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Abstract

Geometric reconstruction of opaque surfaces from im-
ages is a longstanding challenge in computer vision, with
renewed interest from volumetric view synthesis algorithms
using radiance fields. We leverage the geometry field pro-
posed in recent work for stochastic opaque surfaces, which
can then be converted to volume densities. We adapt Gaus-
sian kernels or surfels to splat the geometry field rather
than the volume, enabling precise reconstruction of opaque
solids. Our first contribution is to derive an efficient and
almost exact differentiable rendering algorithm for geometry
fields parameterized by Gaussian surfels, while removing
current approximations involving Taylor series and no self-
attenuation. Next, we address the discontinuous loss land-
scape when surfels cluster near geometry, showing how to
guarantee that the rendered color is a continuous function of
the colors of the kernels, irrespective of ordering. Finally, we
use latent representations with spherical harmonics encoded
reflection vectors rather than spherical harmonics encoded
colors to better address specular surfaces. We demonstrate
significant improvement in the quality of reconstructed 3D
surfaces on widely-used datasets.

1. Introduction
The reconstruction of opaque surfaces from a collection
of calibrated RGB images is a classic challenge in com-
puter vision. This problem has received broader attention
in recent years due to the success of Neural Radiance Field
(NeRF) [30] and other volumetric novel view synthesis al-
gorithms. Although methods like NeRF [30] are effective
for view synthesis, they fall short in geometric reconstruc-
tion applications, since they do not explicitly reconstruct an
accurate surface. Follow up methods, which are specialized
towards surface reconstruction, have proposed instead that
an explicit geometry representation should parameterize the
volume density field.

The typical approach taken by previous methods [25, 27,
29, 31, 45, 48, 54, 55] is to parameterize signed or unsigned
distance fields with a neural network, which can then be
converted to a density field for volume rendering [31, 45].
Eikonal regularization [16] is often used to promote smooth-

Figure 1. We introduce a geometry reconstruction method from a
set of calibrated RGB images by splatting a geometry field with
Gaussian surfels. We enable almost exact and efficient differentiable
rendering. Compared to 2DGS, we reach better geometry quality
and achieve overall smooth and detailed geometry without having
cracks or holes. The reader may wish to zoom into the electronic
version in the figures. (Note: object colors used are for visualization,
not original object color).

ness of the reconstructed surfaces. In particular, Miller et al.
[31] provides a theoretical bridge between surface represen-
tations and volume rendering with stochastic geometry, and
generalizes the use of distance fields to introduce a general
stochastic geometry field, which we refer to as simply a ge-
ometry field. Chen et al. [5] shows that such geometry fields
can be parameterized with a Poisson field.

Recent advances in Gaussian splatting based methods
[23] have motivated a new class of surface modeling meth-
ods (e.g., [7, 18, 20, 49, 59, 60]). These methods utilize
kernels, i.e., 3D Gaussians or 2D Gaussians, to parameterize
a density or opacity field and then perform volume splatting
[23, 64] for rendering. Geometry is then recovered from
the converged density or opacity field through varying def-
initions of the surface. The benefit compared to the neural
methods comes from the speed and ability to generalize
to complex scenes (e.g., [4, 11, 61]). Despite the success
achieved by these approaches, the surface is not theoreti-
cally clearly defined for a general density field, which incurs
approximation that limits the reconstruction quality.

In this paper, we adapt a modern volumetric representa-
tion based on Gaussian kernels to splat the geometry field
that provides precise geometry for reconstructing opaque
solids. We show that we can utilize the kernels, i.e., 2D
Gaussians or Gaussian surfels, to parameterize the geometry
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field and still use the efficient volume splatting algorithm
for differentiable rendering. We carefully remove the ap-
proximations in the original volume splatting algorithm to
ensure almost exact rendering, except for the use of global
sorting to approximate per-ray sorting. We also observe that,
to make the represented stochastic geometry gradually con-
verge to the deterministic case, kernels need to be clustered
around the surface. Such clustering leads to an unstable or-
dering of kernels in volume splatting and the rendered color
a discontinuous function of the properties of kernels. The
view synthesis loss then creates a discontinuous loss land-
scape that is detrimental for optimization. We propose a
solution to ensure that the rendered color is a continuous
function of the properties of the kernels. Finally, inspired by
[14, 22, 40, 41, 44, 50], we also explore different choices of
color representation other than spherical harmonics [35] to
tackle specular surfaces. Through extensive experiments, we
show that such a design with geometry clearly defined can
significantly improve the quality of the reconstructed surface
(see Figs. 1 and 8).

Our main contributions are summarized as follows:
• We derive an efficient and differentiable rendering algo-

rithm for geometry fields parameterized by Gaussian sur-
fels (Sec. 4.1). Besides, we carefully analyze and reduce
the approximations in the rendering algorithm.

• We expose and remedy the discontinuity of the loss land-
scape, which ultimately helps our method to converge from
stochastic geometry to a deterministic shape (Sec. 4.2).

2. Related Work
Multi-view Stereo Surface Reconstruction. The com-
puter vision community has studied 3D reconstruction from
multi-view images for decades using multi-view stereo
[1, 13, 15, 19, 38, 39, 42]. Despite their high accuracy, these
methods do not provide complete geometry. Therefore, CNN-
based approaches (e.g., [2, 9, 10, 17, 24, 43, 46, 47, 51, 52,
58, 63]) were introduced to overcome this limitation, but
they cannot reconstruct reflective surfaces. Neural surface
reconstruction approaches are later introduced to address
more general surface types.
Neural Surface Reconstruction. Thanks to the advance
of NeRF [30], some works (e.g., [14, 25, 28, 31, 44, 45,
48, 54, 55]) propose to utilize various representations, such
as an MLP [30] or Hash-grid [33], to parameterize a SDF
field and then convert it into a density field for rendering.
The mesh is then extracted using marching cubes from the
SDF field after convergence. Identifying the limitation of the
SDF field for open-surface objects, some other works (e.g.,
[27, 29]) propose to leverage an UDF field instead of a SDF
field. Inspired by multi-view stereo (MVS), another group of
methods (e.g., [8, 12, 37]) add a multi-view consistency loss
to further enhance the quality of reconstructed geometry.
Gaussian Splatting based Surface Reconstruction.
Kerbl et al. [23] propose to utilize 3D Gaussians to param-

Figure 2. Illustration of a ray intersecting with non-overlapping ker-
nels K1,K2, ...,KN , which are sorted based on their intersection
intervals [a1, b1], [a2, b2], ..., [aN , bN ].

eterize the density field for differentiable view synthesis.
Owing to its efficiency and high quality, it has become pop-
ular to extend Gaussian splatting (GS) for geometry recon-
struction. SuGaR [18] constrains the 3D Gaussians to be
flattened for extracting the geometry but still exhibits holes.
2DGS [20] and Dai et al. [7] then propose to directly use the
2D Gaussians to parameterize the density field and utilize
depth-normal consistency loss or a monocular normal prior
to ensure the smoothness of extracted geometry. In contrast,
RaDe-GS [60] and GOF [59] still rely on 3D Gaussians,
but propose custom surface definitions for the 3D Gaus-
sian. Surfaces are extracted through TSDF fusion [6, 62]
or tetrahedral grids [59]. Different from these methods, we
parameterize the geometry field with 2D Gaussians and then
convert it into the density field for rendering with refined
volume splatting. We still use TSDF fusion to extract the
geometry and achieve significant improvements in terms
of geometry quality. Concurrently, PGSR [3] introduces a
multi-view constraint into the optimization.

3. Preliminaries
We first introduce and analyze the volume splatting algorithm
and volume representation of opaque solids.
Volume Splatting. Consider a ray x(t) = o+ tω, where
o denotes the camera origin, ω denotes the ray direction
and t > 0 denotes the depth. Volume splatting [64] aims to
evaluate the following volume rendering equation:

C =

∫ ∞

0

c(t)σ(t) exp

(
−
∫ t

0

σ(t′) dt′
)
dt, (1)

where c(t), σ(t) denote the color and density values, or the
extinction coefficent of the volume, at x(t).

As shown in Fig. 2, Zwicker et al. [64] propose to decom-
pose the density field as a set of independent kernels, each
of which is chosen to have finite support range by cutoff,
i.e., σ(t) =

∑N
i=1 wiKi(t), where N denotes the number

of kernels, and wi and Ki(t) respectively denote the weight
and evaluated value at t for the ith kernel. The intersections
between these kernels and the ray are assumed to be non-
overlapping and, therefore, these kernels are sorted along
the ray based on the intersection interval. The intersection
interval of the ith kernel is denoted as [ai, bi], i.e., Ki(t) ̸= 0
if and only if ai ≤ t ≤ bi. The color values inside the ith

kernel are defined to be constant as ci.
By ignoring the self-occlusion and expanding the trans-

mittance term with the Taylor Series, Eqn. (1) can be rewrit-
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ten as:

C =

N∑
i=1

ciρi

i−1∏
j=1

(1− ρj), (2)

where ρi is the integration of density value along the
ray, when considering only the ith kernel. Namely, ρi =∫ bi
ai
σ(t)dt =

∫ bi
ai
wiKi(t) dt, and it is called the footprint of

the ith kernel with respect to the current ray. Notice that due
to the expansion, ρi ∈ [0, 1].

Therefore, it is important that the footprint function
be easy to evaluate efficiently, such that the evaluation of
Eqn. (2) can be efficient. Volume splatting chooses to use the
3D Gaussian as the kernel, and analytically solve the foot-
print function by approximating the perspective transform.

In summary, volume splatting makes the following as-
sumption and approximation:
• Assume there is no overlapping of any two intersections

between kernels and the ray.
• Self-occlusion of each kernel is ignored, and transmittance

terms and footprint functions are approximated.
Even though remarkable view synthesis from a set of cal-

ibrated images is achieved by making the volume splatting
differentiable [23], the non-overlapping assumption leads to
a discontinuous view synthesis loss function and the con-
straint that the footprint function is within the range of [0, 1].
We will show that these problems are detrimental for the
surface reconstruction and propose solutions. Besides, Kerbl
et al. [23] uses a global sorting to approximate per-ray sort-
ing.
Stochastic Geometry Representation for Opaque Solid.
Miller et al. [31] propose that for an opaque solid existing
in the R3 space, each point x ∈ R3 is associated with a
random variable G(x) ∈ R. Without loss of generality, the
random variable is chosen to obey the normal distribution,
i.e.,G(x) ∼ N (µ(x), 1/s(x)), where µ(x) and s(x) denote
the mean and inverse of standard deviation. Each point x is
then associated with an occupancy value o(x) and vacancy
value v(x), defined as:

o(x) = Pr{G(x) ≥ 0} = Ψ(µ(x)s(x))

v(x) = Pr{G(x) < 0} = Ψ(−µ(x)s(x)),
(3)

where Ψ(·) denotes the cdf of the standard normal distribu-
tion. The solid is defined at 1{G(x)≥0}.

From [31], the density at x is defined as:

σ(x) =
||∇v(x)||
v(x)

·
(
α(x)|ω · n(x)|+ 1− α(x)

2

)
=
ψ(−µ(x)s(x))
Ψ(−µ(x)s(x))

||∇(µ(x)s(x))||·(
α(x)|ω · n(x)|+ 1− α(x)

2

)
,

(4)

where ψ(·) denotes the pdf of the standard normal dis-
tribution, n(x) = −∇(µ(x)s(x))/||∇(µ(x)s(x))|| and

α(x) ∈ [0, 1] denotes an anisotropic parameter which is
close to 1 near the surface, and close to 0 in the interior of
the opaque solid. As s(x) → ∞, the stochastic geometry
converges to the deterministic case.

Notice that, in other works (e.g., [31, 45]), the µ(x) is
defined to be a SDF field. Defining it as a SDF field allows
the usage of Eikonal loss to promote the smoothness, but
there is no constraint over the meaning of µ(x).

Since µ(x) and s(x) are always together in Eqn. (4), we
define that

F (x) := µ(x)s(x), (5)

which is called the geometry field as it indicates the underly-
ing geometry. When ∀x ∈ R3, |F (x)| → ∞, the represented
geometry is assumed to be converged to the deterministic
case. Eqn. (4) can be then written as:

σ(x) =
ψ(−F (x))
Ψ(−F (x))

||∇F (x)||·
(
α(x)|ω · n(x)|+ 1− α(x)

2

)
,

(6)
where n(x) = −∇F (x)/||∇F (x)||.

4. Method
In Sec. 4.1, we describe how we can reduce the approxi-
mations taken by the splatting algorithm. We then derive a
refined splatting method which enables differentiable render-
ing of the opaque solid represented by the geometry field.
Next, in Sec. 4.2, we propose a novel solution to address
the issue of discontinuous loss landscapes which arises as
the stochastic geometry gradually becomes deterministic.
Finally, Sec. 4.3 introduces an improvement in color repre-
sentation to account for specular surfaces.

4.1. Geometry Field Splatting
Revisit Splatting Algorithm. As the volume splatting is
an approximate rendering algorithm, we aim to reduce the
approximations, and investigate the situation under which
the refined volume splatting algorithm is exact.

Specifically, we do not ignore the self-occlusion and do
not expand the transmittance term with the Taylor series.
Eqn. (2) is then replaced with:

C =

N∑
i=1

ci(1− exp(−ρi))
i−1∏
j=1

exp(−ρj). (7)

Please find the derivation in A.1 of the supplementary docu-
ment. Notice that then ρi ∈ R+ with no further restrictions.

We are now left with the non-overlapping assumption and
footprint function approximation. We notice the following
property:

Property 1. When the intersection intervals of two and only
two kernels Ki,Kj fully overlap, i.e., ai = aj ∧ bi = bj ,
and they have the same color, it is equivalent to having one
kernel Kij there with ρij = ρi + ρj and the same color.
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Proof. As these two kernels are the only two kernels whose
intersection intervals fully overlap at [ai, bi], we can con-
clude that j = i + 1 without losing generality. There-
fore, (1 − exp(−ρi)) + (1 − exp(−ρj)) exp(−ρi) = 1 −
exp(−(ρi + ρj)). Notice that the alpha-blended value of
these two kernels is equivalent to having a single kernel
there.

This property can be extended into the following form
through mathematical induction:

Lemma 1. When the intersection intervals of m kernels
Ki1 ,Ki2 , ...,Kim fully overlap, i.e., ai1 = ai2 = ... = aim∧
bi1 = bi2 = ... = bim , and they have the same color, it is
equivalent to having one kernel K there with ρ = ρi1 +ρi2 +
...+ ρim and the same color.

Therefore, we can define an operator
⊕

, which satisfies
the commutative, associative and identity properties, such
that Kij = wiKi

⊕
wjKj where ρij = ρi + ρj . When the

kernels on the ray have either non-overlapping or fully over-
lapped intersection intervals, the refined splatting algorithm
defined by Eqn. (7) is an exact rendering algorithm of den-
sity field defined as: σ(x) =

⊕N
i=1wiKi(x), because we

remove the approximations when evaluating Eqn. (1).
By considering the remaining approximation, we can then

reach the following theorem:

Theorem 1. When 1) the intersection intervals of any two
kernels are non-overlapping, or fully overlapped in which
case these two kernels have the exact same color value,
and, 2) the footprint function is accurately calculated, then
the sorting of kernels is well-defined and Eqn. (7) gives
an exact rendering of a density field which is defined as:
σ(x) =

⊕N
i=1wiKi(x).

Parameterize and Render Geometry Field with Gaus-
sian Surfels. Our overall idea is illustrated in Fig. 3. We
propose to parameterize the geometry field in Eqn. (5) with
kernels, then demonstrate how to convert it into the density
field for volume splatting, and reveal under which conditions
it is an exact rendering algorithm. We will also show that
choosing Gaussian surfels as our kernels helps build a both
efficient and almost exact rendering algorithm.

Specifically, we decompose the F (x) as:

F (x) =

N⊕
i=1

wiKi(x)− c, (8)

where
⊕

is the custom plus operator which we have just
discussed and will elaborate on later, ωi > 0, and c is a
manually chosen constant. Since we expect the kernels to
cluster around the surface, the anistropic parameter α(x) is
then set to 1 as discussed in [31].

We first discuss the property of such a formulation of
F (x), when the represented geometry converges to the deter-
ministic case. At the place where it is vacant, i.e., there are

Geometry Field Density Field

Local
Geometry Field

Local
Density Field

Volume Rendering

Eqn. (15) Eqn. (7)

(a) (b) (c)
Figure 3. Overview of our algorithm. (a) We first use 2D Gaussians
to parameterize the geometry field, F . These kernels are expected
to cluster around the surface. (b) We then convert the geometry
field into the density field σ and lastly, (c) we leverage our refined
volume splatting algorithm for differentiable rendering.

no kernels, F (x) = −c, such that v(x) ≈ 1. Therefore, c is
a manually chosen large positive value. At the place where
kernels cluster, F (x) is expected to be a large positive value,
such that o(x) ≈ 1. Therefore, when a ray travels in the
space, the transmittance is expected to almost immediately
fall from 1 to 0 at the place where it first intersects with
kernels as shown in Fig. 3 (c).

We still start from the assumption that there is no over-
lapping of any two intersections between kernels and the
ray and then remove this assumption. From Eqn. (6), the
corresponding density field is defined as:

σ(x) =
ψ(−F (x))
Ψ(−F (x))

||∇F (x)|| · |ω · n(x)|. (9)

As Eqn. (7) indicates, given a ray, our goal is to evaluate
the footprint function for the ith kernel:

ρi =

∫ bi

ai

σ(x(t))dt. (10)

We now make our choice of kernels. Aiming at exact ren-
dering, we choose to use 2D Gaussians or Gaussian surfels
[7, 20, 34] as our kernels, instead of 3D Gaussians [23]. In
general, the intersections between Gaussian surfels and a ray
are points. Thus, any two of the intersections are either not
overlapping at all or fully coincide, satisfying the conditions
of Theorem. 1.

The ith 2D Gaussian kernel G(x) is defined as:

Gi(x) = exp

(
−1

2
(x−mi)

TΣ−1
i (x−mi)

)
, (11)

where mi denotes its center and Σi denotes its covariance
matrix. As shown in Fig. 4 (a), given a ray x(t) = o+ tω,
we are able to calculate the intersected depth ti and evaluate
its kernel value at x(ti) as fi = wiGi(x(ti)) [20]. We then
have F (x(t)) near ti:

F (x(t)) =

{
fi − c t = ti

−c |t− ti| < ϵ,where ϵ→ 0.
(12)
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(a) (b)

(c) (d)

Figure 4. (a) An illustration of intersecting the ith Gaussian surfel,
whose normal vector is denoted as ni that is perpendicular to the
plane containing the surfel, with a ray, whose direction is denoted
as ω. The depth of the intersected point is denoted as ti, and the
intersected point is denoted as x(ti). The value of the Gaussian
surfel at x(ti) is denoted as fi. (b) We analyze the intersection by
creating a 2D coordinate plane which is parallel to the ni and ω,
and passes through x(ti). The angle between ni and ω is denoted
as θi. (c) On the 2D coordinate plane, within an infinitesimally
small range, the intersected line, drawn as an orange line, between
the Gaussian surfel and the plane can be seen as having constant
geometry field value F = fi − c. (d) We expand the intersected
line by linearly decaying it into −c with length h and direction ni.
It gives the surfel a 3D width, which does not follow the Gaussian
distribution. As h → 0, it can be seen as equivalent to (c).

Such a function is not even a continuous function. It seems
that we cannot calculate Eqn. (9). However, since we are in-
terested in the footprint function instead of the density field,
we can reach a closed form solution by slightly modifying
this function, which makes the splatting algorithm a perfect
fit. Specifically, we start analyzing the intersection by creat-
ing a plane as a 2D coordinate system in Fig. 4 (b). We look
at an infinitesimally small range around x(ti) as shown in
Fig. 4 (c), such that the geometry field at the intersected line,
drawn as an orange line, between the Gaussian surfel and the
plane is constant, i.e., fi − c. We enable the calculation of
Eqn. (9) and Eqn. (10) by extruding the intersected line with
a linear decay. The geometry field value decays linearly from
fi − c to −c with the direction of ni, which is perpendicular
to the plane containing the surfel, and length of h, as shown
in Fig. 4 (d). It is equivalent to the original case as h → 0.
The F (x(t)) near ti is modified as:

F (x(t)) = fi×
(
1− |t− ti|

h/ cos θi

)
−c,when |t−ti| < h/ cos θi,

(13)
where cos θi = |ω · ni|. The ||∇F (x)|| near ti is then calcu-
lated as:

||∇F (x(t))|| = fi/h,when |t− ti| < h/ cos θi (14)

and it is parallel to ni. Therefore, we can evaluate Eqn. (10)

... ...
1

0(a) (b)
Figure 5. Illustration of opacity value on different Gaussian surfels.
(a) 2DGS only allows the opacity to reach 1 at the center. (b) Due
to the enforced transformation from geometry field into density as
in Eqn. (15), the opacity on a Gaussian surfel in our case does not
follow a Gaussian distribution, thus differentiating it from Gaussian
splatting. Furthermore, we also allow a larger central area to reach
1, thus making the Gaussian surfel more opaque which benefits the
surface reconstruction.

with Eqn. (9) as:

ρi =

∫ ti+h/ cos θi

ti−h/ cos θi

ψ(−F (x(t)))
Ψ(−F (x(t)))

||∇F (x(t))|| · |ω · n(x(t))|dt

= −2 lnΨ(c− fi).
(15)

Please find the derivation in A.2 of the supplementary. We de-
fine g(u) := −2 lnΨ(c− u) to simplify the notation. As the
expansion goes to 0, i.e., without extrusion, lim

h→0
ρi = g(fi).

Notice that the value range of g(u) exceeds [0, 1], making
approximated volume splatting in Eqn. (2) not applicable
and our refined volume splatting in Eqn. (7) suitable. We can
then use it for rendering in Eqn. (7) as:

C =

N∑
i=1

ci(1− exp(−g(fi)))
i−1∏
j=1

exp(−g(fj)). (16)

We now remove the non-overlapping assumption. We
define S(u) := −2 lnΨ(c− u). Notice that S(0) = 0, and
S(u) is a monotonically increasing function with respect to
u. Therefore, there exists a S−1(v),∀v ≥ 0. We then define⊕

(·), such that a
⊕
b = S−1(S(a)+S(b)). Besides, when

m Gaussian surfels Gj+1,Gj+2, ...,Gj+m, j ∈ N+,m ∈ N+

intersect the ray at the same place x(tj+1), from Lemma. 1,
Eqn. (7) is equivalent to having a kernel whose footprint
function equals to

∑m
k=1 g(wj+kGj+k(x(tj+1))).

Given that

g(

m⊕
k=1

wj+kGj+k(x(tj+1))) =

m∑
k=1

g(wj+kGj+k(x(tj+1))),

it then corresponds to the geometry field value:

F (x(tj+1)) =

m⊕
k=1

wj+kGj+k(x(tj+1))− c

=

N⊕
i=1

wiGi(x(tj+1))− c,

(17)

as other kernels are 0 here. It follows our definition Eqn. (8).
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(a) (b)

Figure 6. We illustrate the discontinuous change of rendered color
in the splatting algorithm with respect to the positions of kernels.
As shown in (a) and (b), when two kernels continuously change
their positions and are eventually swapped, the ordering could
be unstable and the rendered color C undergoes a discontinuous
change when the ordering changes. The opacity is denoted on top
of the kernel.

Another benefit that comes with using Gaussian surfels is
that we can have the expected depth D efficiently calculated
with volume splatting as:

D =
N∑
i=1

ti(1− exp(−g(fi)))
i−1∏
j=1

exp(−g(fj)). (18)

In contrast, with 3D Gaussians, the assumption for volume
splatting that the property, i.e., depth in this case, which we
want to render, is constant inside the kernel does not hold.
Discussion. From Theorem. 1, if Gaussian surfels have the
same color when they have the same intersected point, the
rendering is then exact, but we make the only approximation
to use the global sorting to approximate the per-ray sorting as
in [20, 23] for efficiency. We will discuss in Sec. 4.2 that this
color constraint is also important for having a continuous
loss landscape for optimization.

In practice, as in Fig. 5, the distributions of opacity on
the Gaussian surfels do not follow the Gaussian distribution
anymore, thus differentiating our algorithm from Gaussian
splatting. We also allow larger areas on the Gaussian surfels
to become fully opaque. These benefit the surface reconstruc-
tion as shown in Sec. 5.

4.2. Remedying Loss Landscape Defects
With the rendering algorithm we introduced before, during
training, we apply the view synthesis loss as Lrgb, depth
distortion loss as Ld and depth-normal consistency loss as
Ln, following [20]. However, we use the expected depth
defined in Eqn. (18) instead of the median depth in [20] to
calculate Ln. The final loss is defined as:

L = Lrgb + λ1Ld + λ2Ln, (19)

where λ1 is set specific to the dataset, and λ2 = 0.05. Ld

helps encourage the Gaussian surfels to cluster together, such
that the represented stochastic geometry becomes determin-
istic, Ld helps smooth the geometry, and Lrgb is the main
loss for driving the surface reconstruction. However, Lrgb is
not a continuous function of properties, including center and
covariance, of the Gaussian surfel. As shown in Fig. 6, when
two Gaussian surfels continuously change their intersected

Figure 7. Demonstration of continuously changing the colors of
kernels when two kernels gradually swap their positions.

points and swap their position, the rendered color undergoes
a discontinuous change. In the case of surface reconstruction,
Gaussian surfels are encouraged to cluster together, which
makes the ordering unstable and optimization harder.

We notice that, as shown in Fig. 7, if the color also con-
tinuously changes when the Gaussian surfel moves in such a
way that whenever two Gaussian surfels intersect the ray at
the exact same position, they have the same color, this dis-
continuity is solved. Therefore, given a ray which intersects
with Gaussian surfels G1,G2, ...,GN , we propose to replace
the color ci of Gi with ĉi as:

ĉi =

∑N
j=1(1− exp(−wj)) exp(−τ |tj − ti|)cj∑N
j=1(1− exp(−wj)) exp(−τ |tj − ti|)

, (20)

where τ = 100, and we blend the color based on the weight
and distance.

Theorem 2. With the color defined in Eqn. (20), Eqn. (16)
gives a continuous function of properties of Gaussian surfels.

Proof. ĉi is a continuous function of t1, t2, ..., tN . And when
there exists an i′ ∈ N, such that ti = ti′ , ĉi = ĉi′ .

With the color defined in Eqn. (20), we also reach an
almost exact rendering algorithm as discussed in Sec. 4.1.
However, it is computationally inefficient to blend the color
per ray. We instead propose an efficient approximation that
blends the color in the R3 space. Specifically, we have:

ĉi =

∑N
j=1(1− exp(−wj)) exp(−τ ||mi −mj ||2)cj∑N
j=1(1− exp(−wj)) exp(−τ ||mi −mj ||2)

,

(21)
which can be efficiently implemented as propagating the
color before rendering.

4.3. Improve Color Representation
The method described above significantly improves surface
reconstruction quality using spherical harmonics as the color
representation. However, we find it struggles to reconstruct
the specular surfaces, as observed in [5, 22, 26, 40, 56].

We instead assign a latent li ∈ R32 to the ith Gaussian
surfel and create a shallow MLP Φ, such that:

ci = Φ(li,SE(ω),SE(ωo)), (22)

where SE(·) denotes the spherical harmonics encoding [35],
ω denotes the ray direction, and ωo denotes the reflected
ray direction with respect to the local normal vector, i.e.,
ω = (mi −o)/||mi −o||2, and ωo = 2(ni ·ω)ni −ω. We
find it beneficial to input both ω and ωo for dealing with
both diffuse and specular surfaces, as in [41, 44].
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Figure 8. Qualitative comparison on DTU and BlendedMVS datasets. Non-obvious differences are highlighted by insets and red circles.
“F.D.S.” denotes Chen et al. [5].

Methods 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Avg. ↓ Time
NeuS2 [48] 0.59 0.79 0.74 0.40 0.93 0.74 0.85 1.37 1.37 0.82 0.74 0.86 0.44 0.60 0.58 0.79 4m

N.A. [25] 0.39 0.79 0.38 0.30 0.82 0.72 1.91 1.20 1.94 0.67 0.38 1.15 0.34 0.84 0.95 0.85 > 12h
O.V. [31] 1.53 1.21 1.06 0.74 0.72 1.14 0.75 0.98 1.47 0.86 0.69 0.80 0.56 0.62 0.73 0.92 > 6h

NeUDF [27] 2.01 0.75 1.35 0.57 0.95 0.75 0.89 0.91 1.29 0.56 0.86 1.41 0.58 0.77 0.59 0.95 > 6h
F.D.S. [5] 0.44 0.66 0.33 0.32 0.90 0.67 0.54 1.28 1.10 0.70 0.65 0.57 0.41 0.40 0.39 0.62 1h

SuGaR [18] 1.47 1.33 1.13 0.61 2.25 1.71 1.15 1.63 1.62 1.07 0.79 2.45 0.98 0.88 0.79 1.33 42m
2DGS [20] 0.41 0.67 0.33 0.36 0.95 0.81 0.77 1.24 1.19 0.68 0.65 1.28 0.35 0.65 0.46 0.72 6m

G.S. [7] 0.64 0.85 0.58 0.43 0.99 1.18 0.90 1.14 1.11 0.81 0.92 1.46 0.53 0.61 0.58 0.85 3m
GOF [59] 0.46 0.68 0.39 0.38 1.15 0.82 0.70 1.14 1.21 0.65 0.68 1.04 0.48 0.68 0.49 0.73 33m

RaDe-GS [60] 0.46 0.66 0.35 0.41 0.79 0.73 0.67 1.14 1.18 0.61 0.64 0.87 0.37 0.69 0.48 0.67 10m
Ours (SH) 0.38 0.63 0.30 0.35 0.79 0.63 0.65 1.10 1.21 0.62 0.48 1.18 0.33 0.42 0.38 0.63 10m

Ours (Latent) 0.40 0.59 0.39 0.38 0.72 0.59 0.65 1.08 0.93 0.59 0.50 0.67 0.34 0.47 0.40 0.58 11m

Table 1. Quantitative evalution on the DTU dataset based on the Chamfer Distance. Throughout the paper, the best metric is highlighted in
red, the second best metric is highlighted in orange, and the third best metric is highlighted in yellow.

Methods EvaUni Temple Excava Museum Avg. ↓
F.D.S. [5] N/A 1.87 1.08 1.92 1.62
N.A. [25] 1.49 2.20 0.88 2.07 1.66

2DGS [20] 1.56 2.10 0.98 2.21 1.71
G.S. [7] 2.18 2.26 N/A 2.88 2.44

GOF [59] 1.55 1.99 0.81 2.23 1.65
RaDe-GS [60] 1.67 2.01 0.88 2.19 1.69

Ours (SH) 1.48 1.89 0.72 1.98 1.52
Ours (Latent) 1.58 2.13 0.87 2.26 1.71

Table 2. Quantitative comparison on the BlendedMVS dataset for
scene-level cases based on the Chamfer Distance (×10−1). “N/A”
denotes that the method fails to converge.

5. Results
We discuss implementation details and evaluation here. For
detailed proof, further implementation details, evaluation
results, and discussions, please refer to the supplementary.

Implementation Details. We base our implementations
and hyper-parameters on [20] and use [32] for implement-
ing the MLP. We replace the original densification strategy
[20, 23] with [57]. We use the TSDF fusion [62] to extract
the mesh from rendered depth maps. The proposed color
blending over all kernels is approximated through closest-

Methods Bea Clo Dog Dur Jad Man Scu Sto Avg. ↓
F.D.S. [5] 0.33 0.10 0.21 2.63 0.19 0.80 0.44 0.91 0.70
N.A. [25] 0.32 0.12 0.31 3.11 0.15 0.80 0.43 0.77 0.75

2DGS [20] 1.17 0.46 0.45 2.87 0.15 0.53 0.59 0.90 0.89
G.S. [7] 0.57 0.35 0.27 6.62 0.16 0.53 0.76 1.45 1.34

GOF [59] 0.59 0.26 0.34 2.72 0.12 0.53 0.48 1.03 0.76
RaDe-GS [60] 0.51 0.25 0.24 2.83 0.12 0.52 0.43 0.84 0.72

Ours (SH) 0.55 0.17 0.40 2.63 0.14 0.43 0.36 0.71 0.67
Ours (Latent) 0.60 0.13 0.25 2.58 0.14 0.44 0.36 0.80 0.66

Table 3. Quantitative comparison on the BlendedMVS dataset for
object-centric cases based on the Chamfer Distance (×10−2).

k-points [36], where k = 10. All the experiments are con-
ducted on an NVIDIA 6000 Ada.

5.1. Qualitative Evaluation
As shown in Fig. 8, we compare with Chen et al. [5], Neu-
ralangelo [25], RaDe-GS [60], and 2DGS [20] as represen-
tative methods on DTU [21], and BlendedMVS [53]. Our
method better captures geometric details (e.g., nose of the
skull, door of the house), while handling specular surfaces
well (e.g., reflective cans and scissors), compared to Chen
et al. [5] and RaDe-GS. Our method also ensures smooth
geometry without holes (e.g., dog, sculpture and temple).
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Figure 9. We demonstrate the differences between SH and latent
color representations on the “scan110” sample of the DTU dataset.
When reconstructing specular surfaces (left), the SH representation
(middle) leads to visible holes in the recovered mesh; these artifacts
are resolved when using a latent representation (right).

Neuralangelo fails to properly represent open-boundary ob-
jects (e.g., card held by the bear). We further prepare a pre-
liminary experiment on highly specular surfaces in C.2 of
the supplementary.

5.2. Quantitative Evaluation
We evaluate on the datasets with ground-truth geometries and
their corresponding camera parameters. We compare with
methods, including NeuS2 [48], Neuralangelo [25], Miller
et al. [31], NeUDF [27] as representative neural methods,
SuGaR [18], 2DGS [20], Dai et al. [7], GOF [59], RaDe-GS
[60] as representative splatting methods, and Chen et al. [5]
on the DTU [21] dataset in Tab. 1. Besides, we compare with
Chen et al. [5], Neuralangelo, 2DGS, Dai et al. [7], GOF and
RaDe-GS on the BlendedMVS [53] dataset for scene-level
cases in Tab. 2 and object-centric cases in Tab. 3. We unify
the evaluation protocol and do not apply masking loss during
training, nor iterative closest point during evaluation.

It is noteworthy that our method has the best averaged
metrics. We achieve the best or second best results across
almost all diffuse scenes while using the SH representation.
For specular cases (i.e., “scan97”, “scan110” of DTU, and
“Dog”, “Clock” of BlendedMVS), our method with improved
color representation significantly improves the reconstruc-
tion quality and achieves one of the top three metrics. We
are also significantly faster than other competing methods,
including, Neuralangelo and Chen et al. [5]. The additional
computational cost compared to 2DGS comes from our color
blending which relies on the closest-k-points.

5.3. Ablation Study
We evaluate our proposed components on the DTU dataset
[21] with both SH representation and latent representation
for colors, and report the Chamfer Distance (denoted as CD)
in Tab. 4. Specifically, we replace the proposed geometry
field-based splatting algorithm with the original 2DGS splat-
ting algorithm, which leads to a severe drop of geometry
quality. Besides, we also remove the proposed color prop-
agation used for remedying loss landscape defects, which
also leads to a drop in geometry quality. Furthermore, we
study the effects of the only approximation we make, i.e.,
using global sorting to approximate the per-ray sorting. We

Methods Ours (SH) Ours (Latent)
Full Model 0.63 0.58

- Geometry Field Splatting 0.70 0.72
- Remedy Loss Landscape Defects 0.67 0.59
+ Per-Ray Sorting 0.61 0.57

Table 4. Ablation study for the proposed components on the DTU
dataset based on the Chamfer Distance.

implement a per-ray priority queue to sort the surfels based
on the depths they intersect with the ray. Even though the
per-ray sorting further improves the geometry quality, it con-
sumes much more time (3− 4×) and memory. We then do
not use per-ray sorting by default and in other experiments.

Moreover, we also demonstrate the benefits of using the
latent representation for colors on the specular surfaces in
Fig. 9. With SH representation, there are holes on the specu-
lar surface, while latent representation is free of this problem.

6. Conclusion
In this paper, we propose to first define a stochastic geometry
field in the space with Gaussian surfels, then convert it into
the density field, and render it with an efficient and differ-
entiable refined splatting algorithm for accurate geometry
reconstruction. We also identify the discontinuity of view
synthesis loss and propose an efficient remedy to address it
such that the represented stochastic geometry can converge
to the deterministic geometry well through the optimization.
Our method is not without limitations. For example, our
method cannot handle transparent or semi-transparent ob-
jects due to the opaque assumption, or fuzzy objects well
due to the smoothness constraint.

In conclusion, we show that it is possible to use Gaussian
surfels to accurately define the geometry and then perform
efficient and differentiable almost exact rendering for geome-
try reconstruction. We achieve significant improvement over
the geometry quality compared to other baselines, including
both neural and splatting-based methods.
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