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Abstract

We introduce a practical real-time neural video codec
(NVC) designed to deliver high compression ratio, low la-
tency and broad versatility. In practice, the coding speed
of NVCs depends on 1) computational costs, and 2) non-
computational operational costs, such as memory I/O and
the number of function calls. While most efficient NVCs
prioritize reducing computational cost, we identify opera-
tional cost as the primary bottleneck to achieving higher
coding speed. Leveraging this insight, we introduce a set
of efficiency-driven design improvements focused on mini-
mizing operational costs. Specifically, we employ implicit
temporal modeling to eliminate complex explicit motion mod-
ules, and use single low-resolution latent representations
rather than progressive downsampling. These innovations
significantly accelerate NVC without sacrificing compression
quality. Additionally, we implement model integerization for
consistent cross-device coding and a module-bank-based
rate control scheme to improve practical adaptability. Exper-
iments show our proposed DCVC-RT achieves an impressive
average encoding/decoding speed at 125.2/112.8 fps (frames
per second) for 1080p video, while saving an average of 21%
in bitrate compared to H.266/VTM. The code is available at
https://github.com/microsoft/DCVC.

1. Introduction
Neural video codecs (NVCs) have exhibited significant po-
tential in reducing redundancy within video data to achieve
higher compression ratios. Since the early work DVC [30],
substantial advances [6, 13, 15–17, 19, 25, 27, 31, 32, 39, 42,
45, 51] have been made in enhancing the rate-distortion per-
formance of NVCs. Recent NVCs have surpassed traditional
codecs like H.265/HM [2], H.266/VTM [3], and ECM [1].
In this context, compression ratio is no longer the primary

*This work was done when Zhaoyang Jia and Linfeng Qi were full-time
interns at Microsoft Research Asia.

†This paper is the outcome of an open-source project started from Dec.
2023.

ELF-VC

MobileNVC

VTM-17.0

1080p Coding Speed / FPS ↑

Device Enc. Dec.

-62.0%

50.8%

-26.1%

Snapdragon 
8 Gen 2

Titan V

0.01 23.6

3 38.9

10 18

BD-Rate 
against x265 

on UVG ↓

Cross
Device

Rate
Control

DCVC-RT

DCVC-FM

DHVC-2.0

C3 -29.0%

-56.9%

-69.8%

-70.9%

A100

RTX 3090

A100

15.6

4.3 7.1

5.0 5.9

RTX 4090 119 105

RTX 2080Ti 40 34

AMD EPYC
7V13 Processor

0.0004

Video 
Codecs

-7.9% RTX 4090 418 502

Traditional Codecs

Neural Codecs

A100 125 113

ECM-11.0 -69.4% 0.002 3.4AMD EPYC
7V13 Processor

NVEnc-HEVC

Figure 1. Towards practical real-time neural video codecs (NVCs).
Recent advanced NVCs have demonstrated either excellent rate-
distortion performance, or improved versatility like integrated cross-
device coding consistency or rate-control capabilities. In this paper,
we further address the core obstacles of achieving real-time coding
to close the last mile toward a practical NVC solution. Our DCVC-
RT not only achieves state-of-the-art compression ratio but is also
deployable on consumer devices for real-time video coding.

bottleneck for NVCs. Instead, the key challenge now lies
in how to make NVCs more practical and deployable for
real-world applications, to effectively utilize the advantages
of such compression ratios.

In response, recent efforts have concentrated on enhanc-
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Figure 2. Paradigm shift. To enhance efficiency, we eliminate explicit motion-related modules and adopt implicit temporal modeling.
We also propose learning latent representations at a single low resolution, replacing the traditional progressive downsampling approach.
Additionally, DCVC-RT supports integerization for cross-device consistency and incorporates a module-bank-based rate-control mechanism.

ing the functionality and versatility of NVCs. Tian et al. [44]
introduced auxiliary calibration bitstream transmission to
improve cross-device coding accuracy, while MobileCodec
[21] and MobileNVC [46] employ deterministic integer cal-
culations to ensure consistent output across different devices.
For rate-control functionality, methods like ELF-VC [40],
DCVC-FM [25], and DHVC [32, 33] offer controllable rate
adjustment within a single model. Zhang et al. [54] devel-
oped a rate allocation network for precise bitrate control.
These innovations have significantly improved the practical-
ity of NVCs, bringing them closer to real-world deployment.

Despite these advancements, a critical challenge persists
for practical NVCs: how to effectively accelerate NVCs for
real-time coding? Actually, current NVCs struggle to bal-
ance coding speed with rate-distortion performance, leading
to a suboptimal rate-distortion-complexity trade-off. For
instance, while MobileNVC [46] achieves real-time decod-
ing on consumer hardware, its compression ratio is even
lower than x264 [4]. C3 [19] provides efficient decoding
but relies on time-consuming optimization-based encoding.
DHVC-2.0 [32] requires pipelining across multiple GPUs
(e.g., 4) to achieve real-time decoding, but its efficiency
drops significantly in typical single-GPU environments. Al-
though these methods have significantly accelerated NVCs,
real-time coding of 1080p video with high compression ra-
tios on consumer devices remains elusive.

In this paper, we aim to address the core obstacles of
achieving real-time coding to close the last mile toward a
practical NVC solution. To accelerate NVCs, our first step
is to rethink the complexity problem. While most existing
research focuses on reducing computational complexity,
typically measured by the number of multiply-accumulate
operations (MACs) during model inference, this alone does
not determine the actual coding speed. In practice, many

other operations like communication between hardware com-
ponents, also significantly impact performance. For instance,
auto-regressive entropy models [19, 22, 36] require frequent
function calls, which incur significant time overhead despite
low overall computational cost. Additionally, memory I/O
costs of tensors increase with larger tensor sizes, even at
the same computational load. We define these factors as the
operational complexity. Surprisingly, our findings show
that high operational overhead, rather than computational
cost, is the primary bottleneck in accelerating NVCs.

Based on this insight, we propose a new perspective to
accelerate NVCs by reducing operational complexity. In this
process, we preserve model capacity by prioritizing more
computational capability on the most critical modules while
eliminating less essential ones. Firstly, we remove complex
motion estimation and compensation process, significantly
cutting down the number of components to directly lower the
operation frequency. The saved computational capacity is
reallocated to frame coding modules to achieve more effec-
tive implicit temporal modelling. Additionally, we propose
learning latent representations at a single low resolution, i.e.,
1/8 of the original image size. Compared to commonly used
progressive downsampling method, this approach greatly
reduces latent-wise memory I/O overhead while facilitating
more effective latent transformations, leading to improved
rate-distortion-complexity performance.

With the aforementioned real-time innovations, we fur-
ther implement model integerization to ensure cross-device
consistency and introduce a module-bank-based rate-control
technique. Together, these advancements culminate in a
practical real-time NVC, DCVC-RT. As shown in Fig. 1, it
enables 1080p coding on consumer GPUs like the NVIDIA
RTX 2080Ti with an average speed of 40 fps for encoding
and 34 fps for decoding. On an NVIDIA A100 GPU, it
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reaches an impressive 125 fps for encoding and 113 fps for
decoding. Compared to VTM/H.266, our model provides a
21.0% bitrate reduction when using the challenging single
intra-frame setting. Additionally, it matches the compression
ratio of the advanced DCVC-FM [25] while delivering over
18 times faster coding speed. To the best of our knowledge,
DCVC-RT is the first practical NVC to achieve real-time
coding with a high compression ratio on consumer hardware.

We summarize the contributions of this paper as follows:
• We investigate the complexity challenges in NVCs and

identify operational complexity, rather than computational
complexity, as the primary bottleneck.

• Based on this insight, we propose several efficiency-driven
designs to reduce operational complexity and enable real-
time NVCs. We further enhance the functionality to intro-
duce a practical real-time NVC, DCVC-RT.

• To the best of our knowledge, DCVC-RT is the first real-
time NVC to achieve high rate-distortion performance,
enabling 1080p real-time coding on consumer hardware
with a 21% bitrate reduction compared to VTM/H.266.

2. Related Works
Since the introduction of DVC [30], most research on neu-
ral video codecs (NVCs) has focused on enhancing rate-
distortion performance. By advancing temporal modeling
capabilities [6, 7, 26, 37, 38, 41, 42], improving latent dis-
tribution estimation [15, 23, 24, 27], and refining coding
paradigms [10, 20, 22, 28, 33, 34], the compression effi-
ciency of NVCs has seen substantial improvement. Recent
state-of-the-art NVCs [25, 39] now outperform top tradi-
tional codecs like ECM [1]. For NVCs, the primary chal-
lenge has shifted from rate-distortion optimization to enhanc-
ing functionality and adaptability for real-world deployment.

Real-Time Coding. While real-time coding has been
explored in neural image codec [18, 29, 36, 47, 52, 53], it re-
mains relatively underexplored in neural video codecs. Some
efforts [40, 44] aim to reduce computational complexity for
faster coding but still fall short of achieving real-time 1080p
performance. INR-based methods [13, 16, 19] focuses on
efficient decoding but requires a time-consuming optimiza-
tion process for encoding. DHVC-2.0 [32] uses multi-GPU
pipelines to achieve real-time throughput for decoding, but
falls short in meeting real-time latency requirements and
on more common single-GPU devices. MobileNVC [46]
achieves real-time decoding throughput but only matches the
compression ratio of x264 [4]. In this paper, we present a
novel perspective to reduce operational cost rather than com-
putational cost in NVC. Based on it, we introduce several
key efficiency-driven techniques to simultaneously achieve
1080p real-time latency with a compression ratio comparable
to ECM.

Practical Functionality. For video codecs, maintaining
calculation consistency across different devices is a crucial

functionality. Typically, this inconsistency arises from non-
deterministic floating-point calculations. Ballé et al. [8] and
He et al. [14] introduced model integration into neural image
codecs to enforce deterministic integer calculations. Simi-
larly, MobileCodec [21] and MobileNVC [46] implement
integration in their NVCs to ensure cross-device consistency.
Recently, Tian et al. [44] proposed eliminating inconsistency
by introducing auxiliary calibration bitstreams. Another
important aspect of video codecs is their rate-control capabil-
ity, particularly in scenarios such as streaming or real-time
communication. Zhang et al. [54] developed a rate alloca-
tion network to precisely manage bitrate. Other approaches
[25, 33, 40] enable continuous, controllable bitrates within
a single model, adjusting the model to the target bitrate by
manipulating the quantization parameters (qp). However,
these methods fail to achieve both cross-device consistency
and rate-control capability simultaneously. In contrast, we
introduce a practical NVC that support both capabilities,
along with real-time coding and a high compression ratio.

3. Rethink the Complexity Problem in NVCs
The primary challenge in the practical application of exist-
ing NVCs is their low coding speed. While recent efforts
have aimed at reducing computational costs [19, 33, 44],
achieving real-time acceleration remains elusive. To address
this, we conducted experiments to rethink the complexity
problem in NVC acceleration.

In CNNs, computational complexity Pcomp are typically
dominated by matrix multiplications, often mitigated by re-
ducing the channel C, as it scales computational complexity
by O(C2). However, our findings reveal that reducing C
does not result in the expected quadratic speedup. As il-
lustrated in Fig. 3 (a), speed improves in a more linear
fashion as C decreases. This suggests that factors other than
computational complexity are limiting the coding speed.

In practice, numerous factors influence coding speed. We
identify two key factors: 1) latent representation size Psize,
which primarily influences memory I/O costs of latent ten-
sors; and 2) number of modules Pnum, which affects the
total operation counts and the overhead of function calls.
These factors primarily influence additional operations be-
yond hardware computations, which we term operational
complexity, distinct from computational complexity. We
conducted experiments that independently controlled Pcomp,
Psize and Pnum to observe their impact on inference speed.
The independent control of each factor is achieved by bal-
ancing the number of modules N , channel C and latent
resolution H ×W . For example, halving C while doubling
H ×W maintains a constant Psize but reduces Pcomp due
to its quadratic relationship with C.

The results in Fig. 3 (b) reveal several key insights. 1) Op-
erational complexity, rather than computational complexity,
is the main speed bottleneck. Reducing computational costs
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(a) Impact of channel reduction on speed (b) Independent computational / operational complexity reduction
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Figure 3. Analysis on computational complexity Pcomp and operational complexity, including latent representation size Psize and number of
modules Pnum. (a) Reducing channels results in a quadratic decrease in Pcomp, yet inference time decreases almost linearly, indicating that
computational cost is not the primary speed bottleneck. (b) We independently reduce one of Pcomp, Psize and Pnum to identify the main
factors affecting time cost. Results show that Psize is most critical at high computational complexity, while the Pnum is more significant at
low computational complexity.

without addressing operational factors leads to only marginal
improvements in inference time. This also explains why re-
ducing channels results in a linear, rather than quadratic,
decrease in time—since the latent size decreases linearly
with the number of channels. 2) When computational com-
plexity is high, latent representation size becomes the domi-
nant limiting factor. When computational complexity is low,
the number of modules becomes the key bottleneck. This
suggests that different parts of the model require different
optimization strategies.

These insights offer a new perspective on accelerating
NVCs by reducing operational complexity. Typically, lower-
ing computational complexity leads to diminished compres-
sion performance. However, since computational complexity
is no longer the primary speed bottleneck, we can focus on
lowering operational complexity while preserving computa-
tional capacity. In our design, we prioritize computational
capability to the most critical modules while eliminating less
essential ones, which ensures sufficient model capacity and
achieves a better rate-distortion-complexity trade-off.

4. Towards Practical Real-Time NVC

4.1. Overview
The framework of the proposed DCVC-RT is illustrated in
Fig. 4. To compress current frame xt, we first patchfy it
into 1

8 -scale latents using patch embedding [11]. Then we
perform conditional coding [15, 22, 25] in this single low
resolution (Section 4.2) to achieve efficient coding. During
extracting the temporal context information, DCVC-RT in-
corporates implicit temporal modeling (Section 4.3) to avoid
complex motion-estimation-motion-compensation process.

To improve versatility, we introduce a module-bank-based
rate-control method (Section 4.4) and enable model inte-
gerization (Section 4.5) for cross-device consistency.

4.2. Latents at Single Low Resolution

Originating from the concept of compressive auto-encoders
[43], most NVCs progressively downsample latents to reduce
the dimension. At each layer, they downsample the latent
by half while doubling the number of channels. It enables a
comparable computational capacity Pcomp across layers,

Pcomp ∼ O((2C)2 ·H/2 ·W/2) = O(C2 ·H ·W ) (1)

while the latent size Psize is gradually reduced

Psize = 2C ·H/2 ·W/2 = 1/2 · C ·H ·W (2)

In Section. 3, we learn that the latent size can be the main
bottleneck for coding speed. From this operational complex-
ity perspective, a question arises: can we learn latents at a
single low resolution to eliminate the high operational costs
associated with a large Psize? To explore this, we directly
downsample frames to a single scale using patch embed-
ding and apply conditional coding to compress them at the
same scale. Results in Fig. 5 (a) prove the feasibility of
this method, where learning single low scale latents notably
boosts encoding speed. For example, learning latents at 1/8
scale is about 3.6× faster than progressive downsampling.

While reducing latent scales accelerate model inference,
it also impacts rate-distortion performance. Although com-
putational capacity is maintained across scales, the varied
receptive field may influence the performance. At a single
high 1/2 resolution, the restricted receptive field results in no-
table performance degradation. However, as scales decrease,
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Figure 4. Framework overview. DC Block, Q, AE and AD represent depth-wise convolution block, quantization, arithmetic encoder and
decoder, respectively. Ft−1 and F e

t−1 are temporal contexts extracted from previously decoded latent ft−1. Frames are transformed into
latents at 1/8 resolution using patch embedding [11], and key modules such as the encoder, decoder, frame extractor, and reconstruction
generation operate at this single scale for efficient feature learning. DCVC-RT eliminates explicit motion modeling, resulting in a streamlined
design with drastically reduced operational complexity and real-time performance.

the receptive field expands significantly, and at 1/8 scale, it
even surpasses the receptive field of progressive downsam-
pling. This extended receptive field is essential for enhancing
temporal modeling and reducing temporal redundancy, lead-
ing to a comparable BD-Rate of 0.3% under the same model
capacity. However, a performance drop is observed at 1/16
scale. In our model, 1/16 scale latents with C = 512 yields
a latent size of 512 ·H/16 ·W/16 = 2 ·H ·W , which is even
smaller than the original frame 3 · H · W . It significantly
limits representative capacity and degrades the compression
ratio. In contrast, at the 1/8 scale, using C = 256 yields a
sufficient latent size of 4 ·H ·W . Considering these factors,
we adopt 1/8 single-scale latent learning.

4.3. Implicit Temporal Modelling

In video coding, temporal correlation modeling is crucial
for effective redundancy reduction. Most existing NVCs
achieve this by an explicit motion estimation and motion
compensation process. Typically, motion coding needs low
computational complexity since motions are simpler and
easier for compression. However, we observe that existing
motion modules usually use a high number of module layers.
For example, we observe that the motion coding branch in
[25] exhibits 13× lower computational complexity than the
conditional coding branch (74 kMACs per pixel versus 932
kMACs per pixel), despite having up to half as many convo-
lutional layers (123 layers versus 225 layers). As discussed
in Section 3, this high number of layers increases opera-
tional complexity, becoming the primary speed bottleneck
for low-computational-complexity motion modules.

To address this, DCVC-RT adopts implicit temporal mod-
eling, extracting temporal context using a single and simple
feature extractor instead of complex motion-based tempo-
ral context extraction. Technically, this temporal context
is concatenated with the current latent along the channel
dimension, allowing the encoder-decoder to process them
jointly for redundancy reduction. By eliminating the need for
motion estimation and compensation, the number of mod-
ules is directly reduced to lower the operation frequency,
significantly enhancing the coding speed.

Analysis on Different Motion Contents. We compare
implicit and explicit modeling across different motion types
for a more comprehensive evaluation.As shown in Tab. 1,
implicit modeling slightly improves BD-Rate by 0.4% on
small motions while showing a modest 3.2% reduction on
large motions. Nonetheless, with a 3.4× faster encoding
time, implicit modeling is a more practical solution for real-
time applications. Additionally, it surpasses explicit motions
in scene changes scenarios, since scene change cannot be
effectively modeled by motions. These results highlight its
advantages in the rate-distortion-complexity trade-off.

4.4. Module-Bank-Based Rate Control

In DCVC-RT, rate control is achieved through variable-
rate coding with dynamic rate adjustment. While existing
variable-rate codecs [25, 40] primarily focus on adjusting
the distribution of latent y, they typically compress hyper
information z using a single factorized prior module. Since
z generally accounts for less than 1% of the total bits, it has
minimal impact on their performance. However, in DCVC-
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Table 1. Ablation study on implicit temporal modelling. We compare it with using explicit motions under different motion contents. The
motion range is measured using a pretrained SEA-RAFT [49]. Further details are provided in the supplementary material.

Temporal Modelling BD-Rate Encoding TimeMCL-JCV Average Large Motion Small Motion Scene Change

Explicit Motions 0.0% 0.0% 0.0% 0.0% 27.2 ms (3.4×)
Implicit Temporal Modelling 2.1% 3.2% –0.4% –4.7% 8.0 ms (1×)

Single factorized module for 𝑧

Rate-adjustment module bank

Indeterministic floating-point calculation

Model Integerization → Deterministic integer calculations 

(c) Effects of model intergerization(b) Effects of rate-adjustment module bank(a) Ablation study on latent resolutions

3.4% bits 
saving 

on UVG

Entropy Coding 
inconsistency

Progressive Downsample
(Multi-Scale) BD-Rate

Single-Scale
BD-Rate

Single-Scale
Encoding Time

Progressive Downsample
(Multi-Scale) Encoding Time

Figure 5. Analysis of different components. (a) Ablation study on learning latent representations at a single resolution. All models maintain
equal computational complexity (MACs) for fairness. (b) Example of probability estimation of z. Using a module bank instead of a single
factorized module achieves an average bit savings of 3.4%. (c) Cross platform coding test. We perform encoding on an NVIDIA A100 GPU,
while decoding uses an RTX 2080Ti. Model integerization effectively eliminates coding inconsistencies across platforms.

RT, we find that z contributes over 10% bits of y on average,
since the absence of motion bits makes z critical in spatial-
temporal modeling. In this case, inaccurate distribution
estimation for z severely affects overall performance.

To address this, we introduce a rate-adjustment module
bank (shown in the top left of Fig. 4). It learns a range of
hyperprior modules model varied distributions across differ-
ent quantization parameter (qp). As shown in Fig. 5 (b), this
module bank closely aligns estimated distributions with ac-
tual distributions, achieving about 3% bit savings. Extending
this approach, we further introduce separate vector banks
for different modules (e.g., qe, qd, qf and qr for encoder,
decoder, feature extractor, and reconstruction network, re-
spectively). Each vector bank is designed to learn a set of
vectors that adaptively scale the latent representations based
on their characteristics, enabling flexible and fine-grained
amplitude adjustments. DCVC-RT achieves efficient rate
control using this module bank, with the rate-control results
provided in the supplementary material.

Moreover, DCVC-RT supports hierarchical quality con-
trol by adjusting qp offsets for different frames. Compared
to [25] that employs separate feature adaptors for this pur-
pose, our method achieves improved consistency with rate
adjustment and enhanced flexibility in practical applications.

4.5. Model integerization

For NVCs, the indeterminism of floating-point calculations
can cause inconsistencies when distributing video content.
To address this, we implement 16-bit model integerization.
This approach enables deterministic integer calculations and
ensures consistent output across different devices. More
concretely, the equation between a floating-point feature
value vf and an int16 value vi is as follows

vi = round(K1 · vf ) (3)

We set K1 = 512, such that the floating-point value 1.0 is
mapped to 512 in int16, and given that the valid int16 range is
[−32768, 32767], the corresponding range of floating-point
values is [−64.0, 63.998]. We observe this is sufficiently
large to represent the values during model inference. We
set the accumulator data type to int32 in convolutional ker-
nels, and no overflow issues have been observed. Besides
convolutions and basic arithmetic operations, we adopt a
precomputed lookup table to handle the nonlinear Sigmoid
function, that maps an arbitrary int16 value to its correspond-
ing output. Through this training-free model integerization,
DCVC-RT can perform deterministic integer calculations,
ensuring cross-device consistency. An example is shown in
Fig. 5 (c), with further results in the supplementary material.
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Table 2. BD-Rate (%) comparison in YUV420 colorspace. All frames with intra-period=–1.

UVG MCL-JCV HEVC B HEVC C HEVC D HEVC E Average
Coding Speed

Enc. Dec.

VTM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 fps 23.6 fps

HM-16.25 40.1 48.6 47.6 41.0 34.5 42.8 42.4 0.05 fps 39.6 fps

ECM-11.0 −20.0 −22.1 −22.2 −21.2 −20.4 −17.2 −20.5 0.002 fps 3.4 fps

DCVC-DC 6.5 −4.4 13.1 −3.4 −14.8 90.2 14.5 3.3 fps 4.3 fps

DCVC-FM −17.6 −8.4 −15.7 −30.2 −37.6 −23.0 −22.1 3.4 fps 4.2 fps

DCVC-FM (fp16) −16.8 −8.0 −15.4 −30.2 −37.5 −20.2 −21.3 5.0 fps 5.9 fps

DCVC-RT (fp16) −24.0 −14.8 −16.6 −21.0 −27.3 −22.4 −21.0 125.2 fps 112.8 fps

Note: Some values differ slightly from those in [25] since we use actual BPP instead of estimated BPP.

Figure 6. Rate-distortion curves for UVG. All frames are tested in YUV420 colorspace with intra-period=–1. Results on more datasets are in
the supplementary materials.

5. Experiments

5.1. Settings

Datasets. We use Vimeo-90k [50] to train DCVC-RT with
7-frame sequences, and process the original Vimeo videos
[5] to create longer sequences for fine-tuning by following
[25]. We evaluate DCVC-RT on HEVC Class B∼E [12],
UVG [35], and MCL-JCV [48].
Test Details. For traditional codecs, we compare with HM
[2], VTM [3] and ECM[1], which represent the best H.265,
H.266 encoder and the prototype of next generation tradi-
tional codec, respectively. Detailed configurations are pro-
vided in the supplementary material. For neural codecs, we
compare with advanced NVCs including DCVC-DC [24]
and DCVC-FM [25]. Following [25], we test all frames with
an intra-period of –1 on YUV420 and RGB colorspace. We
conduct all tests under low delay conditions. Rate-distortion
performance is assessed by the BD-Rate [9]. Additionally,
we note that many existing NVCs compare with traditional
codecs using the estimated entropy, which is unfair as they
overlook header information. In this paper, we ensure a fair
comparison by retesting them with actual binary bit-streams
that include necessary header information. By default, cod-
ing speed is tested on a single NVIDIA A100 GPU with

an AMD EPYC 7V13 processor. We measure the average
latency across different quantization parameters (qp) on a
resolution of 1920× 1080.
Training Details. To accommodate variable rates within
a single model, we randomly assign different qp between
[0, 63] in each training iteration. In a group of 8 pictures, the
qp offset is set to [0, 8, 0, 4, 0, 4, 0, 4] for hierarchical quality.
We follow [24] to adopt a hierarchical weight setting for the
distortion term to support a hierarchical quality structure.
The corresponding λ values are interpolated between 1 and
768, following the same method as in [25]. We use the com-
bined distortion loss in both YUV and RGB colorspace [25]
to support both colorspace in a single model.

5.2. Comparison Results
In Tab. 2, we present the BD-rate comparison for the
YUV420 format under all frame intra period –1 settings. As
depicted in the table, DCVC-RT achieves an average 21.0%
bits saving compared to VTM, which is slightly better than
20.5% of ECM. It showcases comparable compression ra-
tio to the advanced NVC DCVC-FM with an impressive
25 times faster encoding speed, reaching 125.2 fps for en-
coding and 112.8 fps for decoding. This demonstrate the
superior performance of DCVC-RT in term of rate-distortion-
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Table 3. Complexity analysis. The encoding / decoding speed (measured in frames per second, fps) are evaluated across various resolutions
and devices, including the NVIDIA A100, NVIDIA A6000, RTX 4090, and RTX 2080 Ti. Average BD-Rate results are presented using
VTM as the anchor. MACs are tested on 1080p videos. OOM indicates out-of-memory conditions.

Model Average BD-Rate MACs Params

DCVC-DC 14.5% 2642G 19.8M

DCVC-FM (fp16) –21.3% 2642G 18.3M

DCVC-RT (fp16) –21.0% 385G 20.7M

DCVC-RT (int16) –18.3% 385G 20.7M

(a) Computational complexity and BD-Rate.

Model A100 A6000 4090 2080Ti

DCVC-DC 3.3 / 4.3 1.7 / 2.2 2.3 / 2.9 0.8 / 1.4

DCVC-FM (fp16) 5.0 / 5.9 3.1 / 3.8 3.7 / 4.4 1.9 / 2.3

DCVC-RT (fp16) 125.2 / 112.8 70.4 / 63.8 118.8 / 105.3 39.5 / 34.1

DCVC-RT (int16) 28.3 / 20.9 23.4 / 17.5 52.3 / 38.8 18.4 / 13.4

(b) Coding speed on 1920× 1080 videos.

Model A100 A6000 4090 2080Ti

DCVC-DC 0.8 / 1.0 0.4 / 0.5 OOM OOM

DCVC-FM (fp16) 1.0 / 1.2 0.6 / 0.7 OOM OOM

DCVC-RT (fp16) 35.5 / 29.5 18.5 / 16.2 29.9 / 26.5 11.6 / 9.9

DCVC-RT (int16) 7.3 / 5.2 6.1 / 4.4 12.5 / 9.5 4.4 / 3.2

(c) Coding speed on 3840× 2160 videos.

Model A100 A6000 4090 2080Ti

DCVC-DC 6.5 / 7.9 3.5 / 4.3 5.5 / 6.7 2.1 / 2.9

DCVC-FM (fp16) 8.5 / 9.4 5.9 / 6.6 9.3 / 10.4 4.0 / 4.7

DCVC-RT (fp16) 173.9 / 149.2 147.3 / 132.5 225.1 / 185.2 73.3 / 67.0

DCVC-RT (int16) 51.7 / 39.2 49.5 / 38.1 105.2 / 81.1 37.0 / 25.8

(d) Coding speed on 1280× 720 videos.

complexity trade-off. In the RGB colorspace, DCVC-RT
achieves a 14.0% bits saving compared to VTM, closely
matching the 15.8% savings of DCVC-FM. Detailed results
are provided in the supplementary material.

Fig. 6 presents the rate-distortion curve on UVG. DCVC-
RT showcases better performance with VTM across the
entire quality range. Particularly in the low-quality range
(< 0.02 bpp), DCVC-RT exhibits the best performance.
However, there is a performance drop in the high-quality
range. This drop can be attributed to the lightweight model
design adopted in DCVC-RT, resulting in reduced model
capability compared to larger models. Notably, this drop
mainly occurs above 40 dB, where human vision struggles
to distinguish between different qualities. In the supple-
mentary material, we further examine the compression per-
formance of DCVC-RT as model capacity increases. Our
large model achieves the highest compression ratio across
all bitrate ranges while maintaining real-time performance.

5.3. Complexity Analysis

Tab. 3 presents the complexity analysis. Compared to
DCVC-DC and DCVC-FM, DCVC-RT achieves signifi-
cantly lower computational complexity while maintaining
a comparable compression ratio. Coding speed is evaluated
across multiple input resolutions and GPU devices, consis-
tently demonstrating at least a 20× speed improvement. On
the A100 GPU, DCVC-RT (fp16) reaches real-time 4K 30fps
coding, while on consumer-grade devices like the RTX 2080
Ti, it achieves 1080p 30fps coding. These results highlight
the efficiency of DCVC-RT across diverse conditions.

5.4. Integerization Results

Our model supports 16-bit integer calculations. As shown in
Tab. 3, our integerization strategy introduces minimal impact
on compression performance, with DCVC-RT (int16) still

outperforming VTM by 18.3%. Dataset-specific BD-Rate
results are in the supplementary material. In terms of coding
speed, DCVC-RT (int16) achieves 1080p 30 fps coding on
an RTX 4090 and 720p 24 fps coding on an RTX 2080Ti.

However, we observe a significant slowdown in coding
speed when using int16 mode compared to fp16. This is
mainly because most modern GPUs lack dedicated optimiza-
tion for int16 operations. This difference is particularly
pronounced on the A100 GPU, where highly optimized Ten-
sor Cores make fp16 processing over four times faster than
int16. Although int16 mode theoretically has the potential to
enable faster inference than fp16, we anticipate that future
hardware developments and engineering will help bridge this
performance gap.

6. Conclusion and Limitation

In this paper, we propose a practical, real-time neural video
codec (NVC) focused on high compression ratio, low latency,
and broad versatility. By analyzing the complexity of NVCs,
we identify operational cost, rather than computational cost,
as the primary bottleneck to coding speed. Based on this
insight, we employ implicit temporal modeling and a sin-
gle low-resolution latent representation, which significantly
accelerates processing without compromising compression
quality. Additionally, we introduce model integerization for
consistent cross-device coding and a module-bank-based
rate control scheme to enhance practical adaptability. As far
as we known, DCVC-RT is the first NVC achieving 110 fps
coding on 1080p video with a 21% bitrate savings compared
to H.266/VTM. DCVC-RT serves as a notable landmark in
the journey of NVC evolution.

While DCVC-RT supports int16 mode, its coding speed
remains slower than fp16 due to limited hardware optimiza-
tion for int16 inference. In the future, we hope this can be
solved by further hardware optimization and engineering.
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