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Figure 1. Novel view synthesis results (left) alongside the projected centers of 3D Gaussians (right). Each blue dot represents a
projected 3D Gaussian center. Our proposal offers two key advantages: 1) Our 3D Gaussians are well-distributed across the scene, whereas
CF-3DGS [11] has a notable absence of 3D Gaussians on the image’s left side (e.g., in the red region); 2) Our learned 3D Gaussians are of
high quality. While CF-3DGS places numerous 3D Gaussians in the green region, the rendering quality there is notably inferior to ours.

Abstract

Standard 3D Gaussian Splatting (3DGS) relies on known or
pre-computed camera poses and a sparse point cloud, ob-
tained from structure-from-motion (SfM) preprocessing, to
initialize and grow 3D Gaussians. We propose a novel SfM-
Free 3DGS (HT-3DGS) method for video input, eliminating
the need for known camera poses and SfM preprocessing.
Our approach introduces a hierarchical training strategy
that trains and merges multiple 3D Gaussian representa-
tions – each optimized for specific scene regions – into a
single, unified 3DGS model representing the entire scene.
To compensate for large camera motions, we leverage
video frame interpolation models. Additionally, we incor-
porate multi-source supervision to reduce overfitting and
enhance representation. Experimental results reveal that
our approach significantly surpasses state-of-the-art SfM-
free novel view synthesis methods. On the Tanks and Tem-

ples dataset, we improve PSNR by an average of 2.25dB,
with a maximum gain of 3.72dB in the best scene. On the
CO3D-V2 dataset, we achieve an average PSNR boost of
1.74dB, with a top gain of 3.90dB. The code is available at
https://github.com/jibo27/3DGS Hierarchical Training.

1. Introduction
3D Gaussian Splatting (3DGS) [15] represents a 3D scene
from multi-view images based on camera intrinsic and ex-
trinsic parameters along with an initial point cloud. Obtain-
ing camera poses and the initial point cloud requires prepro-
cessing, which is often performed using a structure-from-
motion (SfM) algorithm [29]. However, SfM can be time-
consuming and may struggle with repetitive patterns, tex-
tureless regions, or feature extraction errors. Additionally,
SfM lacks differentiability, which can limit its applicability
in future research [4]. As such, a class of new methods for
novel view synthesis is trying to eliminate the need for SfM
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preprocessing [9, 11, 14, 20].
Removing SfM preprocessing introduces two obvious

questions for 3DGS. First, how can the camera poses of
the input images be estimated? Second, how can 3D gaus-
sians be initialized and grown within the scene? Inspired by
CF-3DGS [11], we address the challenge of constructing an
SfM-free 3DGS from video sequences. Assuming video in-
put with small camera movement, we address the issue of
camera pose estimation by predicting the relative poses be-
tween temporally adjacent frames. By sequentially stacking
these relative poses, we obtain the overall camera poses.

To improve camera pose estimation, a key innovation in
our work is leveraging a video frame interpolation (VFI)
model to generate additional frames. We using an off-the-
shelf deep model [18] to double the input video length by
interpolating between frames. Although these interpolated
frames are not rendered from an underlying 3D model and
may lack perfect geometric consistency, they provide suf-
ficient quality (see Fig. 3) to bridge relative poses between
frames, which is particularly beneficial for sequences with
larger camera movements. They also provide additional
supervision, covering viewpoints not present in the origi-
nal training frames. Incorporating these interpolated frames
into 3DGS training yields a 0.35 dB performance boost on
the Tanks and Temples dataset [17].

To address the second question of initializing and grow-
ing the 3D Gaussians, a straightforward way would be to
use a point cloud derived from the depth map of the first
frame; however, this often leads to sparse Gaussian cov-
erage for regions not visible in the first frame. The stan-
dard adaptive density control [15] – which adjusts 3D Gaus-
sians by splitting, cloning, and pruning – struggles in these
sparsely covered regions. In these areas, the Gaussians may
have very small gradients, making it challenging to activate
densification processes [5, 39].

To this end, we propose a novel hierarchical training
strategy that merges multiple base 3DGS models, each
optimized for specific parts of the scene, into a unified
model representing the entire scene. Intuitively, the adap-
tive density control encounters difficulties in regions with
sparse 3D Gaussians; however, with our strategy, these re-
gions are populated with 3D Gaussians merged from other
3DGS models. Interestingly, this merging strategy can be
viewed as a densification process: we discard unimportant
3D Gaussians and densify the representation by merging es-
sential Gaussians from different base 3DGS models. Fig 1
illustrates the improved 3D Gaussian coverage achieved by
our approach compared to a naive strategy without hierar-
chical training. This strategy boosts PSNR by 1.19–1.58 dB
on the Tanks and Temples dataset[17].

Furthermore, we enhance the representation quality
through multi-source supervision, leveraging both base
3DGS models and interpolated frames from VFI.

Our approach achieves a significant PSNR improvement
of 2.25 dB on the Tanks and Temples [17] and 1.74 dB
on the CO3D-V2 [28] over state-of-the-art SfM-free novel
view synthesis methods. Even without known camera in-
trinsics, our method surpasses the state-of-the-art methods
by 0.89 dB in PSNR. Our contributions are as follows:
• We improve pose estimation by leveraging video frame

interpolation to smooth camera motion.
• We introduce a hierarchical training strategy to address

initialization and density control challenges without SfM
preprocessing. Interestingly, this approach can be inter-
preted as a densification step.

• We employ multi-source supervision, reusing base 3DGS
models and VFI-interpolated frames to reduce overfitting.

• Together, these innovations yield a 3DGS approach that
requires no SfM preprocessing, significantly outperform-
ing existing SfM-free novel view synthesis methods.

2. Related Works
Novel view synthesis is the task of predicting realistic
images from an unobserved viewpoint. NeRFs [24] are
an implicit 3D representation that encode scenes within
an MLP. They are remarkable at rendering images from
novel views, but despite the various proposed improve-
ments [1, 2, 10, 12], they are still relatively slow and may
require up to several minutes to render a scene. In contrast,
3D Gaussian splats [15], as an explicit representation,
are able to achieve high-quality renderings at much faster
speeds. Subsequent works build upon 3D Gaussian splat-
ting, dealing with revising the density [5, 39], compressing
the representation [19, 25, 26] and anti-aliasing [35, 37].
Others extend 3D Gaussian splatting to dynamic [8, 30, 33]
and large, city-scale scenes [16, 22].

SfM-free novel view synthesis for both NeRFs and 3D
Gaussian splatting is a class of works that try to do away
with known or estimated camera pose from SfM. Exam-
ples include i-NeRF [36], which estimates camera poses
by aligning keypoints using a pre-trained NeRF. Follow-
ups like NeRFmm [32], SiNeRF [34], BARF [21] and
GARF [7] learn both the NeRF model and camera pose
embeddings simultaneously [32], addressing the gradient
inconsistency [7, 21], leveraging pre-trained networks for
monocular depth estimation or optical flow, incorporat-
ing prior geometric knowledge or correspondence informa-
tion [4, 6, 23].

For 3D Gaussian splatting, CF-3DGS [11] and
GGRt [20], InstantSplat [9], COGS [14] was developed to
support SfM-free optimization. CF-3DGS [11] performs an
affine transformation on the positions of the 3D Gaussians
to predict relative poses, progressively expanding the repre-
sentations from the first frame to the last frame. However,
its performance is limited by the accuracy of estimated cam-
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era poses. It also suffers when there is insufficient initializa-
tion of 3D Gaussians, and has challenges in density control.
GGRt [20] jointly learns two modules for iterative pose op-
timization and a generalizable 3DGS. On the other hand,
InstantSplat [9] and COGS [14] are designed primarily for
scenarios with sparse image views. In this paper, we focus
on the video input with small camera movement, similar to
CF-3DGS [11]. We address two main challenges associated
with applying 3DGS in SfM-free tasks: improving camera
pose estimation and enhancing the initialization and learn-
ing of 3D Gaussians.

3. Approach
3.1. Overview

Consider a video sequence I = {Ii | i = 1, . . . , N} cap-
tured with small camera movements. We aim to reconstruct
a 3D Gaussian splatting representation (3DGS) S from I
and camera intrinsics K. We first estimate a series of cam-
era poses P = {Pi | i = 1, . . . , N} (Section 3.2). Then,
we partition the video into overlapping segments {Cj}. For
each segment Cj , a base 3DGS model SCj is trained. These
models are then iteratively merged from adjacent segments
to form a unified representation (Section 3.3). After each
merge, we retrain the merged 3DGS model using original
training frames, pseudo-view frames from the base mod-
els, and interpolated frames from VFI on the combined seg-
ments (Section 3.4). This merging and retraining process
continues until we obtain the final 3DGS model S, repre-
senting the entire sequence I. Fig. 2 provides an overview
of the pipeline.

3.2. Camera pose estimation

We estimate the camera poses P by stacking relative cam-
era poses between temporally adjacent pairs of frames. The
camera pose of the first frame is set to have no rotation or
translation, i.e., P1 = [I|0], serving as the reference frame.
The estimated poses for all subsequent frames are with re-
spect to this first frame. For each frame pair (Ii, Ii+1), we
estimate the relative pose Ti→i+1 across all N−1 pairs. The
camera pose for the i-th frame is the matrix multiplication
of the previous relative camera poses:

Pi := T1→i = Ti−1→i ⊙ · · · ⊙ T2→3 ⊙ T1→2. (1)

While stacking relative poses can accumulate error, directly
estimating each frame’s pose with respect to the first frame
is more challenging due to the larger camera displacement.

Relative pose estimation. As identified in [11], the relative
poses between two frames can be approximated by estimat-
ing an affine transformation, denoted as A, which is applied
to 3D Gaussians from the first frame. After the transforma-
tion, the rendered image with respect to the second frame

should align with the second frame. Specifically, the 2D
projection µ2D of a 3D Gaussian with position µ under the
pose P is given by µ2D =K(Pµ)/(Pµ)z . This can be ap-
proximated by applying an affine transformation A to µ, fol-
lowed by a projection using the identity camera pose [I|0],
yielding µ2D =K(Iµ′)/(Iµ′)z , where µ′=Aµ. As a result,
the relative pose can be estimated from A.

In practice, to estimate the relative pose from Ii to Ii+1,
we first construct a single-image 3DGS model Si optimized
exclusively on Ii. We then apply the affine transformation
A to each Gaussian in Si and render the image Îi+1 using
the camera pose [I|0]. The reconstructed Îi+1 is expected to
match Ii+1. We optimize A by minimizing the photometric
loss between the rendered image Îi+1 and the target image
Ii+1. During optimization, the attributes of 3D Gaussians
in Si are fixed, and only A is optimized. The optimized
transformation matrix A corresponds to the estimated
relative pose Ti→i+1.

Relative pose estimation with video frame interpolation.
When the camera movement between adjacent frames is
small, the relative pose estimation described above per-
forms well because of sufficient frame overlap. However,
with larger camera motions, performance decreases, and the
fixed single-image 3DGS model from the previous frame
may fail to render a high-quality image Îi+1. This is be-
cause larger camera motions introduce more unseen content
that the previous frame may not cover, leading to optimiza-
tion objectives impacted by artifacts and resulting in poorly
estimated poses. For example, the rendered Îi+1 exhibits
artifacts in such regions, as shown in Fig. 3d.

A key insight of our work is compensating for large
camera motions with a well-trained video frame interpo-
lation (VFI) model [18]. Let Ii+0.5 represent an interpo-
lated frame between Ii and Ii+1, where the decimal 0.5
indicates the interpolated result. We estimate the rela-
tive poses between Ii and Ii+0.5, and between Ii+0.5 and
Ii+1, separately. The overall relative pose is then given by
Ti→i+1=Ti→i+0.5 ⊙ Ti+0.5→i+1. By reducing the relative
camera motion in each step, fewer artifacts are introduced
(see Figs. 3e and 3f).

3.3. Hierarchical Training

After estimating the camera poses P , the next step is to
initialize and grow 3D Gaussians from the input video. A
straightforward approach is to initialize the 3D Gaussians
using point clouds lifted from the depth map [3, 27] of
the first frame, then gradually grow the 3D Gaussians by
processing frames sequentially. This initialization, based
on a single frame, is incomplete in covering the scene.
Moreover, the standard adaptive density control [15],
which relies on accumulated gradients to split and clone
Gaussians or prunes them based on low opacity, struggles
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Figure 2. Overview of our proposal. We partition the video into multiple segments, train a base 3DGS model on each segment individually,
and then iteratively merge these base models into a single, unified 3DGS model representing the entire scene.

(a) Ii (b) Ii+0.5 (c) Ii+1

(d) Îi+1 w/o VFI (e) Îi+0.5 w/ VFI (f) Îi+1 w/ VFI

Figure 3. Effect of VFI on relative pose estimation between Ii
(3a) and Ii+1 (3c). Fig 3b shows the interpolated frame. In Fig 3d,
artifacts are noticeable in regions affected by camera movement,
which VFI helps reduce. Fig 3e and 3f show fewer artifacts in the
rendered interpolated and original frames.

in regions with sparse Gaussians distributions. In such
areas, Gaussians may have very small gradients, and thus
fail to activate the densification process. Consequently, as
shown in Fig. 1, areas in the scene not covered in the first
frame exhibit a noticeable lack of Gaussians. To overcome
this limitation, we propose the hierarchical training strategy.

Video partitioning. We first partition the N frames into
overlapping segments, with the j-th segment denoted as
Cj . Ideally, each segment features similar scene content
so that the 3DGS model is trained without encountering
many unseen regions. To achieve this, we reuse the
estimated relative camera poses. Segments Cj and Cj+1

are separated by locating adjacent image pairs with the
largest camera movement. Empirically, we observe that
evenly partitioning the video into segments yields similar
results.

Training of base 3DGS models. After partitioning the
video into segments, we train the 3DGS model SCj for
each segment Cj . The 3D Gaussians are initialized using a
point cloud predicted from the first frame of Cj by depth

estimators [3, 27]. The Gaussians are then optimized from
the first to the last frame in each segment, growing as
needed to capture the scene details.

Merging of base 3DGS models. To represent the entire
scene, we merge these base 3DGS models. Consider the
merging of two base 3DGS models SCj

and SCj+1
. Since

each model is optimized with its 3D Gaussian positions
aligned to the first frame of its respective segment, it is
necessary to align the two models before merging. The
alignment is performed by transforming the 3D Gaussians
in SCj+1 to match those in SCj , based on the relative pose
TCj+1,1→Cj,1

, where Cj,1 and Cj+1,1 denote the first frames
of their respective segment.

For merging two 3DGS models, one potential idea is to
identify correspondences between 3D Gaussians in the two
models and interpolate matched pairs. However, this idea
presents several challenges in our task. First, establishing
accurate correspondences between Gaussians is non-trivial.
For instance, one should not interpolate the Gaussians in
the non-overlapping regions in the scene. Yet distinguish-
ing between overlapping and non-overlapping regions can
be difficult. Secondly, even with correspondences identi-
fied, variations in properties like opacity, scale, covariance,
and color among matched Gaussians could complicate the
interpolation process [16].

Therefore, instead of interpolation, we take a simple
yet effective merging strategy: first, prune unimportant 3D
Gaussians in each model, then concatenate the remaining
Gaussians. Specifically, we first assign an importance score
to each 3D Gaussian. Our importance score is inspired by a
3DGS compression strategy [26], which defines the impor-
tance of a given parameter p for a 3D Gaussian as:

f(p) =
1∑N

i=1 HiWi

N∑
i=1

∣∣∣∣∣∣
∂
(∑

x,y Îi(x, y)
)

∂p

∣∣∣∣∣∣ . (2)

Above,
∑

x,y Îi(x, y) represents the sum of RGB values in
the rendered image Îi, and Hi and Wi are the height and
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width of image Îi. Parameter p is a general notation repre-
senting variables such as color c, opacity α, or covariance.
The importance score evaluates the sensitivity of the ren-
dering quality with respect to changes to parameter p of a
3D Gaussian. If a minor change in the parameter signifi-
cantly affects the rendered image, that parameter is consid-
ered important. We compute the importance score for each
3D Gaussian in base 3DGS models using Eq 2 and keep the
top γ percent from base 3DGS models. Finally, we take
the union of the selected 3D Gaussians to form the merged
representation.

It is feasible to take the union since 3DGS is an ex-
plicit representation. While this approach may introduce
redundant Gaussians, we empirically observe that adaptive
density control [15] is more effective at pruning redundant
Gaussians than at generating new or high-quality Gaussians
in sparse regions. If we anchor the model to SCj

, our
merging strategy can be viewed as a densification step: it
removes less important Gaussians and densifies the repre-
sentation by adding importance Gaussians from SCj+1

.

Hierarchical training. After defining the partition and
merging strategy, we describe the hierarchical training
pipeline that merges multiple base 3DGS models, each op-
timized for individual segments, into a unified model. First,
we define a hierarchical level L and partition the input
into 2L overlapping segments, resulting in 2L base mod-
els. We iteratively merge adjacent pairs, reducing the num-
ber of models by half in each step, until only one uni-
fied model remains. For example, with L = 2, we cre-
ate four base models: SC1

, SC2
, SC3

, and SC4
. The first

merge yields SC1∪C2
and SC3∪C4

, and the final merge gives
S1:N := SC1∪C2∪C3∪C4

. Hierarchical training requires all
input frames in advance. We also explore an online ap-
proach in which we sequentially merge SC1∪C2 with SC3 ,
then with SC4

, yielding S1:N . We refer to this variant as
progressive training. Both strategies improve the baseline
by at least 1.32dB (Table 5), with slightly better results for
hierarchical training.

3.4. Multi-source supervision

After merging SCj
and SCj+1

and pruning unimportant
3D Gaussians, the newly merged representation needs to
be retrained. Simply retraining on the set of images from
Cj ∪ Cj+1 leads to overfitting on those specific images.
To address this, we propose to augment training with
two additional sets of images: (1) from the base 3DGS
models SCj and SCj+1 before merging, and (2) from the
interpolated frames (see Section 3.2).

Supervision from base 3DGS models. As the base 3DGS
models are better-optimized for their respective segments,
novel pseudo-views rendered from these models can serve

as a source of training images for the merged 3DGS. To
generate novel views, we first sample a virtual camera pose
Pi+τ between two poses, Pi and Pi+1, using the formula:

Pi+τ = Pi exp
(
τ log

(
P−1
i · Pi+1

))
, (3)

where τ ∈ (0, 1) and Pi, Pi+1 ∈ SE(3) represent camera
poses in the SE(3) space. This smooth interpolation enables
the creation of pseudo-views, which are then rendered as
additional supervision for the merged 3DGS model.

Supervision from video frame interpolation. The inter-
polated images from VFI are of sufficiently high quality at
viewpoints not covered by the training frames, making them
suitable for supervision. For instance, Fig. 3b shows an
example of an interpolated frame. To supervise the merged
3DGS with the interpolated frames, we need to estimate
their corresponding camera pose. For an interpolated frame
Ii+0.5 between frames Ii and Ii+1, the camera pose Pi+0.5

is computed as Pi+0.5 = Ti→i+0.5⊙· · ·⊙T1.5→2⊙T1→1.5.
Each relative pose was previously calculated in Section 3.2,
so no additional computational overhead is required.

Loss function. We optimize the 3DGS model using the
photometric loss between the rendered image and the train-
ing image or the pseudo image [15]:

L = (1− λ)L1 + λLD-SSIM, (4)

where L1 is the L1 loss, and LD-SSIM is the D-SSIM term.

4. Experiment
4.1. Experimental setting

Datasets. We conduct experiments on the Tanks and Tem-
ples dataset [17] and the CO3D-V2 dataset [28]. For Tanks
and Temples, following [4, 11], we sequentially divide the
frames into groups of 8, using one of the frames as the test
frame and the remaining frames for training. For the Fam-
ily scene on Tanks and Temples, we alternate images, using
every other image as a test image. The CO3D-V2 dataset
is more challenging due to its larger camera motions. We
adopt the same sampling strategy, using every eighth frame
for testing and the rest for training.
Metrics. We use PSNR, SSIM [31], and LPIPS [38] to eval-
uate the effectiveness of novel view synthesis. For camera
pose estimation, we report the Absolute Trajectory Error
(ATE) and Relative Pose Error (RPE), similar to [4, 11].
ATE measures the difference of the camera positions. RPE
measures the relative pose errors, containing relative rota-
tion error (RPEr) and relative translation error (RPEt). Ad-
ditionally, we report the memory size required to store the
optimized parameters.
Implementation details. The hierarchical training level is
set to L=2 as it reaches the saturation point (see Table 4).
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Scenes BARF [21] SC-NeRF [13] Nope-NeRF [4] CF-3DGS [11] Ours
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Church 23.17 0.62 0.52 21.96 0.60 0.53 25.17 0.73 0.39 30.23 0.93 0.11 31.34 0.94 0.08
Barn 25.28 0.64 0.48 23.26 0.62 0.51 26.35 0.69 0.44 31.23 0.90 0.10 34.95 0.97 0.05

Museum 23.58 0.61 0.55 24.94 0.69 0.45 26.77 0.76 0.35 29.91 0.91 0.11 31.59 0.95 0.08
Family 23.04 0.61 0.56 22.60 0.63 0.51 26.01 0.74 0.41 31.27 0.94 0.07 34.71 0.97 0.05
Horse 24.09 0.72 0.41 25.23 0.76 0.37 27.64 0.84 0.26 33.94 0.96 0.05 35.82 0.98 0.03

Ballroom 20.66 0.50 0.60 22.64 0.61 0.48 25.33 0.72 0.38 32.47 0.96 0.07 34.12 0.97 0.04
Francis 25.85 0.69 0.57 26.46 0.73 0.49 29.48 0.80 0.38 32.72 0.91 0.14 34.09 0.93 0.13
Ignatius 21.78 0.47 0.60 23.00 0.55 0.53 23.96 0.61 0.47 28.43 0.90 0.09 31.64 0.95 0.06

Mean 23.42 0.61 0.54 23.76 0.65 0.48 26.34 0.74 0.39 31.28 0.93 0.09 33.53 0.96 0.07

Table 1. Novel view synthesis results on Tanks and Temples [17]. We achieve the best performance among all competitors.

Figure 4. Qualitative novel view synthesis results on Tanks and Temples [17]. Our proposal achieves superior rendering quality.

Each segment’s base 3DGS model is trained from start to
end frame with 300 iterations per frame. Multi-source su-
pervision also employs 300 iterations per frame. During
the merging, we select the top 50% of 3D Gaussians from
each model based on importance score. Multi-source su-
pervision involves two steps: first, using pseudo-view im-
ages from base models and original frames; second, using
interpolated frames and original frames, with a 50% prob-
ability of selecting pseudo-view or interpolated frame for
each step. Gaussians are grown and pruned every 100 and
2000 iterations on the Tanks and Temples and CO3D-V2
datasets, respectively. All experiments are conducted on a
single RTX A5000 GPU.

4.2. Evaluation on the Tanks and Temples Dataset

Quantitative comparison. We perform the compari-
son with the state-of-the-art novel view synthesis meth-
ods without SfM preprocessing, including BARF [21], SC-
NeRF [13], Nope-NeRF [4] and CF-3DGS [11] on Tanks
and Temples [17]. As shown in Table 1, our method
achieves superior performance compared to all of them.
Specifically, compared to CF-3DGS, we improve the av-

erage PSNR by 2.25 dB, SSIM by 0.03, and reduce LPIPS
by 0.02. The most significant improvement is observed in
the Barn scene, with a PSNR increase of 3.72 dB, SSIM
improvement of 0.07, and LPIPS reduction of 0.05.
Qualitative comparison. Fig. 4 shows that we achieve
finer detail and higher fidelity, especially in highly detailed
regions where CF-3DGS struggles to grow 3D Gaussians,
highlighting the advantages of our training strategy.

4.3. Evaluation on the CO3D-V2 Dataset

Quantitative comparison. Due to the challenges posed by
this dataset, we limit our comparison to the most advanced
methods, namely Nope-NeRF [4] and CF-3DGS [11]. Ta-
ble 2 shows that our method outperforms these approaches,
with an average PSNR boost of 1.74 dB. The most signifi-
cant improvement is seen in the scene 34 1403 4393 (ted-
dybear), where we increase the PSNR by over 3.90 dB, im-
prove SSIM by 0.07, and reduce LPIPS by 0.06.
Qualitative comparison. Fig. 5 demonstrates that even
with challenging input videos, our method maintains high
performance compared to CF-3DGS, which exhibits blur
and unrealistic red artifacts in the 34 1403 4393 (teddy-
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Method 34 1403 4393 106 12648 23157 110 13051 23361 245 26182 52130 415 57112 110099
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Nope-NeRF [4] 28.62 0.80 0.35 20.41 0.46 0.58 26.86 0.73 0.47 25.05 0.80 0.49 24.78 0.64 0.55
CF-3DGS [11] 27.75 0.86 0.20 22.14 0.64 0.34 29.69 0.89 0.29 27.24 0.85 0.30 26.21 0.73 0.32

Ours 32.52 0.93 0.14 23.43 0.73 0.28 29.95 0.87 0.19 28.59 0.87 0.27 27.23 0.78 0.30

Table 2. Novel view synthesis results on CO3D-V2 [28]. We achieve superior performance over all competitors, with the largest im-
provement on 34 1403 4393, where our method increases PSNR by 3.90 dB compared to Nope-NeRF.

Figure 5. Qualitative novel view synthesis results on CO3D-V2 [28]. Our proposal achieves superior rendering quality.

bear) scene due to suboptimal 3D Gaussian learning.
Camera pose estimation. We conduct camera pose estima-
tion comparisons only on CO3D-V2, as it provides ground-
truth camera poses. As shown in Table 3, our method
achieves comparable or superior performance to all com-
petitors, reducing RPEt and RPEr by up to 0.464 and 0.078,
respectively. Our approach’s improvements on ATE are less
consistent. We hypothesize that this is due to errors in the
interpolated images generated by the VFI model, to which
camera position estimation is particularly sensitive.

4.4. Ablation study

We conduct an ablation study on the Tanks and Temples
dataset [17]. Table 5 reports the average PSNR, SSIM, and
LPIPS across all scenes. The baseline generally follows CF-
3DGS [11], with adjustments to certain hyperparameters to
align with our strategy.
Progressive vs. hierarchical training. Table 5 shows that
hierarchical training (HT) outperforms progressive training
(PT) by 0.2 dB (Variant 6 vs. 7), with both improving PSNR
over the baseline (Variant 3) by more than 1.32 dB. This
supports our claim that merging 3D Gaussians from dif-
ferent base models enhances results. HT performs better

by balancing training across early and late frames, whereas
PT, which allocates more iterations to early frames, tends
to overfit them. However, PT is suitable for online tasks,
unlike HT. Moreover, to test if the performance gains result
from additional training iterations, we retrain the baseline
model on the entire input (referred to as global training,
GT). GT shows minimal improvement, indicating that re-
training alone does not improve the performance.

Hierarchical training level. We evaluate the effectiveness
of hierarchical training at various levels L, with results in
Table 4. At L = 0, the 3DGS model is trained by treating
the entire input as a single segment. Our strategy notably
boosts PSNR by 1.19–1.58 dB and SSIM by 0.02, while
reducing LPIPS by 0.01–0.02. Performance increases with
higher levels, saturating at L=2, where the video is divided
into four segments, sufficient for 3D Gaussian learning on
the about 150-frame Tanks and Temples dataset. Our pro-
posal also lowers memory storage by 0.22–0.26 GB. While
it may seem counterintuitive, hierarchical training reduces
memory storage for two reasons: (1) pruning unimportant
Gaussians before merging, maintaining a stable count; (2)
optimized segment-wise Gaussians are more representative,
unlike the baseline model, which redundantly clones and
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Method 34 1403 4393 106 12648 23157 110 13051 23361 245 26182 52130 415 57112 110099
RPEt ↓ RPEr ↓ ATE ↓ RPEt ↓ RPEr ↓ ATE ↓ RPEt ↓ RPEr ↓ ATE ↓ RPEt ↓ RPEr ↓ ATE ↓ RPEt ↓ RPEr ↓ ATE ↓

Nope-NeRF [4] 0.591 1.313 0.053 0.387 1.312 0.049 0.400 1.966 0.046 0.587 1.867 0.038 0.326 1.919 0.054
CF-3DGS [11] 0.505 0.211 0.009 0.094 0.360 0.008 0.140 0.401 0.021 0.239 0.472 0.017 0.110 0.424 0.014

Ours 0.041 0.170 0.009 0.045 0.282 0.014 0.093 0.331 0.020 0.064 0.438 0.017 0.049 0.351 0.024

Table 3. Camera pose estimation results on CO3D-V2 [28]. We achieve significant improvements in RPEt and RPEr , with a slight
decrease in performance on ATE. We hypothesize that ATE is more sensitive to errors in the interpolated frames from VFI.

Scenes L = 0 L = 1 L = 2 L = 3
PSNR ↑ SSIM ↑ LPIPS ↓ Mem ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Mem ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Mem ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Mem ↓

Church 30.44 0.93 0.09 1.06 31.40 0.94 0.08 0.84 31.67 0.95 0.08 0.85 31.61 0.94 0.08 0.83
Barn 30.09 0.88 0.11 1.44 32.06 0.92 0.08 1.43 32.27 0.92 0.08 1.41 32.20 0.92 0.08 1.38

Museum 30.24 0.91 0.10 1.35 30.95 0.94 0.08 1.17 31.75 0.94 0.07 1.10 31.97 0.95 0.07 1.09
Family 33.12 0.96 0.05 1.44 33.71 0.96 0.05 1.18 34.20 0.97 0.05 1.21 34.15 0.97 0.05 1.18
Horse 34.08 0.96 0.05 1.07 35.44 0.98 0.04 0.96 35.44 0.98 0.04 0.90 35.54 0.98 0.03 0.92

Ballroom 32.82 0.96 0.05 1.39 33.17 0.97 0.05 1.14 33.41 0.97 0.04 1.14 33.67 0.97 0.04 1.13
Francis 32.84 0.92 0.14 0.81 33.64 0.92 0.13 0.68 33.66 0.92 0.13 0.75 33.62 0.92 0.13 0.64
Ignatius 28.37 0.91 0.09 2.09 31.15 0.94 0.06 1.50 31.78 0.94 0.06 1.43 31.90 0.95 0.06 1.40

Mean 31.50 0.93 0.09 1.33 32.69 0.95 0.08 1.11 33.02 0.95 0.07 1.10 33.08 0.95 0.07 1.07

Table 4. Ablation study of the hierarchical training level. Memory storage is measured in gigabytes.

Id Variant PSNR ↑ SSIM ↑ LPIPS ↓
(1) CF-3DGS 31.28 0.93 0.09
(2) CF-3DGS + VFI 31.45 0.93 0.09

(3) Baseline 31.50 0.93 0.09
(4) + Global Training (GT) 31.52 0.93 0.08
(5) + GT + VFI 31.95 0.93 0.08
(6) + Progressive Training 32.82 0.95 0.07
(7) + Hierarchical Training (HT) 33.02 0.95 0.07
(8) + HT + VFI 33.37 0.95 0.07
(9) + HT + VFI + Base (Ours) 33.53 0.96 0.07

(10) Ours w/o intrinsic 32.17 0.94 0.09

(11) NeRF + SfM 26.61 0.75 0.38
(12) 3DGS + SfM 30.20 0.92 0.10

Table 5. Ablation study on Tanks and Temples [17]. Incorporat-
ing all components yields the best performance.

splits Gaussians in regions with sparse Gaussians.
Effectiveness of video frame interpolation (VFI). We
evaluate the impact of VFI in Table 5. VFI smooths cam-
era motion and provides additional supervision, resulting in
an average PSNR gain of 0.17dB (Variant 1 vs. 2), 0.43dB
(Variant 4 vs.5) 0.35 dB (Variant 7 vs. 8). VFI improves var-
ious 3DGS models, including CF-3DGS, beyond our hierar-
chical training. Moreover, hierarchical training contributes
a PSNR gain exceeding 1.52 dB, showing that the core im-
provement stems from hierarchical training rather than aug-
mented data from VFI.
Effectiveness of supervision from base 3DGS models.
Table 5 shows that the supervision from base 3DGS mod-
els enhances performance, with an average PSNR increase
of 0.16 dB and an SSIM increase of 0.01 (Variant 8 vs.
9). Pseudo-views generated by base 3DGS models mitigate
overfitting and provide additional supervision for views not
covered by the training images.
Unknown camera intrinsics. We experiment with heuris-

tics instead of known camera intrinsics by setting the FoV
to 70◦. As shown in Table 5, PSNR dropped from 33.53dB
to 32.17dB (Variant 9 vs. 10). Inaccurate intrinsics hin-
der pose estimation and may introduce scale ambiguity.
Nonetheless, our method, even without known intrinsics,
outperforms CF-3DGS by 0.89dB (Variant 1 vs. 10).

Comparison to 3DGS and NeRF with SfM poses. Vari-
ants 11 and 12 demonstrate that incorporating SfM results
in lower performance for both NeRF and 3DGS compared
to our method, with reductions of 6.92 dB and 3.33 dB, re-
spectively. This performance gap arises from COLMAP’s
challenges in accurately estimating poses in low-texture en-
vironments, such as those found in Tanks & Temples.

5. Conclusion

We propose a hierarchical training strategy for 3D Gaussian
splatting without known camera poses or SfM preprocess-
ing, merging segment-specific base 3DGS models for en-
hanced representation. We further incorporate video frame
interpolation to smooth camera motion and mitigate overfit-
ting by reusing interpolated images and base models. This
approach outperforms state-of-the-art SfM-free novel view
synthesis methods, enabling broader generalization across
datasets without SfM preprocessing.

Limitations. Our approach requires longer training and can
face challenges with large camera motion or low-quality in-
puts. While training time increases, rendering is faster due
to fewer 3D Gaussians. In practice, training time can be
reduced by lowering iterations or removing VFI, which is
less necessary with small camera motion or abundant input
frames. Large motion or poor inputs may cause alignment
errors in 3DGS model merging.
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