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Figure 1. Performance on eight transfer learning datasets. Pre-training on our generated low-biased general annotated dataset can bring
stable generalization capacity enhancement of different backbones.

Abstract

Pre-training backbone networks on a general annotated
dataset (e.g., ImageNet) that comprises numerous manually
collected images with category annotations has proven to be
indispensable for enhancing the generalization capacity of
downstream visual tasks. However, those manually collected
images often exhibit bias, which is non-transferable across
either categories or domains, thus causing the model’s gener-
alization capacity degeneration. To mitigate this problem, we
present a low-biased general annotated dataset generation
framework (lbGen). Instead of expensive manual collec-
tion, we aim at directly generating low-biased images with
category annotations. To achieve this goal, we propose to
leverage the advantage of a multimodal foundation model
(e.g., CLIP), in terms of aligning images in a low-biased se-
mantic space defined by language. Specifically, we develop

*Equal contribution.
†Corresponding author

a bi-level semantic alignment loss, which not only forces all
generated images to be consistent with the semantic distri-
bution of all categories belonging to the target dataset in an
adversarial learning manner, but also requires each gener-
ated image to match the semantic description of its category
name. In addition, we further cast an existing image quality
scoring model into a quality assurance loss to preserve the
quality of the generated image. By leveraging these two
loss functions, we can obtain a low-biased image generation
model by simply fine-tuning a pre-trained diffusion model
using only all category names in the target dataset as in-
put. Experimental results confirm that, compared with the
manually labeled dataset or other synthetic datasets, the uti-
lization of our generated low-biased dataset leads to stable
generalization capacity enhancement of different backbone
networks across various tasks, especially in tasks where the
manually labeled samples are scarce. Code is available at:
https://github.com/vvvvvjdy/lbGen
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Figure 2. Visualization of some randomly sampled images from 4 datasets. It is hard to tell from which dataset exhibits low bias through
these images. However, models trained on these four datasets demonstrate a significant disparity in their generalization capabilities.

1. Introduction

Deep neural networks have achieved great success in vari-
ous computer vision tasks [31, 34, 58]. One indispensable
premise of such success lies on pre-training the parameter-
extensive backbone network using a general annotated
dataset (e.g., ImageNet [6]) that contains a large number of
images with manually annotated categories. Profiting from
the vast amount of annotated images and the diverse image
categories, the pre-trained backbone networks often show
pleasing generalization capacity and perform effectively in
the target computer vision task through simple fine-tuning it
together with a corresponding task head with a few parame-
ters [15, 53]. Unfortunately, recent studies [27, 47, 57] un-
cover that these manually collected images often exhibit non-
travail bias1 (e.g., a certain background, image style, object
position for a specific category etc.) which can be easily cap-
tured by backbone networks during pre-training, but hardly
noticed by human collectors (see Figure 2). Such hidden bias
is proven to be cast into a shortcut feature representation [12]
to improve the in-domain performance but deteriorate the
generalization capacity of pre-trained backbone networks
on target tasks in the cross-category or cross-domain set-
tings [4, 10] which shows an obvious image distribution gap
from the utilized general annotated dataset. For example,
when a specific category of images often shows a similar
background, the pre-train backbone networks will consider
the background as the discriminative feature of such a cate-
gory while overlooking the cross-category or cross-domain

1In this paper, ‘dataset bias’ refers to ‘systematic bias introduced in data
collection, selection, or processing that impair the generalization capacity
of the model’.

transferable semantic features (e.g., shape, structure, etc.).
Therefore, it is crucial to obtain a low-biased general anno-
tated dataset to enhance the cross-category or cross-domain
generalization capacity of the pre-trained backbones.

To this end, a straight solution is to manually re-collect
extensive low-biased images. However, it will not only pro-
duce expensive manual collection costs, but also inevitably
incur some other undetectable bias. Recently, diffusion mod-
els [38, 40, 41] have shown powerful capacity in terms of
generating high-quality synthetic images based on the text
description of image contents, thus providing a feasible way
to directly generate images with annotations without manual
collection cost. Moreover, some studies [1, 42, 56] have
demonstrated that those randomly generated images with
annotations can be utilized for network training. Although
most existing diffusion models can be directly utilized for
general annotated dataset generation, they mainly focus on
generating images with the distribution consistent with the
conventional manually annotated general dataset (e.g., Ima-
geNet) and scarcely attempt to generate low-biased images.
Thus, pre-training the backbone networks on these gener-
ated general annotated datasets will not bring non-travail
generalization capacity enhancement [44].

To mitigate this problem, we present a low-biased gen-
eral annotated dataset generation framework (lbGen), which
takes the first attempt to directly generating synthetic low-
biased images with category annotations. To achieve this
goal, we first have to define a low-biased space where the
feature representation of each image emphasizes transferable
semantic characteristics. Considering that the observation
that text information is closer to the ideal semantic informa-
tion and the recent progress of multimodal foundation model
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(e.g., CLIP [37]) which aims at mapping images into a low-
biased semantic space defined by language, a straight idea is
to constrain the image output of the existing diffusion mod-
els to follow the semantic distribution of the specific image
category in such a low-biased semantic space. Following this
idea, we develop a bi-level semantic alignment loss based on
the CLIP model to fine-tune the pre-trained diffusion model.
In a specific, on the one hand, such a loss forces all gener-
ated images to be consistent with the semantic distribution
of all categories belonging to the target dataset in the CLIP
feature space using an adversarial learning scheme. On the
other hand, it also requires each generated image to match
the semantic description of its category name in the CLIP
feature space using a simple cosine similarity metric. By
doing these, we can obtain a low-biased image generation
model by simply fine-tuning a pre-trained diffusion model
using only all category names in the target dataset as input.
In addition, to sidestep image quality degradation caused by
the low-biased image generation learning, we further cast
an existing image quality scoring model into a quality assur-
ance loss to assist the bi-level semantic alignment loss for
diffusion model fine-tuning.

To testify the efficacy of the proposed framework, we
pre-train two conventional backbone networks on our gen-
erated low-biased general annotated dataset and training
specific heads on different downstream tasks. Compared
with backbone networks pre-trained either on the manually
collected generated dataset or that generated by existing dif-
fusion models, our approach achieves obvious generalization
performance improvement, especially when the manually
annotated samples in the target task are scarce. Moreover, ad-
ditional experiments prove that our pre-trained backbone net-
works capture lower specific bias (e.g. context, background,
shape-texture), which further demonstrates the generality of
our framework.

In summary, our main contributions are as follows:

• We propose the first low-biased general annotated dataset
generation framework, which jumps out of the dilemma of
traditional manual data collection in terms of mitigating
dataset bias.

• We present a bi-level semantic alignment module assisted
by a quality assurance loss to simply fine-tune the standard
diffusion model using only all category names in the target
dataset as input.

• With our generated general low-biased dataset, the pre-
trained backbone network shows state-of-the-art general-
ization capacity in different downstream tasks.

2. Related Work

2.1. Datasets Bias
Since the deep learning revolution in 2012 [22], the large-
scale manually collected annotated dataset (e.g., ImageNet)

performs no longer a simple training dataset for its own
tasks, but a general dataset utilized for backbone network
pre-training which has become the indelible step for enhanc-
ing the generalization performance of various downstream
tasks. However, recent studies [27, 47, 57] have consecu-
tively revealed that these existing manually collected general
dataset exhibit non-trial bias, which results in sup-optimal
cross-categories and cross-domain generalization capacity,
especially when the manually annotated samples in the tar-
get task are scarce. For example, Liu et al. [27] observe
that deep neural networks can achieve excellent accuracy in
classifying which dataset an image is from. In other words,
the neural network discovers some dataset-specific patterns,
a form of bias. In addition, studies in [17, 34, 44] attempt to
implicitly measure the dataset bias by investigating the cross-
category or cross-domain generalization capacity as well as
the robustness of the models pre-trained on the dataset.

However, these works mainly focus on raising the dataset
bias problem or bias measurement. In contrast, in this study,
we take the first attempt to solve this problem and aims
at borrowing the advantage of diffusion model in image
generation to directly generate a low-biased general dataset
for better backbone pre-training.

2.2. Synthetic Dataset Generation

Different from manual collection, synthetic dataset gener-
ation aims at directly generating image using deep neural
networks based on some text description. For example, in
early days, Zhu et al. [54, 60] utilized adversarial genera-
tive networks to model the mapping relationship between
the input text description and the output image. However,
these methods require large-scale high-quality images from
target categories for network training, and the generaliza-
tion capacity to unknown text descriptions is limited. More
recently, as diffusion model shows more powerful capacity
in generalization to unknown text description [9, 35, 40],
some works have attempted to utilize the diffusion model
to generate ImageNet-like synthetic dataset for backbone
pre-training. For example, Bansal et al. [1] directly fine-tune
the diffusion model on ImagNet-1K [6] and use meticulously
designed prompts to generate the dataset. Lei et al. [24] uti-
lizes ViT-GPT2 [23] to get a unique prompt to generate each
image. Yuan et al. [56] resort to learn the distribution of Im-
ageNet and use Blip-captions [25] of ImageNet as prompts
to synthesize the dataset.

Although these diffusion-based methods can be utilized
for general dataset generation, they mainly focus on simu-
lating the existing ImageNet without considering the dataset
bias. In this study, we attempt to fine-tune the diffusion
model to directly generate a low-biased general annotated
dataset without using any image-text pairs but the category
names of the target dataset as input.
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Figure 3. Overview of our training method. The generator first generates an image according to the class name. Then the image is sent to
bi-level semantic guidance module and quality assurance module respectively for loss calculation.

3. Approach
The overall training framework of lbGen is shown in Figure 3.
In Section 3.1, we begin with elucidating the basic method-
ology employed in our training process. In Section 3.2,
we then illustrate the bi-level semantic alignment module,
which is the core part of our approach. Subsequently, in Sec-
tion 3.3, we further introduce the quality assurance module
for fidelity preserving the images, and finally we integrate
the two components for joint learning.

3.1. Preliminary
We implement our method on the leading text-to-image dif-
fusion model, Stable Diffusion [40], which belongs to the
family of latent diffusion models (LDM) [39]. In the tra-
ditional training process, a normally distributed noise ϵ is
added to the original latent code z0 with a variable extent
based on a timestep t sampling from {1, ..., T}. Then, a
denoising function ϵθ, parameterized by a UNet backbone, is
trained to predict the noise added to z0 with the text prompt
Pt and the current latent zt as the input. Specifically, the
text prompt is first encoded by a text encoder W , then incor-
porated into the denoising function ϵθ by the cross-attention
mechanism. The denoising loss in diffusion models’ training
is formally expressed as:

LLDM = Ez0,t,p,ϵ∼N (0,I)

[
∥ϵ− ϵθ (zt, t,W (Pt))∥2

]
. (1)

For inference, the process can be formulated as a Markov
decision process that iteratively estimates the noise and com-
putes the next latent sample:

pθ(z0|W (Pt)) = p(zt)

T∏
t=1

pθ(zt−1|zt,W (Pt)). (2)

However, this method requires vast quantities of image-
text pairs for training and it takes extended times to converge,
which is not feasible to fine-tune a model under our restric-
tive conditions. To overcome these difficulties, we follow
some works [3, 19, 36] to fine-tune the diffusion model with
reinforcement learning (RL). Different from the original
loss function in Eq. (1), given a reward function R(.), the
objective of RL is to maximize the expected reward:

J(ϕ) = E [R(Z0, c] . (3)

With the denoising process showed in Eq. (2) , the gradient
when fine-tuning diffusion models with reward feedback
Eq. (3) can be computed as:

∇ϕJ = E

[
T∑

t=0

∇ϕ log pθ(zt−1|zt,W (Pt)R(Z0, c)

]
. (4)

Noticing that only text prompt Pt and conditional context
c for reward models are required in this training paradigm
instead of a dataset containing image-text pairs, which is con-
sistent with the fact that we do not incorporate any external
biased images in our training process.

3.2. Bi-Level Semantic Alignment
As mentioned in Section 1, we assume that the semantic
space defined by language can be a low-biased representa-
tion and our key insight is using this characteristic of lan-
guage to fine-tune a pre-trained diffusion model as our lbGen
generator. We achieve this by leveraging a simple Linear-
ReLU-Linear based discriminator Dϕ and utilizing CLIP to
carry out a bi-level semantic alignment. We use only 1000
class names of ImageNet as our inputs, which ensures that
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no other biased information is introduced except semantic
information of the dataset.
Entire Dataset Alignment. Building on the advantages
of CLIP which has unified the image and the text into
one represention space, we can initially use CLIP text en-
coder to extract text features {fc1 , fc2 , . . . , fc1000} of class-
names {c1, c2, . . . , c1000}. We consider these text features
to be a low-biased semantic distribution of the entire Ima-
geNet. Then, we generate an image using prompt ci and
send it to CLIP image encoder to get the image feature
fimi

. Next, we randomly choose a text feature fcj from
{fc1 , fc2 , . . . , fc1000}. It is worth emphasizing that we do
not use the text feature which belongs to the same class as
the image feature since we aim to align the whole synthetic
dataset to its general semantic representation space regard-
less of the concrete class. Finally, features fimi and fcj are
fed into Dϕ for computing entire semantic alignment loss as
follows:

Len = log
(
Dϕ

(
fcj

))
+ log (1−Dϕ (fimi

)) . (5)

Similar to the training object of Generative Adversarial Net-
work(GAN) [13], we expect to fine-tune the diffusion model
to minimize this adversarial loss, while concurrently training
the discriminator to maximize it.
Individual Image Alignment. Expect for mapping the im-
ages to be consistent with the semantic distribution of all
classes within the entire dataset, we need to precisely control
each category of images to match their semantic description.
To this end, we introduce the individual semantic alignment
loss. In particular, given the generated image imi using class
name ci, we use simple "photo of ci" as the low-biased
semantic description pci and send them to CLIP. Different
from using CLIP to align the dataset globally in the entire
semantic space, we aim at forcing the semantic information
of each image to be dovetailed with its class by maximizing
the cosine similarity between the image and its correspond-
ing semantic description through CLIP. Thus, we can obtain
Lin formulated as follows:

Lin = 1−
fimi

· fpci

∥fimi
∥ · ∥fpci

∥
, (6)

where fimi and fpci
represent the image and text feature

vectors extracted by CLIP, the dot product of the vectors is
denoted by ·, and ∥ · ∥ denotes the norm of the vectors.

By considering these two distinct levels of losses, we
can finally add them together and obtain bi-level semantic
alignment loss Lbi to refine the diffusion model to align
more closely with the low-biased semantic reference.

3.3. Quality Assurance
In practice, only under supervision in terms of text seman-
tics, we observe that the quality of the generated images is

sub-optimal after training. Thus, we introduce the quality
assurance loss to assist the bi-level semantic alignment loss.

To be specific, we use the state-of-the-art image qual-
ity scoring model Q-ALIGN [49] as our quality assurance
model. After fine-tuning a Leading open-source multimodal
large language model (MLLM) mPLUG-Owl-2 [55] on
carefully collected image quality assessment datasets, Q-
ALIGN can achieve satisfactory image quality scoring per-
formance. Feeding the generated image imi with the system
prompt "How would you rate the quality of
this image?" into Q-ALIGN, we can obtain the quality
score Q(imi), which ranges in [1, 5], of the image and using
it to calculate quality assurance loss (Lq) for diffusion model
to optimize. Details about how Q-ALIGN scores images can
be found in Appendix.

Lq = 1− Q(imi)

5
. (7)

Finally, we combine the losses in the bi-level semantic
alignment module and quality assurance module to build up
our final training object for lbGen generator as follows:

L = Lbi + λ1Lq, (8)

where λ1 is a scaling factor to balance the losses. The pseu-
docode of the integrated loss computation process can be
found in Appendix.

4. Experiment
4.1. Experimental Settings
Datasets. We choose two recent open-source synthetic
ImageNet (GenRobust [1], RealFake [56]) and ImageNet-
1K [6] for comparison. We test the generalization abil-
ity and robustness of the pre-trained model using eight
transfer learning datasets (Aircraft [30], Cars196 [21],
DTD[5], EuroSAT[16], Flowers[32], Pets[33], Food101[2],
SUN397[51]), two visual perception datasets (COCO [26],
ADE20K [59]), as well as three specific bias measurement
datasets (FOCUS[20], Mixed-Rand & Mixed-Same [52],
Cue Conflict [11])
Implementation Details. We implement our method on
SD1.5 [40] and fine-tune it with LoRA [18]. We choose
openai-CLIP-VIT-L [37] as our default CLIP model. For
the visual backbones, we choose two representative models,
ConvNets-based ResNet50 [14] and Transformer-based ViT-
S [8]. During fine-tuning the generator, we follow Deep
Reward [50] and CoMat [19] that only enable gradients in
5 steps out of those 50 steps to save GPU memory. During
training visual backbones, we maintain the same training
hyperparameters across all selected datasets to make a fair
comparison.

More details about training hypersettings, data synthe-
sis, datasets for evaluation, and computing resources are
provided in Appendix.
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Backbone Pre-Trained Data IN-val Aircraft Cars196 DTD EuroSAT Flowers Pets Food101 SUN397 Avg.

ResNet50

IN-Real [6] 76.2 56.0 51.5 70.0 93.7 81.4 90.7 67.2 56.8 71.5
IN-SD1.5 [40] 45.8 58.3 52.7 69.0 94.1 82.1 85.5 63.6 54.4 67.3
IN-GenRobust [1] 43.4 56.2 47.4 68.0 94.8 80.4 83.3 57.8 49.3 64.5
IN-RealFake [56] 69.8 59.9 54.1 70.6 94.4 83.7 90.0 67.3 55.9 71.8
IN-lbGen(ours) 46.1 62.1 58.5 72.8 95.0 86.4 87.2 65.3 64.3 73.2

ViT-S

IN-Real [6] 78.7 59.4 56.4 69.5 94.1 83.0 90.2 68.3 57.2 72.3
IN-SD1.5 [40] 46.6 57.5 51.8 68.3 92.7 84.0 85.6 62.8 56.1 69.9
IN-GenRobust [1] 44.9 52.3 54.0 63.5 94.4 78.3 82.1 54.7 49.7 66.3
IN-RealFake [56] 72.3 57.3 53.1 67.2 93.3 82.1 91.7 65.6 55.9 70.8
IN-lbGen(ours) 46.3 62.6 58.0 71.2 94.1 86.2 88.6 68.5 66.0 74.4

Table 1. Top-1 accuracy on transfer learning datasets. The average accuracy across eight transfer learning datasets is denoted as Avg. The
best and second-best transfer learning performance of each backbone are highlighted in red and underlined. IN-SD1.5 denotes only using
original SD1.5 to generate the data. We also present results on ImageNet validation set for reference.

Figure 4. Scaling down the number of training images of eight
transfer learning datasets. The benefits of using pre-trained
models on our lbGen images are even more pronounced when
there is less data for training.

4.2. Generalization across Downstream Tasks

Transfer Learning. Transfer learning [34] is a widely
known downstream visual task and can be significantly in-
fluenced by the generalization of the pre-trained model. In
our work, we aim to indicate whether the utilization of our
lbGen data can enable the backbones to learn better transfer-
able patterns. To this end, we follow fakeit [42], which uses
pre-trained visual backbones as feature extractors and train
simple linear logistic regression classifiers from scratch.

As illustrated in Table 1, we observe that models pre-
trained on our dataset outperform all other candidates. Com-
pared with the second-best synthetic datasets, we achieve
+1.4% and +3.6% leading performance on ResNet50 and
ViT-S respectively. More importantly, our method exhibits
1.7% and 2.1% average accuracy improvement and superior
results in the vast majority of transfer learning datasets com-
pared to real data. Furthermore, we investigate the transfer
ability of models pre-trained on real images and our gener-
ated images when using less transfer learning training data.
Such few-shot setting [48] requires an even higher general-

Pre-Trained Data COCO (AP box)

1.0× 0.5× 0.2× 0.1×
IN-Real [6] 39.32 34.97 29.14 25.51
IN-SD1.5 [40] 38.89 34.68 28.60 24.05
IN-GenRobust [1] 38.12 32.11 27.68 23.38
IN-RealFake [56] 39.04 35.09 29.25 24.88
IN-lbGen(ours) 39.26 35.24 30.68 25.64

Pre-Trained Data ADE20K (mIoU)

1.0× 0.5× 0.2× 0.1×
IN-Real [6] 42.44 38.05 32.10 27.64
IN-SD1.5 [40] 41.07 37.62 31.49 26.32
IN-GenRobust [1] 40.77 37.13 29.36 24.70
IN-RealFake [56] 41.89 37.76 32.28 27.38
IN-lbGen(ours) 41.50 38.61 33.57 27.82

Table 2. Results on COCO object detection and ADE20K se-
mantic segmentation of different number of training images.
We gradually scaling down the number of downstream training
images from original data size to 1/10 of it for testing the general-
ization ability of the backbones.

ization capacity of the model. As shown in Figure 4, it is
important to note that the advantage of pre-trained models
on our data is even greater when there are fewer downstream
images for training. This phenomenon further underscores
the lower bias of our data and the stronger generalization of
the resulting model. Meanwhile, another striking finding is
that achieving high accuracy on the ImageNet validation set
does not necessarily correlate with enhanced cross-category
generalization performance, thereby enabling us to draw
more definitive conclusions regarding the dualistic impact
of bias in the existing dataset on the model.
Visual Perception. Detection and segmentation are two
of the most popular downstream visual perception tasks,
at the same time, these two tasks can benefit a lot from a
well pre-trained backbone. Hence, we want to find out if
the utilization of our lbGen data can also enhance the per-
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formance on these tasks. To this end, we follow previous
studies [28, 29, 43], which use Mask R-CNN [15] as detec-
tion head for COCO object detection and UperNet [53] as
segmentation head for ADE20K semantic segmentation, to
evaluate the performance of pre-trained ResNet50 backbone
on different datasets. Moreover, to thoroughly test the gener-
alization ability of the backbone, we progressively decrease
the number of training samples and observe the outcomes.

The experimental results in Table 2 demonstrate the ef-
fectiveness of our lbGen datasets. Although pre-training on
real data achieves marginally better performance with full
training data, the performance of lbGen pre-trained model
consistently outperforms all other pre-training data when
downstream data is limited. Specifically, with only 20% of
the original training data, the model achieves the highest per-
formance across both tasks, showing gains of up to 1.54%
APbox and 1.47% mIoU compared to that pre-trained on
IN-Real. This result is particularly valuable for real-world
applications where collecting and annotating task-specific
training data is often costly and time-consuming.

4.3. Robustness Against Specific Bias

In this section, we aim to figure out whether our lbGen data
can help the backbones to learn good features instead of
capturing specific bias as a shortcut. Hence, we follow one
recent study [44] to test shape-texture bias, context bias, and
background bias of the backbone networks. All these results
are given in Table 3.
Shape-Texture Bias. Prior work shows humans primar-
ily use shape for object recognition [7, 45], while neural
networks often rely on texture cues [10, 11]. Hence, we
evaluate whether our data can reduce texture bias using the
Cue Conflict, where shape and texture cues intentionally
conflict across 1200 images from 16 classes. We use TI
which represents the texture inclination of the model to un-
derstand the decision-making of the model when facing a
shape-texture conflicting image (e.g. a cat with the texture
of an elephant). Our findings indicate that training on our
lbGen images, models tend to be less texture-biased. Con-
cretely speaking, the two types of models trained on our data
show 4.8% and 9.8% texture inclination decline compared
with those trained on real images.
Context Bias. Context bias means that a model is biased
towards using context cues to classify objects rather than
learning real object appearance. In the Focus which we use
to evaluate the context bias, each image is annotated with
the object class, the time of day, location, and weather labels.
These images are divided into common and uncommon sets.
Uncommon samples are uncommon contexts like “airplane
in the forest”. Then we use mutually exclusive partitions
of this dataset Pk where k is the number of uncommon
attributes and report CBavg. metrics, which is defined as
the average relative accuracy between the accuracy on the

Backbone Pre-Trained Data TI(↓) CBavg.(↑) BGGap(↓)

ResNet50

IN-Real [6] 60.9 60.0 6.8
IN-SD1.5 [40] 60.7 55.3 8.0
IN-GenRobust [1] 62.8 48.1 7.5
IN-RealFake [56] 69.2 60.1 8.2
IN-lbGen(ours) 56.1 64.7 6.4

ViT-S

IN-Real[6] 67.0 61.8 6.7
IN-SD1.5 [40] 63.8 55.5 7.8
IN-GenRobust [1] 65.7 47.3 7.9
IN-RealFake [56] 70.6 61.2 7.8
IN-lbGen(ours) 57.2 66.0 6.1

Table 3. Results on benchmarks of testing specific bias. TI (in
%) denotes the texture inclination of the model. CBavg. (in %)
denotes the average relative accuracy when the number of uncom-
mon attributes changes. BGGap (in %) metric reports the drop in
performance by just changing the background to a different class
than the foreground class.

partition with no uncommon attributes P0 and a partition
with k uncommon attributes when k changes from 1 to 3:

CBavg. =
1

3
×

3∑
k=1

AccPk

AccP0

. (9)

In our evaluation result, we find the models trained on our
lbGen ImageNet demonstrate leading object recognition ca-
pabilities where achieve 64.7% and 66.0% average relative
accuracy on each backbone in a constantly changing context.
Background Bias. The background bias of models can be
used to identify if the model is using the background of the
image during training to improve the classification accuracy
instead of using the object itself. For the two datasets that
we utilize to evaluate the background bias, the Mixed-Rand
segments the foreground object in an image and switches
the original background with a random background from a
different class label, while the Mixed-Same partition places
the segmented foreground object on a random background
from the same class label. Thus, we can use BGGap which
measures the difference in performance between these two
datasets to examine how decision-making processes can be
influenced just by changing the background to a different
class. As we report in Table 3, The ResNet50 and ViT-S
trained on our data obtain 6.4% and 6.1% performance gaps,
which shows lower gaps compared with training on other
synthetic data and real data.

4.4. Ablation Study
In this section, we investigate the design choices of lbGen
training process. Due to computational cost, without loss of
generality, we conducted the ablation study on the smaller
ImageNet-100 datasets [46] for evaluation. Unless otherwise
specified, we choose ResNet50 backbone and mainly report
the results of transfer learning.
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Pre-Trained Data Len Lin Lq CLIP Size IN100-val Aircraft Cars196 DTD EuroSAT Flowers Pets Food101 SUN397 Avg.

IN100-Real [46] – – – – 88.3 40.5 28.5 56.8 92.4 68.8 72.1 48.7 38.0 56.0

IN100-lbGen ✓ ✓ ✓ Large 66.0 44.8 34.3 59.1 92.7 71.6 72.0 50.8 42.3 58.5
× ✓ ✓ Large 64.6 39.3 27.0 54.8 91.5 65.7 70.3 45.4 35.3 53.6
✓ × ✓ Large 8.7 24.5 21.4 45.4 91.4 52.0 43.9 40.1 24.8 42.9
✓ ✓ × Large 51.3 41.7 25.1 56.2 92.1 64.4 68.3 46.2 36.4 53.7

IN100-SD1.5 [40] × × × – 65.5 39.7 26.9 53.2 91.1 64.2 69.3 45.6 35.9 53.2

✓ ✓ ✓ Base 62.1 42.3 32.6 58.4 92.3 68.2 71.2 49.5 39.2 56.7

Table 4. Ablation studies on transfer learning datasets and IN100-val. Avg. is the average accuracy of eight transfer learning datasets.
We also present the results of the model trained on real ImageNet100 for reference.

Figure 5. Impact of individual image alignmentloss. We observe
that ambiguity problem between classes when discarding Lin.

Effect of Bi-Level Semantic Alignment Loss. According
to Table 4, it is notable that without the entire semantic
alignment part, the average accuracy decreased by 4.9%.
Furthermore, when we remove individual semantic align-
ment part, the accuracy on IN100-val and transfer learning
data shows a significant decline. In our analysis, it appears
that the absence of individual semantic alignment leads the
model to solely learn the overall semantic distribution of the
dataset, resulting in a lack of distinction or specific semantic
meaning among different classes (see the left picture of each
pair in Figure 5). This ultimately causes a collapse when
training the backbone. In sum, the bi-level semantic align-
ment loss successfully help to align the generated images
into low-biased semantic space from both the entire dataset
distribution level and the specific object category level.
Effect of Quality Assurance Loss. As displayed in Figure 6,
adding quality assurance loss sufficiently solves the quality
deterioration when only using bi-level semantic alignment
loss. Moreover, results in Table 4 indicate that the accuracy
on both ImageNet100 and transfer learning tasks could de-
cline in the absence of quality assurance loss. Thus, it can
be drawn that the quality assurance loss successfully help to
guarantee the low-level image quality during generation.
Effect of CLIP’s Capacity. As depicted in Table 4, we aim
to explore the effect of the knowledge of CLIP model as it
plays a pivotal role in our method. Results indicate that the
capacity of CLIP matters, the average accuracy decreased
to 56.7% when changing to a smaller size which contains

Figure 6. Effectiveness of quality assurance loss. After adding
Lq , the image blur problem is solved.

lower image-text alignment capacity than a larger one.

5. Conclusion

In this study, we take the first attempt to directly generate
a low-biased annotated dataset for more generalized back-
bone network pre-training. Specifically, we develop a novel
bi-level semantic alignment loss, which not only forces all
generated images to be consistent with the semantic distri-
bution of all categories belonging to the target dataset, but
also requires each generated image to match the semantic de-
scription of its category. Through fine-tuning the pre-trained
diffusion model with the proposed loss together with a qual-
ity assurance loss which helps to guarantee the low-level
image quality, we can obtain a low-biased annotated dataset
generation model using only all category names in the target
dataset as input. Experiments on various tasks demonstrate
that pre-training backbone network on our generated dataset
can lead to stable generalization capacity enhancement.
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