 1.12

GPD [69] ✓ 22.87 28.53 12.84 21.33 27.83 9.64 8.24 8.89 2.67

Lian et al. [4] ✓ 25.96 33.01 15.37 22.68 29.15 10.76 9.23 9.89 2.74

GraspNet [1] ✓ 27.56 33.43 16.59 26.11 34.18 14.23 10.55 11.25 3.98

GSNet [57] ✓ 67.12 78.46 60.90 54.81 66.72 46.17 24.31 30.52 14.23

Ma et al. [70] ✓ 63.83 74.25 58.66 58.46 70.05 51.32 24.63 31.05 12.85

HGGD ✓ 64.45 72.81 61.16 53.59 64.12 45.91 24.59 30.46 15.58

EconomicGrasp [67] ✓ 68.21 79.60 63.54 61.19 73.60 53.77 25.48 31.46 13.85

Ours
✓ ✓

70.53 82.28 64.26 62.51 74.26 54.97 26.46 33.13 15.11

Ours+FT 72.43 83.12 65.57 65.45 78.32 55.48 28.49 34.21 15.80

Table 4. Abalations on the network input, ar-

chitecture, and refinement algorithm. For recon-

struction and grasp pose prediction, we report

the metrics of the hard split of the ReOcS dataset

and GraspNet-1B dataset, respectively.

Method
Reconstruction Grasp Pose

CD↓ F1↑ NC↑ Seen Similar Novel

Baseline (OCNN [9]) 8.69 77.58 82.08 41.27 36.48 17.46

No CVAE 7.67 78.79 82.35 70.23 60.31 26.28

No Multi-Obj. Encoder 7.09 79.62 82.60 69.52 61.03 26.17

No 3D Occlusion Fields 7.54 78.81 81.94 67.34 58.45 25.00

No Contact Constraints 6.73 80.86 82.95 65.67 55.34 24.92

No Collision Detection 6.73 80.86 82.95 49.35 44.28 21.03

+ Depth Map 6.73 80.86 82.95 59.93 51.58 24.07

Ours 6.73 80.86 82.95 70.53 62.51 26.46

A denoting the surface area and ρ as a density param-

eter. For each surface point, we synthesize candidate

grasps with all combinations of views, orientations around

the point’s normal vector, and depth respectively, follow-

ing GraspNet-1B [1]. Next, we conduct collision de-

tection to eliminate any grasps with collision and com-

pute the grasp quality q for the remaining candidates.

The quality metric [55] is computed based on the nor-

mal vectors nL and nR of the contact points cL and

cR by q = min (nL · cLR, nR · cLR) , where cLR =
(cL − cR) / (∥cL∥∥cR∥). Finally, we physically validate

the generated grasps with IsaacGym [73]. To make the Ob-

javerse 3D models compatible with simulation, we decom-

pose them into convex hulls using V-HACD [74]. Figure 4

shows the grasp poses before and after the collision and

physics-based filtering process.

5. Experiments

Implementation details. Our propoposed method, Zero-

Grasp, adopts a ResNeXt [75] architecture, pretrained on

the ImageNet dataset [76], as an image encoder, and all the

parameters except the last layer are fixed during training.

Similar to EconomicGrasp [67], we use the predicted view

graspness s to determine a view direction. For training, we

use AdamW [77] with a learning rate of 0.001, batch size

of 16 on NVIDIA A100. The weights of the loss function

is provided in the supplemental. We set the dimensions of

the input image feature D, the latent feature D′, and the 3D

occlusion fields V to 32, 192, and 16 respectively. For the

3D occlusion fields, we use 8 for the block resolution B.

Following Ma et al., the ranges of the contact distance γmin

and γmax are defined to 0.005m and 0.02m, respectively. To

generate grasp poses, we use 0.005m2 as the sampling den-

sity ρ.

Metrics. Similar to OctMAE [10], we use the Chamfer

distance (CD), F-1 score, and normal consistency (NC) to

evaluate the quality of 3D reconstruction. To evaluate the

quality of grasp pose prediction, we use average precision

(AP), a standard metric of the GraspNet-1B benchmark,

which evaluates average precision based on the top-k ranked

grasps in a scene. The APµ metric measures the precision

with the friction of µ by evaluating grasps with friction µ
over m different thresholds. The final AP score is computed

as the mean of APµ, using friction values µ from 0.2 to 1.2
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at intervals of 0.2.

5.1. Main Results

3D reconstruction. As shown in Table 2, our method out-

performs the other single-view reconstruction methods. We

choose the three methods using sparse voxel representations

due to its superior efficiency and accuracy in a zero-shot

setup, reported in Iwase et al. [10]. We train the baseline

and our methods on the ZeroGrasp-11B dataset and eval-

uate them on the GraspNet-1B and ReOcS dataset to test

generalization to real-world images. Our qualitative evalu-

ation in Figure 6 demonstrates the robustness of ZeroGrasp

to real-world images and inter-object occlusions.

Grasp pose prediction. Table 3 demonstrates the com-

parison against state-of-the-art methods for grasp pose pre-

diction on the RealSense data of the GraspNet-1Billion

benchmark. The baselines and our model are trained

on the training split of the GraspNet-1Billion dataset for

20 epochs. Notably, our method achieves the state-of-

the-art performance across all the AP metrics. In the

Ours+FT setup, our model is initially pre-trained on the

ZeroGrasp-11B dataset, then fine-tuned on the GraspNet-

1Billion dataset for 2 epochs. As a result, fine-tuning im-

proves 1.9%, 2.94%, and 2.03% in the seen, similar and

novel splits. This result supports the importance of large-

scale grasp pose datasets for zero-shot robotic grasping.

Figure 7 shows qualitative results of ZeroGrasp. Unlike the

previous methods, ZeroGrasp enables accurate grasp pose

prediction even in occluded or truncated regions.

5.2. Ablations

Table 4 shows our ablation studies to validate the effective-

ness of each component. We provide detailed analyses from

the perspectives of the two tasks addressed in our work.

3D reconstruction. We observe a consistent drop in per-

formance across all reconstruction metrics when each of

CVAE, the multi-object encoder, and 3D occlusion fields

is individually excluded. This highlights the importance

of multi-object reasoning to achieve higher reconstruction

quality. As shown in Figure 6, our visualizations further

demonstrate that these components contribute to better re-

construction, especially in regions with inter-object occlu-

sions and close contacts between objects.

Grasp pose prediction. As illustrated in Table 4, most

of the components contribute to improved grasp pose de-

tection. In particular, collision detection and contact-based

constraints provide a significant boost to grasp pose quality.

Our comparison of collision detection using a depth map

(partial point clouds) as in GSNet [57] and our predicted

reconstruction (59.93 vs 70.53) reveals that reconstruction-

based collision detection is more effective. Furthermore, the

Figure 8. Example scenes of our real-robot evaluation.

substantial performance drop without 3D occlusion fields

underscores the importance of reasoning about inter-object

occlusions.

5.3. Real­Robot Evaluation

We validate the feasibility and generalizability of the base-

line (OCNN [9]) and our method, trained only on our syn-

thetic dataset, through real-world evaluations. Our robotic

setup uses Franka Emika Panda robot and Robotiq 2F-85

hand. As shown in Figure 8, we set up 5 scenes with 3
to 4 objects. Each object is picked up in repeated trials,

with a maximum of 3 attempts per object. Our success rate,

measured by the ratio of objects successfully picked up, is

56.25% for the baseline and 75% for our method, highlight-

ing the strong generalization of our approach in real-world

scenarios. We describe more details about the robotic setup

and show qualitative results in the supplementary material.

6. Conclusion

In this paper, we propose ZeroGrasp, a novel approach

for simultaneous 3D reconstruction and grasp pose predic-

tion. By integrating five key components, ZeroGrasp en-

hances both shape reconstruction and grasp prediction qual-

ity. Our extensive analysis confirms the effectiveness of

these components. In addition, we strongly believe that

ZeroGrasp-11B dataset facilitates future research in zero-

shot robotic grasping. Despite its promising generaliza-

tion capabilities, ZeroGrasp has some limitations. First,

our method does not support incremental or multi-view 3D

reconstruction [78, 79], which is beneficial when using a

wrist-mounted camera on an end effector. Second, it does

not account for placement poses that could leverage pre-

dicted 3D reconstructions. While this paper focuses on

single-view 3D reconstruction and grasp pose prediction,

exploring these directions would be valuable.
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