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Abstract

Recently, In-context Learning (ICL) has become a sig-
nificant inference paradigm in Large Multimodal Models
(LMMs), utilizing a few in-context demonstrations (ICDs)
to prompt LMMs for new tasks. However, the synergis-
tic effects in multimodal data increase the sensitivity of
ICL performance to the configurations of ICDs, stimulat-
ing the need for a more stable and general mapping func-
tion. Mathematically, in Transformer-based models, ICDs
act as “shift vectors” added to the hidden states of query
tokens. Inspired by this, we introduce Mimic In-Context
Learning (MimIC) to learn stable and generalizable shift
effects from ICDs. Specifically, compared with some pre-
vious shift vector-based methods, MimIC more strictly ap-
proximates the shift effects by integrating lightweight learn-
able modules into LMMs with four key enhancements: 1)
inserting shift vectors after attention layers, 2) assigning a
shift vector to each attention head, 3) making shift magni-
tude query-dependent, and 4) employing a layer-wise align-
ment loss. Extensive experiments on two LMMs (Idefics-
9b and Idefics2-8b-base) across three multimodal tasks
(VQAv2, OK-VQA, Captioning) demonstrate that MimIC
outperforms existing shift vector-based methods. The code
is available at https://github.com/Kamichanw/
MimIC.

1. Introduction

In-Context Learning (ICL) allows models to generalize
from a few examples, known as in-context demonstra-
tions (ICDs), enabling them to learn new tasks without ex-
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plicit fine-tuning [3, 7, 29, 37, 55]. This approach has
become a significant inference paradigm for both Large
Language Models (LLMs) and Large Multimodal Models
(LMMs) [36] and finds broad applications in areas such as
recommendation systems [11, 40, 54] and point cloud un-
derstanding [16]. However, ICL in LMMs faces more limi-
tations than LLMs due to the synergistic effects of integrat-
ing vision and language data [23, 53], making some strate-
gies useful in LLM lose their efficacy. For example, while
various studies in LLM show that using similar ICDs as the
query is beneficial [26, 43], [50] found that in caption-
ing tasks, using less similar images may actually improve
performance when only low-quality in-context captions are
available. This is because similar images can lead LMMs to
copy captions through shortcut inference, rather than gener-
alizing to new examples.

Due to synergistic effects, when implementing ICL, it is
hard for LMMs to capture the general mapping from input-
output pairs of complex multimodal ICDs as LLMs. In-
stead, [23] shows that LMMs tend to rely on the distribu-
tion of ICDs to narrow the prediction space, e.g., in Visual
Question Answering (VQA), a LMM might recognize the
ICD answer format and respond an answer in the same for-
mat, rather than learning the correct function as in language
QA. Consequently, the ICL performance in LMMs is more
sensitive than in LLMs to ICD configurations [28, 58] and
finding optimal ICD configurations in LMM is still an open
question [7]. A straightforward approach to mitigate the
high sensitivity issue is to use more ICDs to help LMMs
recognize stable patterns for improved predictions. How-
ever, image inputs require more tokens than text, and in-
creasing the number of ICDs significantly raises computa-
tional demands. Moreover, current LMMs, like open-source
8B models, typically support only up to 32-shot ICDs [18],
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Figure 1. Sketches of shift effects from query space to answer
space. (a) Traditional ICL induces the shift vector by ICDs, which
is sensitive to ICD configurations, i.e., changing one ICD make
prediction incorrect. (b) Previous shift vector-based methods in-
sert a query-independent shift vector learned from a large training
set, causing equal shift magnitude for diverse queries, which may
make prediction incorrect. (c) MimIC assigns a unique query-
dependent shift vector learned from fewer training samples after
each attention head layer, shifting diverse magnitude for different
queries, thus achieving stronger generalization ability.

rendering this approach impractical at larger scales.
In this way, we may wonder whether it is possible

to learn a general mapping function from ICDs and then
directly incorporate this function into LMMs to enhance
ICL performance. Interestingly, from a mathematical per-
spective, the role of ICDs can be seen as adding shift
vectors to the hidden representations of query tokens in
LLMs/LMMs [13, 27, 35, 44]. Motivated by this, re-
searchers propose to find a general shift vector as a general
mapping function to transform the query space into the an-
swer space. The early methods [13, 27, 44] used heuristic-
based approaches to generate shift vectors, which were ef-
fective in simple NLP tasks but proved insufficient for more
complex multimodal tasks. To address this, a recent study,
LIVE [35], introduces a training-based method to learn the
shift vector from a large supporting set, outperforming these
heuristic-based methods.

Although these mathematically inspired methods im-
prove ICL performance, closer examination in Sec. 3.1 re-
veals that they use incomplete approximations. First, the
formula suggests that the shift vector should be applied after
the attention layers, but current methods incorrectly place it
after the feed-forward network (FFN) layers. This misuse
leads to a second issue: since Transformers use multi-head
attention, where each head may have a distinct representa-
tion space, applying the shift vector after the FFN overlooks
the need for separate shifts for each attention head, reduc-
ing the effectiveness of the mapping. Third, the formula im-
plies that the shift magnitude should depend on the query,
but these methods use a query-independent shift magnitude.
Consequently, as shown in Fig. 1 (b), during inference, the
fixed shift magnitude can lead to poor predictions for di-

verse queries.
In this work, we propose to approximate the shift ef-

fect more rigorously to better Mimic In-Context Learning
(MimIC), offering four key improvements for better adapt-
ability and efficiency. First, we position the shift vector
after the attention layers instead of the FFN layers. This
change allows each attention head to learn a unique shift
vector, capturing distinct representation shifts as illustrated
in Fig. 1 (c), which is our second enhancement. Third, we
make the scaling factor of the shift query-dependent, en-
abling dynamic adjustment of the shift magnitude during
inference. Finally, we implement a layer-wise alignment
loss to ensure that hidden states in zero-shot setting closely
align with those of ICL, which allows our method to achieve
ICL-like performance with minimal training data.

We validate the effectiveness of MimIC on three foun-
dational multimodal tasks: VQAv2, OK-VQA and Im-
age Captioning (IC) and on two prominent open-source
LMMs: Idefics1 [18] and Idefics2 [19], which repre-
sent cross-attention and fully autoregressive architectures,
respectively. The results show MimIC surpasses stan-
dard ICL, e.g., it achieves a 3.46% accuracy/3.57% ac-
curacy/9.00 CIDEr improvement than 32-shot ICL on
VQAv2/OKVQA/IC on Idefics1. Moreover, MimIC’s gen-
eralization allows it to match 32-shot ICL performance with
only 1-shot ICL guidance. Compared to previous methods,
MimIC achieves superior results, e.g., it improves 4.04%
accuracy /4.99% accuracy/2.13 CIDEr than the second-best
method on VQAv2/OKVQA/IC. Furthermore, comprehen-
sive ablation studies and analyzes confirm the effectiveness
of our four proposed enhancements, showing that MimIC
requires fewer training samples and achieves a better ap-
proximation to ICL compared to other trainable methods.

In summary, we have the following contributions:
• Mathematically, we show the flaws of the approxima-

tions in previous shift vector-based methods and propose
a more rigorous approximation, offering a stronger math-
ematical assurance for implementation.

• Guided by the mathematical formula, we propose a feasi-
ble method that achieves approximation by adding fewer
learnable parameters.

• The results of the experiment show that MimIC achieves
consistent improvements compared to the original ICL,
previous shift vector-based methods, and LoRA in three
multimodal tasks on two LMMs.

2. Related Work

2.1. In-Context Learning.

In-Context learning (ICL) refers to a model’s ability to per-
form new tasks by conditioning on a sequence of input-
output examples without requiring updates to its parame-
ters [3, 7]. This mechanism, widely adopted in Large Lan-
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guage Models (LLMs), allows models to enhance down-
stream task performance with minimal labeled data [33, 46].
However, practical applications of ICL face two prominent
challenges. First, its performance is highly sensitive to the
selection [9, 23, 24, 39, 52, 58] and ordering [17, 28, 47]
of in-context demonstrations (ICDs). Methods that select
and utilize high-quality ICDs, such as similarity-based re-
trieval [4, 12, 26, 43, 51], are often computationally ex-
pensive and not scalable in data-scarce scenarios. Sec-
ond, an excessive number of demonstrations can result in
long context windows, which significantly slows down in-
ference [48].

2.2. ICL in Large Multimodal Models.

In the realm of multimodal models, several approaches have
incorporated ICL capabilities by training on interleaved
image-text datasets [1, 18, 19, 21, 22, 42]. However, in-
tegrating ICL into multimodal models introduces unique
challenges that are often underexplored [59]. Leveraging
the inference strengths of LLMs, Large Multimodal Mod-
els (LMMs) such as Idefics [18] and Idefics2 [19] exhibit
ICL capabilities by using multiple samples as contextual in-
formation during training. Nonetheless, the inherent com-
plexity and diversity of multimodal tasks exacerbate exist-
ing challenges in ICL, making it more difficult to fully har-
ness the potential of multimodal ICL [2, 23, 30, 49, 50].

A recent study by [34] shows that for some LMMs,
similarity-based retrieval methods for selecting ICDs can
perform worse than random selection. This highlights the
difficulty of identifying high-quality ICDs in multimodal
tasks, which remains an open problem. Moreover, cur-
rent mainstream multimodal architectures, such as those
used in [19, 25, 45], typically concatenate image tokens di-
rectly with text tokens. Since one image can be equivalently
encoded to thousands of text tokens, incorporating multi-
ple image tokens significantly increases the context length,
leading to substantial slowdowns in ICL inference.

2.3. Understanding ICL Mechanisms.

Understanding the underlying mechanisms of ICL is critical
for improving its effectiveness in guiding the inference pro-
cesses of LLMs. Various approaches have been proposed
to explain why ICL works. For instance, [32] suggests that
ICL performance depends not only on the accuracy of true
labels but also on factors such as label space representa-
tion, input distribution, and sequence format. Additionally,
[6] argues that Transformer attention mechanisms in ICL
operate similarly to gradient descent, framing the process
as implicit fine-tuning. Another perspective comes from
the concept of a “task vector” [13], which posits that ICL
compresses training data into a single vector that guides the
model’s outputs. Similarly, the “Function Vector” [44] idea
identifies a compact neural encoding of input-output func-

tions within autoregressive language models.

A prevailing approach interprets ICL through the frame-
work of shift vector, where ICL is understood as encoding
task context within a learnable vector representation that
modulates model behavior. For example, LIVE [35] em-
ploys a self-distillation strategy to optimize a learnable ICV
directly, which enhances ICL’s performance in multimodal
settings. Similarly, the Multimodal Task Vector (MTV)
method [15] averages activations across multiple attention
heads, encoding task-specific information as task vectors to
enable robust few-shot multimodal ICL. Our work aligns
with this methodology but introduces a unique and innova-
tive approach. Unlike previous methods, MimIC achieves
superior data efficiency and enhanced learning capability.

3. Mimicking In-Context Learning

Our objective is to mimic in-context learning (ICL) from
the perspective of space shift induced by ICL with fewer
trainable parameters and training samples. We begin by an-
alyzing the behavior of in-context demonstrations (ICDs)
within the self-attention mechanism in Sec. 3.1. This anal-
ysis reveals that the output of self-attention can be decom-
posed into two components: one affected by the ICDs and
the other independent of them. We then detail how to ap-
proximate the component influenced by the ICDs to capture
the general shift effect in Sec. 3.2.

3.1. Mathematic Analyses

ICL allows large language models (LLMs) or large multi-
modal models (LMMs) to generalize to new tasks by pro-
viding a few ICDs directly in the input. Formally, the
prompt context is defined as C = {XD,X}, where XD =
{X1,X2, . . . ,Xk} ∈ RlD×d represents the concatenation
of k ICDs, and X ∈ Rlq×d is the query input. Here, lD and
lq denote the number of tokens in XD and X , respectively,
and d is the embedding dimension.

Multi-head self-attention applies the self-attention (SA)
mechanism over Nh heads, each parameterized by weight
matrices Wk,Wq,Wv ∈ Rd×dh to project C into keys
KC , queries QC , and values VC . Typically, dh is set to
d/Nh to reduce parameter usage by operating each atten-
tion head in a lower-dimensional space. For a specific head,
the key mapping is defined as:

KC = CWk =

ï
XD

X

ò
Wk =

ï
KD

K

ò
. (1)

Similarly, we compute the corresponding QD,Q, and
VD,V using Wq and Wv , respectively. For each query
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vector q ∈ Q, the single-head self-attention operation is1 :

SA
Å
q,

ï
KD

K

ò
,

ï
VD

V

òã
= softmax

([
qK⊤

D , qK⊤]) ïVD

V

ò
=

ñ
exp

(
qK⊤

D

)
Z1 + Z2

,
exp

(
qK⊤)

Z1 + Z2

ô ï
VD

V

ò
=

Z2

Z1 + Z2

exp(qK⊤)

Z2
V +

Z1

Z1 + Z2

exp(qK⊤
D)

Z1
VD

=
Z2

Z1 + Z2
softmax(qK⊤)V +

Z1

Z1 + Z2
exp(qK⊤

D)VD

= (1− µ)SA(q,K,V ) + µSA(q,KD,VD) (2)

where µ is a scalar representing the normalized attention
weights over the ICDs:

µ(q,KD,K) =
Z1(q,KD)

Z1(q,KD) + Z2(q,K)
, (3)

where Z1(q,KD) =
∑lD

i=1 exp(qK
⊤
D)i and Z2(q,K) =∑lq

j=1 exp(qK
⊤)j .

Eq. (2) shows that the self-attention over the prompt con-
text C can be decomposed into two terms. For the former
“standard attention”, it is the self-attention over the query
tokens, which is independent of the ICDs. While for the lat-
ter “shift vector”, it is the shift effects caused by the ICDs
to shift the query space into the answer space, and such ef-
fects is calculated as the attention between the ICDs and
the query q. This shift is governed by the attention differ-
ence term SA(q,KD,VD) − SA(q,K,V ) and the scalar
µ(q,KD,K), both of which depend on the ICDs.

Now, we show which terms in Eq. (2) are affected by
ICDs and the fluctuation of ICDs changes these terms,
making the predictions sensitive to the ICD configura-
tions. Moreover, directly applying self-attention in LLMs
or LMMs over long ICD inputs costs substantial computa-
tion burdens. In the next section, we describe how to ap-
proximate the ICD-affected terms in Eq. (2) to capture the
general shift effect, improving robustness in ICL and sig-
nificantly increasing inference efficiency.

3.2. Mimicking ICD Affected Terms

From Eq. (2) and Eq. (3), we observe that only
SA(q,KD,VD) and Z1(q,KD) are affected by ICDs. To
mimic ICL, we approximate these terms by inserting a few
lightweight modules into the attention heads of LMM and
name them as MimIC Attention Heads as in Fig. 2(a).

To approximate Z1(q,KD), we note that it is a posi-
tive scalar dependent solely on the current query token q

1For simplicity, we illustrate the method using a single head, though
each head typically has distinct weight matrices.
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(a) MimIC

(b) Previous Works

Figure 2. Comparison of MimIC and previous shift vector based
methods. (a) MimIC changes the attention mechanism for each
head, which inserts a learnable shift vector v with a query-
dependent magnitude µ. (b) Previous methods insert the pre-
calculated or learnable shift vector with a query-independent µ
after FFN layer without changing the attention mechanism.

and the ICD keys KD. Therefore, we use a simple map-
ping: a trainable linear layer f(·) : Rdh → R to ap-
proximate logZ1.ntion difference term SA(q,KD,VD) −
SA(q,K,V ), as Fig. 2(a) shows, we insert a learnable vec-
tor v ∈ Rdh in each attention head to capture the gen-
eral shift effect for this head. Then, the output of Eq. (2)
in MimIC attention head is computed as SA(q,K,V ) +
µ̃(q,K)v, where µ̃(q,K) = Z̃1(q)/(Z̃1(q) + Z2(q,K))
and Z̃1(q) = exp(f(q)). After obtaining the outputs from
all MimIC attention heads, they are concatenated, flattened,
and passed through the matrix Wo ∈ Rd×d and FFN layer.

Given this MimIC attention head, we replaces all the
self-attention heads of the original LMM to get the MimIC
LMM as in Fig. 3(b). Then we hope Mimic LLM can han-
dle a single query X in the same way the original LMM
implements ICL, i.e., using the ICDs XD to produce the
result for X . To achieve this, given a training set of n sam-
ples, we randomly select k samples as ICDs XD and one
sample as the query X . As Fig. 3(a) shows, for the origi-
nal LMM, we input the context C = {XD,X} into it to
get the hidden states at each layer, which are recorded as
H′ = {H ′

1, . . . ,H
′
N}. For MimIC LMM, we only input
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Figure 3. Overall training framework of MimIC. (a) The origi-
nal LMM processes k ICDs and query input as conventional ICL,
generating hidden states H ′

1 to H ′
N at each layer. (b) In MimIC

LMM, only a single query input X is processed, producing shifted
hidden states H1 to HN , which are aligned with the original hid-
den states via the alignment loss Lalign. Additionally, the logits of
language modeling head is used to compute ground truth loss Lgt.
The yellow blocks represents MimIC attention heads.

X into it to get the hidden states H = {H1, . . . ,HN}. To
make MimIC LMM behave similar as the original LMM,
we set an alignment loss Lalign to make H be close to H′.
Specifically, Lalign is computed as the average L2 distance
between the hidden states at each layer, ensuring a layer-
wise contribution:

Lalign =
1

N

N∑
i=1

lq∑
j=1

∥∥hi,j − h′
i,j

∥∥2
2
. (4)

In addition, we employ the language modeling loss Lgt
to enhance the model’s performance on downstream tasks,
allowing it to learn task-specific features more effectively.
Thus, the total loss function is:

L = Lalign + λLgt, (5)

where λ is a hyperparameter that controls the trade-off be-
tween alignment and task-specific loss.

During training, since the ICDs are randomly selected in
each step, MimIC LMM is encouraged to capture the most
general shift pattern from the fluctuated shifts brought by
various random configurations of ICDs. After training, the
attention difference term SA(q,KD,VD) − SA(q,K,V )
captures the general shift direction across various ICD con-
figurations, while Z1(q,KD) adjusts the shift magnitude

based on the query input q. Consequently, when using
MimIC to inference, ICDs are no longer required, leading
to a significant improvement in inference speed.

3.3. Design Difference from Previous Methods

Fig. 2 compares the differences between MimIC and pre-
vious shift vector-based methods. First, previous methods
insert the shift vector v after FFN layer, while we insert v
into each attention head. In this way, each vector can learn
suitable shift direction for the corresponding head represen-
tation space, leading to more powerful shift effects. Sec-
ond, previous methods use query-independent shift magni-
tude µ, while we set µ be depended on the query, enabling
dynamic adjustment of the shift magnitude to achieve bet-
ter performance. Although these differences seem subtle,
experiments will show that the devil is in the details. The
findings presented in Sec. 4.3 highlight that MimIC’s multi-
head, query-dependent magnitude is essential for capturing
general shift effects from distinct representation space.

4. Experiment

4.1. Setup

Models, datasets, and metrics. We evaluate MimIC
on two large-scale multimodal models (LMMs), Idefics-
9b [18] and Idefics2-8b-base [19], referred to as Idefics1
and Idefics2, across three datasets: VQAv2 [10], OK-
VQA [31], and COCO Caption [5]. Idefics1 is based on a
cross-attention architecture, while Idefics2 employs a fully
autoregressive architecture. These models represent two
popular architectures for vision-language models. For each
dataset, we randomly select 1,000 samples for training. We
follow the evaluation protocol of previous works [23, 35],
using 10,000 validation samples from VQAv2 and the full
validation splits for OK-VQA and COCO. We present more
results on various datasets in Appendix.
Implementation details. During each training step, we
randomly select 32 samples as ICDs for Idefics1 and 8 for
Idefics2, with one additional distinct sample as the query in-
put. We employ the AdamW optimizer with a learning rate
of 5×10−3, coupled with a cosine annealing scheduler with
warmup, allocating 10% of the total steps for warmup. The
value of λ in Eq. (5) is set to 0.5. All results are reported
from the best-performing epoch. Additional implementa-
tion details are provided in the Appendix.

4.2. Comparison with Existing Methods

Compared methods. We compare MimIC with the follow-
ing methods: (1) In-Context Learning (ICL) is evaluated
under three settings: zero-shot, few-shot, and Retrieval-
based In-Context Examples Selection (RICES). For few-
shot ICL, we use 32/8-shot for Idefics1 and Idefics2, re-
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Figure 4. Performance comparisons of trainable methods on two LMMs across VQAv2/OK-VQA with fewer training set size.

Model Method # Params (M) VQAv2 OK-VQA COCO

Id
efi

cs
-9

b

Zero-shot - 29.25 30.54 63.06
32-shot ICL - 56.18 48.48 105.89

RICES - 58.07 51.11 110.64

FV - 30.21 31.02 74.01
TV - 43.68 32.68 84.72

LIVE 0.13 (×0.5) 53.71 46.05 112.76
LoRA 25.0 (×96.2) 55.60 47.06 97.75
MimIC 0.26 (×1.0) 59.64 52.05 114.89

Id
efi

cs
2-

8b
-b

as
e

Zero-shot - 55.39 43.08 40.00
8-shot ICL - 66.20 57.68 122.51

RICES - 66.44 55.73 111.44

FV - 36.47 34.58 75.24
TV - 47.12 38.27 87.61

LIVE 0.13 (×0.5) 67.60 54.86 126.04
LoRA 17.6 (×67.7) 66.54 55.05 116.69
MimIC 0.26 (×1.0) 69.29 58.74 132.87

Table 1. Results of VQAv2, OK-VQA, and COCO on Idefics-9b
and Idefics2-8b-base. Bold numbers/underlined numbers repre-
sent the best/second-best results, respectively.

spectively2. RICES [51] retrieves similar images from the
support set for each query image by comparing visual fea-
tures extracted from a frozen pretrained visual encoder. (2)
Task Vector (TV) [13] and Function Vector (FV) [44] ex-
tract compact vectors from a set of demonstrations, which
are added to the hidden states of the last token in one or
more layers. We evaluate these methods across different
layers and report the configuration yielding the best per-
formance. (3) Learnable In-Context Vector (LIVE) [35]
introduces learnable vectors after each FFN layer, trained
with a pipeline similar to MimIC’s under the same few-shot
setting. (4) LoRA [14] fine-tunes the model by adding low-
rank adapters to the attention weights. We apply the widely
used configuration, modifying Wq , Wk, Wv , and Wo in
all attention layers of both vision and language models.

2We implement up to 8-shot ICL on Idefics2, as it requires more image
tokens compared to Idefics1, which far exceeds our computational capac-
ity.

All trainable methods are trained using 1000 samples. All
methods are evaluated using the optimal hyper-parameters
recommended in their respective original works, ensuring a
fair comparison.
Results analysis. Tab. 1 presents the results of MimIC
compared to various baselines across two LMMs and three
datasets. In ICL, the performance of RICES significantly
differs from the random selection of ICDs, indicating that
the choice of ICDs has a substantial impact on ICL per-
formance. Although RICES outperforms random selection
across all three datasets on Idefics1, its performance on
Idefics2, OK-VQA, and COCO is inferior to that of the ran-
dom selection method. This suggests that effective ICD se-
lection strategies differ across models.

For non-trainable methods, while they outperform zero-
shot baselines on Idefics1, there is still a significant gap
compared to 32-shot ICL performance. On Idefics2, these
non-trainable methods fail to surpass the zero-shot baseline.
This indicates that non-trainable methods are not only inef-
fective at capturing essential task-specific information but
also perform poorly across different LMMs.

Trainable methods consistently improve performance
across both LMMs, approaching the effectiveness of few-
shot ICL. LIVE performances similar to LoRA with fewer
parameters, while its reliance on a fixed shift magni-
tude during inference limits its ability to generalize across
different queries, making it less effective than MimIC.
However, for MimIC, on Idefics1, the performance on
VQA/captioning improved by an average of 3.52/9.00 com-
pared to 32-shot ICL, and by 4.52/2.13 compared to the
second-best method. On Idefics2, MimIC was the only
method to consistently outperform ICL, with average im-
provements of 1.31/10.36 on the VQA and captioning, re-
spectively. Such comparisons validate the powerful of
MimIC in improving the ICL performance. Also, MimIC
achieves the best results on both LMMs with diverse archi-
tectures, indicating greater stability than other methods.
Training with fewer samples. We conduct further evalua-
tions of trainable methods using a reduced number of train-
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Method VQAv2 OK-VQA COCO

Head-sharing µ 57.89 50.86 111.98
Query-sharing µ 57.95 50.94 112.48

MimIC 59.64 52.05 114.89

Table 2. Performance comparisons with different settings.

ing samples. As illustrated in Fig. 4, on Idefics1, MimIC
only requires 200 samples to exceed the performance of 32-
shot ICL. In contrast, other trainable methods typically re-
quire a larger number of samples to achieve comparable ICL
effectiveness. These comparisons suggest that using a more
precise approximation of Eq. (2) requires fewer training
samples to capture the general shift effect of ICL. For in-
stance, compared to LIVE, we were able to exceed its high-
est performance using only about 1/8 of the data it required
for training [35].

4.3. Ablations and More Analyses

We analyze the effects of various settings on Idefics1, in-
cluding the necessity of employing a multi-head, query-
dependent shift magnitude µ, and the impact of the diverse
ICD shot numbers used as ICL guidance during training.
Also, we compare the alignment distances between various
methods and 32-shot ICL and the hallucinations generated
by diverse methods.
Effect of multi-head and query-dependent shift magni-
tude µ. We compare two additional settings: (1) Head-
sharing µ: This involves replacing the original linear layer
f : Rdh → R of each head with a new linear layer
g : Rd → R that aggregates the information from Nh heads.
As a result, all heads use the query-dependent shift magni-
tude µ produced by this linear layer. (2) Query-sharing µ:
In this setting, the function f is removed for each head, and
a learnable coefficient µ is introduced, leading to a fixed
shift magnitude for each query token.

The results in Tab. 2 show that MimIC outperforms both
head-sharing µ and query-sharing µ, suggesting that the
multi-head and query-dependent shift magnitude not only
capture features from different representation spaces but
also that this dynamic behavior, which varies depending on
the query, enhances generalization across diverse inputs.
Number of ICD shots. We examine the effect of varying
the number of ICD shots on MimIC’s performance during
training. As shown in Fig. 5, there is a significant per-
formance gap between 1-shot and 32-shot ICL. ICL per-
formance is highly dependent on the number of demon-
strations; when demonstrations are insufficient, the LMMs
may misalign query representations. Although MimIC em-
ploys ICL as a guiding mechanism, its performance remains
largely unaffected by different ICD configurations, demon-
strating stability across varying training set sizes. This sug-

Zero-shot LIVE MimIC† MimIC

VQAv2 42.97 33.79 32.13 30.17
OK-VQA 41.21 34.12 29.76 28.25

Table 3. L2 distance between 32-shot ICL and various methods.

Zero-shot 32-shot ICL TV FV LoRA LIVE MimIC

CHAIRs ↓ 5.93 16.78 8.88 28.26 17.42 8.65 8.51
CHAIRi ↓ 5.58 9.77 7.50 25.44 11.55 6.05 5.74
Recall ↑ 30.72 42.59 36.22 27.69 42.93 42.84 43.30

Table 4. Caption hallucination metrics on various methods.

4 shot 8 shot 16 shot 32 shot
ICL MimIC ICL MimIC ICL MimIC ICL MimIC

CHAIRs ↓ 5.57 4.09 5.41 4.55 5.56 4.20 9.77 5.74
CHAIRi ↓ 7.20 5.39 7.00 6.19 7.70 5.52 16.78 8.51
Recall ↑ 39.74 39.84 41.0 41.62 42.12 42.69 42.59 43.30

Table 5. The hallucination metrics on the image captioning task for
MimIC trained with different shot numbers and the corresponding
shot number of ICL.

gests that MimIC is able to learn the general shift of query
representations from the demonstrations, thereby mitigat-
ing the negative impact of insufficient demonstrations dur-
ing training and resulting in a more robust model capable of
effectively extracting key task information.
Alignment effect in latent space. Here, we quantitatively
assess whether the MimIC attention heads and Lalign pro-
posed in Sec. 3.2 facilitate alignment with ICL. Using 200
samples from VQAv2 and OK-VQA, we computed the av-
erage L2 distance of the latent representations of the first
answer token at each layer, compared to the 32-shot ICL.
We also test a variant, MimIC†, in which Lalign is replaced
with KL divergence, as used in LIVE. The results in Tab. 3
demonstrate that MimIC exhibited the smallest distance to
32-shot ICL. Specifically, MimIC is closer to 32-shot ICL
than MimIC†, suggesting that Lalign more effectively en-
ables the shift vectors to capture the characteristics of the
ICL shift. Additionally, MimIC† showed a smaller distance
to the LIVE, highlighting that the mimic attention heads are
better able to mimic ICL more precisely.
Hallucinations. Fig. 6 presents cases where MimIC re-
sponds correctly while other methods fail. We also quan-
titatively analyze hallucinations in image captioning us-
ing CHAIRi and CHAIRs[38], which measure the propor-
tion of hallucinated words. As shown in Tab. 4, MimIC
generates fewer hallucinations than non-zero-shot methods
while maintaining a high recall rate. Compared to zero-
shot, MimIC has a slight increase in hallucinations, which
is due to the limitations of ICL, as noted by [41], where
more shots amplify hallucinations. Despite this, MimIC
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Figure 5. Performance of MimIC trained with varying ICD shots on Idefics-9b, with the shaded area indicating the standard deviation
across 1, 4, 8, 16 and 32 shot settings.

Question:

 What does the sign say?

Question: 

Are there turtles or ducks in the pool?

LoRA:
<EOS>

LIVE:
no parking

ICL:
no bikes

MimIC:
Stop

LoRA: A woman sitting on top of a bed 

holding a cell phone.

LIVE: A person sleeping on a bed in a 

hotel room.

ICL: A man sleeping in a hotel room.

MimIC: A lamp sitting on a table next to a 

bed.

LoRA: A group of people standing in front 

of a train.

LIVE: A group of people standing on a 

train. 

ICL: A group of people standing on a 

subway train. 

MimIC: A group of people riding on a bus.

LoRA: A living room filled with furniture 

and a woman sitting on a couch.

LIVE: A living room with a couch, table, 

and chairs.

ICL: A living room with a fireplace and a 

couch.

MimIC: A living room with a couch and a 

table.

Question:

 What does the sign say?

LoRA:
<EOS>

LIVE:
bus

ICL:
bus

MimIC:
Dark Skies

LoRA:
<EOS>

LIVE:
turtles

ICL:
turtles

MimIC:
No

Figure 6. The visualizations of the cases where other methods appear hallucinations on visual question answering (left) and image caption-
ing task (right). The red and blue words represent hallucination objects and correct objects, respectively.

still shows strong hallucination suppression. We also ana-
lyze hallucination levels in MimIC with varying shot counts
and compare them to ICL models. The results in Tab. 5
show that hallucinations in MimIC increase with shot count
but remain lower than ICL. Notably, MimIC with four shots
has a lower hallucination rate than the zero-shot setting and
improves recall significantly. This is due to a more precise
approximation of the ICL mechanism, outperforming pre-
vious shift-based methods.

5. Conclusion
Motivated by the insight that in-context demonstrations
function as shift vectors applied to the hidden states of
query tokens, we propose Mimic In-Context Learning

(MimIC) to learn this effect in Large Multimodal Models
(LMMs). MimIC operates by inserting distinct shift vec-
tors into different heads of attention layers, employing a lin-
ear layer to generate query-dependent magnitudes for these
shift vectors, and leveraging a layer-wise alignment loss to
align with ICL. Empirical evaluations across three diverse
tasks using two LMMs demonstrate MimIC achieves com-
petitive few-shot in-context learning performance with sig-
nificantly reduced inference latency compared to traditional
ICL methods, requires fewer training samples relative to
LIVE, consistently surpasses other shift vector-based ap-
proaches, utilizes fewer parameters than LoRA yet yields
superior results, and substantially reduces hallucinations
compared to existing techniques.
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