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Figure 1. (a) Previous state-of-the-art [15] struggles to achieve accurate dense matching in equirectangular projection (ERP) images due to
inherent distortions. (b) The ERP image can be transformed into a cubemap image, which consists of six perspective images. However, this
approach demands multiple independent iterations of inference for each pair of perspective images, increasing computational complexity
and losing the global information in the ERP image. (c) Our proposed method, EDM, leverages the spherical camera model, rendering it
robust against distortions. Warp refers to results obtained by multiplying the warped image with the predicted certainty map, demonstrating
that our method yields more accurate dense matches.

Abstract

We introduce the first learning-based dense matching algo-
rithm, termed Equirectangular Projection-Oriented Dense
Kernelized Feature Matching (EDM), specifically designed
for omnidirectional images. Equirectangular projection
(ERP) images, with their large fields of view, are partic-
ularly suited for dense matching techniques that aim to
establish comprehensive correspondences across images.
However, ERP images are subject to significant distortions,
which we address by leveraging the spherical camera model
and geodesic flow refinement in the dense matching method.
To further mitigate these distortions, we propose spherical
positional embeddings based on 3D Cartesian coordinates
of the feature grid. Additionally, our method incorporates
bidirectional transformations between spherical and Carte-
sian coordinate systems during refinement, utilizing a unit
sphere to improve matching performance. We demonstrate
that our proposed method achieves notable performance en-
hancements, with improvements of +26.72 and +42.62 in
AUC@5° on the Matterport3D and Stanford2D3D datasets.
Project Page: https://jdk9405.github.io/EDM

1. Introduction

Omnidirectional images, also known as 360° images, pro-
vide significant advantages owing to their expansive fields
of view, offering more contextual information and versatil-
ity [12, 21, 38, 63, 67]. These spherical images enable a
comprehensive representation of environments, facilitating
a deeper understanding of spatial information. Their utility
extends to aiding robot navigation [40, 61] and autonomous
vehicle driving [43] by minimizing blind spots. 360° im-
ages also can be utilized in a diverse range of applications,
from creating immersive AR/VR experiences to practical
uses in interior design [1], tourism [48], and real estate pho-
tography [5]. Integrating omnidirectional images into vir-
tual house tours allows customers to experience an immer-
sive view, enabling them to fully engage themselves in the
service. Moreover, the adoption of omnidirectional images
contributes to more efficient data collection. By replacing
the need for multiple perspective images, omnidirectional
images can reduce both the cost and time associated with
data scanning. The large field of view provided by 360° im-
ages has also demonstrated superiority over narrower views
in 3D motion estimation [18, 27, 42].

Feature matching plays a critical role in numerous 3D
computer vision tasks, including mapping and localiza-
tion. Traditionally, Structure from Motion (SfM) [49]
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leverages feature matching to estimate relative poses. Re-
cent advancements have introduced semi-dense or dense
approaches for feature matching such as LoFTR [55]
and DKM [15], which demonstrate superior performance
in repetitive or textureless environments compared to
keypoint-based methods [13, 28, 36, 46, 47]. These meth-
ods have been mainly developed for perspective 2D im-
ages and videos, but encounter challenges when applied to
omnidirectional images. For example, to adapt matching
methods for spherical images, two prevalent approaches for
sphere-to-plane projections are the equirectangular projec-
tion (ERP) and the cubemap projection [63]. ERP images
exhibit significant distortions, particularly near the pole re-
gions, which hinder the effective application of perspective
methods. On the other hand, the cubemap format, consist-
ing of six perspective images, can be processed indepen-
dently without such distortions. However, this approach
involves the costly computation of multiple inferences for
each pair of perspective images, resulting in the loss of
global information from a single spherical image and di-
minishing feature matching capabilities due to the reduced
field of view in each perspective image. These challenges
are shown in Fig. 1 (a) and (b).

Main Results In this paper, we propose EDM, a
distortion-aware dense feature matching method for om-
nidirectional images, addressing challenges that existing
detector-free approaches [15, 16, 55] struggle to overcome.
To the best of our knowledge, EDM is the first learning-
based method designed for dense matching and relative
pose estimation between two omnidirectional images. As
seen in Fig. 1, our method defines feature matching in 3D
coordinates, specifically addressing the challenges posed
by distortions of ERP images. We accomplish this based
on the integration of two novel steps: a Spherical Spatial
Alignment Module (SSAM) and specific enhancements in
Geodesic Flow Refinement. The SSAM leverages spher-
ical positional embeddings for ERP images and incorpo-
rates a decoder to generate the global matches. Further-
more, the Geodesic Flow Refinement step employs coor-
dinate transformation to refine the residuals of correspon-
dences. Compared to both recent sparse and dense feature
matching methods [15, 16, 19, 69], our approach results in
significant performance improvement of +26.72 and +42.62
AUC@5° in relative pose estimation for spherical images
on the Matterport3D [5] and Stanford2D3D [2] datasets.
Additionally, we evaluate our method qualitatively on the
EgoNeRF [7] and OmniPhotos [4] datasets, demonstrating
robust performance across diverse environments. The main
contributions of this paper are summarized as follows:
• We introduce a novel approach for estimating dense

matching across ERP images using geodesic flow on a
unit sphere.

• We propose a Spherical Spatial Alignment Module that
utilizes Gaussian Process regression and spherical posi-
tional embeddings to establish 3D correspondences be-
tween omnidirectional images. In addition, we use
Geodesic Flow Refinement by enabling conversions be-
tween coordinates to refine the displacement on the sur-
face of the sphere.

• With azimuth rotation for data augmentation, we achieve
state-of-the-art performance in dense matching and rela-
tive pose estimation between two omnidirectional images.

2. Related Work

Omnidirectional Images The popularity of consumer-
level 360° cameras has led to increased interest in spherical
images, which offer comprehensive coverage of the field
of view from a single vantage point. These images are
often represented using equirectangular projection (ERP)
[63], facilitating their utilization in various computer vision
tasks. Recent advancements in computer vision have lever-
aged ERP images for diverse tasks such as object detection
[11, 53], semantic segmentation [24, 66], depth estimation
[25, 32, 33, 45, 50, 60, 65], omnidirectional Simultaneous
Localization and Mapping [62], scene understanding [54],
and neural rendering [8, 26, 29, 37].

Despite the utility of ERP images, their unique geom-
etry presents several challenges in visual representation.
As ERP images are obtained through projecting a sphere
onto a plane, a single spherical image can be expressed
by multiple distinct ERP images. Additionally, ensuring
perfect alignment of their left and right extremities is es-
sential. While some research methods have introduced
rotation-equivariant convolutions [9, 17] to address these is-
sues, their implementation often demands increased compu-
tational resources. To mitigate this constraint, we propose
an azimuth rotation approach for data augmentation, under
the assumption that maintaining the downward orientation
of scanned omnidirectional images parallel to gravity offers
benefits [3].

Feature Matching Local feature matching has relied
on detector-based methods, encompassing both traditional
hand-crafted techniques [36, 46] and learning-based ap-
proaches [13, 28, 34, 44, 59]. These methods typically in-
volve detecting keypoints, computing descriptor distances
between paired keypoints, and performing matching via
mutual nearest neighbor search. SuperGlue [47] introduces
a learning-based paradigm, optimizing visual descriptors
using an attentional graph neural network and an optimal
matching layer. However, detector-based methods face lim-
itations in terms of accurately detecting keypoints, particu-
larly in repetitive or indiscriminative regions. In contrast,
detector-free or dense methods [15, 16, 39, 55, 57, 58] offer
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a solution to the keypoint detection issue, providing dense
feature matches at the pixel level.

While the aforementioned methods are tailored for per-
spective images, they often fail to address the unique chal-
lenges of spherical cameras. SPHORB [69], an extension
of ORB [46], mitigates distortion in ERP images using a
geodesic grid and local planar approximation [14]. Simi-
larly, learning-based matching methods such as SphereGlue
[19, 20] and PanoPoint [68] adapt keypoint matching tech-
niques for spherical imagery. CoVisPose [23, 41] explores
layout features for estimating camera poses over large base-
lines yet remains constrained by detected feature infor-
mation. Therefore, we propose a novel dense matching
method that extracts all matches without keypoint detection
in spherical images.

3. Preliminaries

3.1. Spherical and Cartesian Coordinate

ERP Sphere

(𝑆! , 𝑆" , 𝑆#)

𝑥

𝑦

𝑧
𝜃
ϕ

𝒖 = (𝜃, 𝜙)

Figure 2. Coordinate system.


Sx = sin(θ) cos(ϕ)

Sy = sin(ϕ)

Sz = cos(θ) cos(ϕ)


θ = arctan(

Sx

Sz
)

ϕ = arcsin(
Sy

|S|
)

(1)

Although ERP images are displayed in 2D space, they actu-
ally represent a collection of flattened rays normalized to
a unit scale within a spherical camera model. Thus, we
can express the coordinate conversion equation u = π(S)
between the spherical coordinates u = (θ, ϕ) and the 3D
Cartesian coordinates S = (Sx, Sy, Sz) as shown in Fig.
2. Each value of θ ∈ [−π, π] and ϕ ∈ [−π

2 ,
π
2 ] indicates

the longitude and latitude. We utilize this coordinate trans-
formation π(·) in Section 4.1 and Section 4.2 to handle the
spherical camera model effectively.

3.2. Dense Kernelized Feature Matching

Dense matching is the task of finding dense correspondence
and estimating 3D geometry from two images (IA, IB). Re-
cently, DKM [15] introduced a kernelized global matcher
and warp refinement, formulating this problem as finding
a mapping f → u where u are 2D spatial coordinates.
First, DKM extracts multi-scale features using a ResNet50

encoder [22],

{f l
A}Ll=1 = Encoder(IA), {f l

B}Ll=1 = Encoder(IB),
(2)

where the strides are defined as elements of the set l ∈
{20, ..., 2L−1}. Coarse features are associated with stride
{32, 16}, and fine features correspond to {8, 4, 2, 1}.

At the coarse level, it consists of a kernelized regres-
sion to estimate the posterior mean µA|B using a Gaus-
sian Process (GP) formulation. GP regression generates a
probabilistic distribution using the feature information con-
ditioned on frame B to estimate coarse global matches. The
normalized 2D feature grid f grid

B ∈ Rh×w×2, where h and w
denote the resolution of the feature grid, is embedded into
χB with an additional cosine embedding [51] to induce mul-
timodality in GP. The embedded coordinates are processed
by an exponential cosine similarity kernel K to calculate
µA|B,

µA|B = KAB(KBB + σ2
nI)

−1χcoarse
B , (3)

Kmn = exp

(
τ

(
fm · fn√

(fm · fm)(fn · fn) + ε
− 1

))
,

χcoarse
B = cos(Wf grid

B + b),
(4)

where τ = 5, ϵ = 10−6, and the standard deviation of
the measurement noise σn = 0.1 in the experiments. W
and b are the weights and biases of a 1 × 1 convolution
layer. Then, CNN embedding decoder [64] yields the ini-
tial global matches ûcoarse

A→B and confidence of matches ĉ coarse
A→B

from the concatenation of the reshaped estimated posterior
mean µgrid

A|B and the coarse features,

(ûcoarse
A→B, ĉ

coarse
A→B ) = Decoder(µgrid

A|B ⊕ f coarse
A ). (5)

At the fine level, the warp refiners estimate the residual dis-
placement using the previous matches and feature informa-
tion. The process is described as follows,(

△ûl+1
A→B, △ĉ l+1

A→B
)

= Refinerl+1
(
f l+1
A ⊕f l+1

B→A⊕Corrl+1
Ωk

⊕ûl+1
A→B−ul+1

A

)
,

(6)


f l+1
B→A = fB⟨ûl+1

A→B⟩,
f l+1
B→A, Ωk

= fB⟨Ωk, (û
l+1
A→B)⟩,

Corrl+1
Ωk

=
∑

channel

f l+1
A f l+1

B→A, Ωk
,

(7)

where Ωk(u) = u + p (∥p∥∞ ≤ k) is the patch sized
k, ⟨·⟩ means the bilinear interpolation function, Corrl+1

Ωk

represents local correlation between the features, and ul+1
A

indicates the grid in f l+1
A . Finally, it recursively updates the

matching points and confidence by adding the residuals to
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Figure 3. Overview of our approach. It consists of three steps:
Multi-scale Feature Extraction, Spherical Spatial Alignment Mod-
ule (Sec. 4.1), and Geodesic Flow Refinement (Sec. 4.2).

the previous information and upsampling until reaching the
same resolution as the input images,

ûl
A→B = ûl+1

A→B +△ûl+1
A→B,

ĉ l
A→B = ĉ l+1

A→B +△ĉ l+1
A→B.

(8)

4. Our Proposed Method
The overall process is illustrated in Fig. 3. Following the
approach outlined in Section 3.2, we first utilize ERP im-
ages IA and IB as input and extract multi-scale features fA
and fB. Different from [15], we reformulate the problem as
finding a mapping f → S using 3D Cartesian coordinates.
We introduce the Spherical Spatial Alignment Module, a
global matcher utilizing a spherical camera system to com-
pensate for distortions caused by sphere-to-plane projection
in ERP images. We then formalize the geodesic flow on
a unit sphere and establish projections between equirectan-
gular and spherical spaces to refine matches. In addition,
to enhance the robust accuracy of our method, we leverage
randomized azimuth rotation during the training process.

4.1. Spherical Spatial Alignment Module
Our Spherical Spatial Alignment Module (SSAM) conducts
global matching at a coarse level through Gaussian Process
(GP) regression, depicted in Fig. 4. GP predicts the poste-
rior mean µA|B from the embeddings as in Eq. 3. Due to
the pronounced distortions in the polar regions of ERP im-
ages, spherical positional embedding/encoding is frequently
employed to mitigate this challenge [6, 30, 31]. Here, we
explicitly apply positional embeddings with 3D Cartesian
coordinates, derived from the 2D spherical feature grid and
the inverse transformation function π−1(·),

χcoarse
B = cos(Wπ−1(f grid

B ) + b). (9)

Our proposed positional embedding facilitates the utiliza-
tion of embedded coordinates χcoarse

B to promote distortion
awareness within the ERP images. Additionally, this em-
bedding ensures structural consistency along the boundaries
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Figure 4. Our Spherical Spatial Alignment Module. We present
Spherical Positional Embedding (red dotted box). The embed-
ding decoder generates the global matches Ŝcoarse

A→B . Here, the gray
curved lines represent the geodesic flow between SA and SB . ⊕
denotes concatenation, ⊗ means reshape and matrix multiplica-
tion. We provide the matrix dimensions of intermediate features
for reference.
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Figure 5. Our proposed Geodesic Flow Refinement. Refining the
displacement along curved lines on the spherical surface presents
significant challenges. To address this, we project the displace-
ment into the ERP space for refinement (Cartesian to spherical)
and subsequently unproject it back onto the spherical surface for
further refinement (spherical to Cartesian).

of ERP images by leveraging relative spatial information
within the 3D Cartesian grid. The outputs of the subse-
quent embedding decoder provide the initial global matches
Ŝcoarse
A→B on the unit sphere and the ERP certainty map ĉcoarse

A→B,(
Ŝcoarse
A→B, ĉ

coarse
A→B

)
= Decoder(µA|B ⊕ f coarse

A ). (10)

4.2. Geodesic Flow Refinement
In our SSAM approach, as the geodesic flow must reside
on the unit sphere, directly defining warp refinement on
the surface of the sphere makes it impossible to update the
residuals linearly. Thus, we circumvent this problem by en-
abling a conversion between the 3D Cartesian coordinates
and the 2D equirectangular space, as illustrated in Fig. 5,

ûl+1
A→B = π(Ŝl+1

A→B). (11)

After following all the processes outlined in Eq. 6 for re-
finement, we update the residuals as described in Eq. 8.
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Figure 6. Maintaining consistent geometry, ERP can produce mul-
tiple visual representations based on θaug.

As this refinement stage iterates repeatedly, the predicted
ûl
A→B is back-projected into 3D Cartesian coordinates,

Ŝl
A→B = π−1(ûl

A→B). (12)

4.3. Augmentation
A single omnidirectional image can be transformed into
multiple distinct ERP images, as shown in Fig. 6. This
transformation is feasible by capturing the full spectrum of
rays and ensuring a seamless representation in the spherical
input image, which facilitates the generation of diverse ERP
images while maintaining consistent geometric properties
in the world space. Consequently, we define a horizontal
rotation matrix T aug

A with a randomly selected azimuth an-
gle θaug

A ∈ [0, 2π] during training. Based on T aug
A , we rotate

and redefine the ERP image IA, the depth map DA, and the
pose TA. Notably, this transformation adjusts TA and DA
together, ensuring consistent geometry in the world space.
The same process is applied to the counterpart frame B.

4.4. Loss
Utilizing dense ground truth depth maps and aligned camera
poses, we can derive ERP depth DA→B and matches SA→B
during the warping process from frame A to B within the
spherical coordinate system. We adopt the certainty estima-
tion method proposed by Edstedt et al. [15], which involves
finding consistent matches using relative depth consistency
between frames A and B,

cA→B =

∣∣∣∣DA→B −DB

DB

∣∣∣∣ < α, (13)

where α is 0.05. The binary mask cA→B represents the
ground truth certainty map. Diverging from the approach
outlined in Edstedt et al. [15], our method constrains the
predicted matches Ŝl

A→B, composed of 3D Cartesian co-
ordinates, to reside on the surface of the unit sphere. This
implies that the predicted matches can be interpreted as the
ray directions of the spherical camera. Instead of defining
the loss function based on the Euclidean distance between
the predicted matches Ŝl

A→B and the ground truth matches
Sl
A→B, we use the angular difference between the ray di-

rections. Consequently, this approach ensures that Ŝl
A→B

is optimized along the surface of the unit sphere. We define
our regression loss Ll

r using cosine similarity to measure the
angular difference. For the certainty loss Ll

c, we employ the
binary cross-entropy function, as utilized in Edstedt et al.
[15],

Ll
r =

∑
grid

clA→B ⊙ (1− ∥Sl
A→B · Ŝl

A→B∥
∥Sl

A→B∥∥Ŝl
A→B∥

), (14)

Ll
c =

∑
grid

clA→BlogĉlA→B + (1− clA→B)log(1− ĉlA→B).

(15)
The total loss function comprises a weighted sum of the re-
gression loss and the certainty loss, as detailed in Edstedt
et al. [15], Melekhov et al. [39], Tan et al. [56], Zhou et al.
[70], with λ set at 0.01,

Ltotal =

L∑
l=1

Ll
r + λLl

c. (16)

5. Experiments
5.1. Experiments Settings
Matterport3D Dataset Training our method requires
ERP input images, ground truth depth maps, and aligned
poses. The Matterport3D dataset [5] encompasses 90 in-
door scenes represented by 10,800 panoramas reconstructed
as textured meshes. However, the dataset lacks pose and
depth information for skybox images, which are essential
for creating ERP images. Previous works have addressed
this limitation by rendering both images and depth maps
from the textured mesh [71] or by employing 360° SfM
to estimate poses [45]. In our approach, we generate the
poses for skybox images directly from the originally pro-
posed camera poses in Matterport3D. Through experimen-
tation, we found that treating the 12th camera pose, out of
the 18 viewpoints (comprising 6 rotations and 3 tilt angles)
in each panorama, identically to the second skybox image
did not result in any issues. We define the remaining poses
for the skybox images by rotating 90° in each direction from
the second pose. We adhere to the official benchmark split,
utilizing 61 scenes for training, 11 for validation, and 18
for testing. For two-view pose estimation, it is necessary
to create pairs of overlapped images. We achieve this by
transforming ERP depth maps between frames within the
spherical coordinate system. Pixels where the depth differ-
ence is below a specified threshold, e.g. 0.1, are classified as
inliers. Subsequently, we compare the ratio of these inliers
to the total number of pixels. We organize both the train-
ing and testing datasets based on the overlap ratio of image
pairs and the benchmark split. Specifically, images with the
overlap ratio exceeding 30% are distributed into respective
training and testing splits. As a result, the training set con-
tains 44,700 pairs, while the test set comprises 4,575 pairs.
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We resize the resolution of ERP images and depth maps to
640× 320.

Stanford2D3D Dataset Stanford2D3D [2] consists of
data scanned from six large-scale indoor spaces collected
from three distinct buildings. This dataset contains a rela-
tively small number of 1,413 panorama images and, there-
fore, is utilized exclusively for testing purposes. We assess
the overlap ratio between frames and include them in the
test split if their ratio exceeds 50%. A total of 3,460 pairs
are incorporated into the test set. During testing, we resize
the resolution to 640× 320.

EgoNeRF and OmniPhotos Dataset EgoNeRF [7] intro-
duces 11 synthetic scenes created with Blender [10] and
11 real scenes captured with a RICOH THETA V cam-
era. OmniPhotos [4] provides a dataset captured with an
Insta360 ONE X camera. Both datasets contain egocentric
scenes captured with a casually rotating camera stick. Con-
sequently, their rotation axes, pole regions, or camera height
change, resulting in different distortions compared to Mat-
terport3D or Stanford2D3D. We present additional qualita-
tive results from these datasets to validate our method.

Implementation Details We employ the AdamW [35]
optimizer with a weight-decay factor of 10−2, a learning
rate of 5·10−6 for multiscale feature extractor, and 10−4 for
the SSAM and the Geodesic Flow Refiner. EDM is trained
for 300,000 steps with a batch size of 4 in a single RTX 3090
GPU, which takes approximately two days to complete.
During evaluation, the balanced sampling approach using
kernel density estimation [15] tends to establish correspon-
dences primarily in concentrated areas with high probability
distributions, making it unsuitable for omnidirectional im-
ages. Thus, we randomly sample up to 5,000 matches after
certainty filtering with a threshold of 0.8 to ensure corre-
spondences cover the entire area.

5.2. Experimental Results
We compare our proposed method EDM with four differ-
ent methods: 1) SPHORB [69] is a hand-crafted keypoint-
based feature matching algorithm. 2) SphereGlue [19] is a
learning-based keypoint matching method. Both SPHORB
[69] and SphereGlue [19] are specifically designed for
spherical images. 3) DKM [15] and 4) RoMa [16] are
state-of-the-art dense matching algorithms for perspective
images. To estimate the essential matrix and the relative
pose for spherical cameras, Solarte et al. [52] proposed a
normalization strategy and non-linear optimization within
the classic 8-point algorithm. We adopt this for two-view
pose estimation in all quantitative comparisons.

Table 1 shows the quantitative results of the pose esti-
mation in Matterport3D. Despite SPHORB and SphereGlue

Method Image Feature AUC
@5° @10° @20°

SPHORB [69] ERP sparse 0.38 1.41 3.99
SphereGlue [19] ERP sparse 11.29 19.95 31.10

DKM [15] persepctive dense 18.43 28.50 38.44
RoMa [16] perspective dense 12.45 22.37 34.24

EDM (ours) ERP dense 45.15 60.99 73.60

Table 1. Quantitative comparison on Matterport3D with recent
algorithms. EDM improves AUC@5° by 26.72.

Method Image Feature AUC
@5° @10° @20°

SPHORB [69] ERP sparse 0.14 1.01 4.08
SphereGlue [19] ERP sparse 11.25 22.41 36.57

DKM [15] perspective dense 12.46 22.18 34.13
RoMa [16] perspective dense 11.48 22.52 37.07

EDM (ours) ERP dense 55.08 71.65 82.72

Table 2. Quantitative comparison on Stanford2D3D with recent
algorithms. EDM improve AUC@5° by 42.62.

being designed for the ERP images, the presence of tex-
tureless or repetitive regions, which are common in indoor
environments of Matterport3D, leads to performance degra-
dation in the keypoint-based methods. SPHORB fails to es-
timate the essential matrix correctly due to the limited num-
ber of matching points. EDM demonstrates significantly
higher performance than all the other methods.

Figure 7 illustrates the qualitative results in Matter-
port3D. The previous methods designed for perspective im-
ages, such as DKM and RoMa, exhibit good matching abil-
ity but encounter challenges when confronted with the dis-
tortions of ERP. While SphereGlue and SPHORB perform
well in discriminative regions, their performance deterio-
rates as the overlap ratio decreases, resulting in numerous
false positive matches. In contrast, EDM can estimate dense
correspondences regardless of occlusion and textureless ar-
eas. Due to the similarity in results between DKM and
RoMa, we have only included the former to maintain a con-
cise visualization. Experimental results in Fig.8 depict the
relationship between image overlap ratio and AUC@20°
performance. As expected, a decrease in the overlap ra-
tio leads to severe performance degradation in the previous
works. On the other hand, our proposed method demon-
strates robustness in more challenging scenes, maintaining
similar performance levels until the overlap decreases to
60%, compared to other methods.

For a fair comparison, we use another benchmark
dataset, Stanford2D3D. We validate EDM using a model
trained on Matterport3D without additional training on
Stanford2D3D. In Table 2, EDM outperforms the previous
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Figure 7. Qualitative results on Matterport3D. (a) The blue lines represent the results of matching points from SPHORB [69]; the green
lines correspond to SphereGlue [19]. Both (b) DKM [15] and (c) EDM depict the outcomes of multiplying the warped image with the
certainty map. EDM can estimate dense and accurate matches even in the presence of distortions and severe occlusions. The numbers
beside the images represent the overlap ratio, reflecting the difficulty of matching. Smaller numbers indicate more challenging scenes.
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Figure 8. Performance with respect to the overlap ratio. This high-
lights the robustness of EDM in scenarios with varying levels of
overlap, particularly in challenging conditions where the overlap
ratio is limited.

works by a significant margin, especially in scenes with se-
vere occlusion. The certainty map demonstrates EDM’s ro-
bustness, particularly in handling occluded scenes. Addi-
tionally, although the panorama images in Stanford2D3D

Keypoint-based EDM (ours) Keypoint-based EDM (ours)

Figure 9. Qualitative results on Stanford2D3D. The blue and green
lines correspond to SPHORB and SphereGlue.

contain missing regions in the upper and lower parts of
the sphere, the proposed spherical positional embedding en-
ables the network to predict matching correspondences ac-
curately, as shown in Fig. 9.

5.3. Additional Qualitative Results

To demonstrate the robust performance of our method
across diverse environments, we qualitatively validate EDM
using additional datasets such as EgoNeRF and OmniPho-
tos. As it is primarily trained on indoor environments [5]
where the camera is oriented parallel to gravity, severely
slanted image pairs of rotational scenes or outdoor envi-
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Figure 10. Qualitative results on EgoNeRF [7] and OmniPhotos
[4]. Despite being primarily trained on indoor scenes, EDM effec-
tively estimates dense matching on these datasets, demonstrating
its generalization capability across diverse environments.

ronments may cause EDM to fail in accurately estimating
correspondences. However, despite these differences in set-
tings, EDM demonstrates the ability to conduct dense fea-
ture matching robustly, as shown in Fig. 10.

Furthermore, we demonstrate the applicability of our
method to various omnidirectional downstream tasks. As
shown in Fig. 11, our approach successfully performs trian-
gulation from pairs of omnidirectional images. By leverag-
ing EDM’s capability to predict dense correspondences, the
triangulated points yield a dense 3D reconstruction. For a
more comprehensive discussion, please refer to the supple-
mentary materials.

5.4. Ablation Study
DKM’s dependence on the pinhole camera model makes it
inherently unsuitable for learning with ERP images. To en-
sure the fair comparison, we modified the warping process
in the loss function of DKM to support spherical cameras,
resulting in DKM∗. As shown in Table 3, this demonstrates
the structural effectiveness of our proposed bidirectional co-
ordinate transformation. The proposed positional embed-
dings result in improvements based on the coordinate sys-
tem of the spherical camera model. We observe that utiliz-
ing a 3D grid input of Cartesian coordinates yields better
performance than 2D spherical ones. Additionally, in our
method, positional embedding with a linear layer slightly
outperforms spherical positional encoding with sinusoidal
[31]. Table 3 also confirms the advantage of our rotational
augmentation. Through this augmentation technique, we
can effectively address the challenge of a limited number
of datasets for omnidirectional images in dense matching
tasks.

6. Conclusion, Limitations, and Future Work
In this paper, we present, for the first time, a novel dense
feature matching method tailored for omnidirectional im-

Method Positional Bidirectional Rotational AUC
Embedding Transformation Augmentation @5° @10° @20°

DKM∗ 2D linear - - 19.83 33.06 46.24
Ours 2D linear ✓ - 29.67 45.90 60.82
Ours 2D linear ✓ ✓ 35.03 51.14 65.07
Ours 3D linear ✓ - 34.64 50.82 65.16
Ours 3D linear ✓ ✓ 45.15 60.99 73.60
Ours 3D sinusoidal ✓ ✓ 42.39 58.27 70.98

Table 3. Ablation study for the proposed method. DKM∗ indi-
cates the DKM model trained on Matterport3D with a modified
loss function for ERP images. Compared to DKM∗, our method
enhances performance through the proposed spherical positional
embedding in SSAM, bidirectional transformation via Geodesic
Flow Refinement, and rotational augmentation.

Figure 11. Triangulation results on Matterport3D and Stan-
ford2D3D. These point clouds are generated through spherical tri-
angulation using the estimated poses between two omnidirectional
images. Our method can reconstruct dense point clouds in texture-
less regions, which are particularly challenging in indoor environ-
ments.

ages. Leveraging the foundational principles of DKM, we
integrate the inherent characteristics of the spherical camera
model into our dense matching process using geodesic flow
fields. This integration instills distortion awareness within
the network, thereby enhancing its performance specifically
for ERP images. However, it is important to note that our
method is predominantly trained on indoor datasets where
the camera is vertically oriented, rendering it somewhat vul-
nerable to extreme rotations or outdoor environments. To
address this limitation, future endeavors will focus on di-
versifying the training data and data augmentation to en-
compass a wider range of environments, fortifying the ro-
bustness of our network. Furthermore, we aim to extend
our method into downstream tasks, particularly for visual
localization and mapping applications for omnidirectional
images.
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Wadenbäck, and Michael Felsberg. Roma: Revisiting ro-
bust losses for dense feature matching. arXiv preprint
arXiv:2305.15404, 2023. 2, 6

[17] Carlos Esteves, Christine Allen-Blanchette, Ameesh Maka-
dia, and Kostas Daniilidis. Learning so (3) equivariant rep-
resentations with spherical cnns. In ECCV, 2018. 2

[18] Cornelia Fermüller and Yiannis Aloimonos. Geometry of
eye design: Biology and technology. In Multi-Image Anal-
ysis: 10th International Workshop on Theoretical Founda-
tions of Computer Vision Dagstuhl Castle, Germany, March
12–17, 2000 Revised Papers, pages 22–38. Springer, 2001. 1

[19] Christiano Gava, Vishal Mukunda, Tewodros Habtegebrial,
Federico Raue, Sebastian Palacio, and Andreas Dengel.
Sphereglue: Learning keypoint matching on high resolution
spherical images. In CVPR Workshops, 2023. 2, 3, 6, 7

[20] Christiano Gava, Yunmin Cho, Federico Raue, Sebastian
Palacio, Alain Pagani, and Andreas Dengel. Spherecraft: A
dataset for spherical keypoint detection, matching and cam-
era pose estimation. In WACV, 2024. 3

[21] Julia Guerrero-Viu, Clara Fernandez-Labrador, Cédric De-
monceaux, and Jose J Guerrero. What’s in my room? object
recognition on indoor panoramic images. In ICRA. IEEE,
2020. 1

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 3

[23] Will Hutchcroft, Yuguang Li, Ivaylo Boyadzhiev, Zhiqiang
Wan, Haiyan Wang, and Sing Bing Kang. Covispose: Co-
visibility pose transformer for wide-baseline relative pose
estimation in 360° indoor panoramas. In ECCV. Springer,
2022. 3

[24] Chiyu Jiang, Jingwei Huang, Karthik Kashinath, Philip Mar-
cus, Matthias Niessner, et al. Spherical cnns on unstructured
grids. arXiv preprint arXiv:1901.02039, 2019. 2

[25] Hualie Jiang, Zhe Sheng, Siyu Zhu, Zilong Dong, and Rui
Huang. Unifuse: Unidirectional fusion for 360 panorama
depth estimation. IEEE Robotics and Automation Letters, 6
(2):1519–1526, 2021. 2

[26] Hakyeong Kim, Andreas Meuleman, Hyeonjoong Jang,
James Tompkin, and Min H Kim. Omnisdf: Scene re-
construction using omnidirectional signed distance functions
and adaptive binoctrees. arXiv preprint arXiv:2404.00678,
2024. 2

[27] Jong Weon Lee, Suya You, and Ulrich Neumann. Large
motion estimation for omnidirectional vision. In Proceed-
ings IEEE Workshop on Omnidirectional Vision (Cat. No.
PR00704), pages 161–168. IEEE, 2000. 1

[28] Kunhong Li, Longguang Wang, Li Liu, Qing Ran, Kai Xu,
and Yulan Guo. Decoupling makes weakly supervised local
feature better. In CVPR, 2022. 2

[29] Longwei Li, Huajian Huang, Sai-Kit Yeung, and Hui Cheng.
Omnigs: Omnidirectional gaussian splatting for fast radiance
field reconstruction using omnidirectional images. arXiv
preprint arXiv:2404.03202, 2024. 2

[30] Meng Li, Senbo Wang, Weihao Yuan, Weichao Shen, Zhe
Sheng, and Zilong Dong. S2Net: Accurate panorama depth
estimation on spherical surface. IEEE Robotics and Automa-
tion Letters, 8(2):1053–1060, 2023. 4

[31] Xiang Li, Haoyuan Cao, Shijie Zhao, Junlin Li, Li Zhang,
and Bhiksha Raj. Panoramic video salient object detection
with ambisonic audio guidance. In AAAI, 2023. 4, 8

6345



[32] Yuyan Li, Zhixin Yan, Ye Duan, and Liu Ren. Panodepth:
A two-stage approach for monocular omnidirectional depth
estimation. In 3DV. IEEE, 2021. 2

[33] Yuyan Li, Yuliang Guo, Zhixin Yan, Xinyu Huang, Ye Duan,
and Liu Ren. Omnifusion: 360 monocular depth estimation
via geometry-aware fusion. In CVPR, 2022. 2

[34] Yuan Liu, Zehong Shen, Zhixuan Lin, Sida Peng, Hujun Bao,
and Xiaowei Zhou. Gift: Learning transformation-invariant
dense visual descriptors via group cnns. Advances in Neural
Information Processing Systems, 32, 2019. 2

[35] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 6

[36] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60:91–110, 2004. 2

[37] Yikun Ma, Dandan Zhan, and Zhi Jin. Fastscene: Text-driven
fast 3d indoor scene generation via panoramic gaussian splat-
ting. arXiv preprint arXiv:2405.05768, 2024. 2

[38] Kevin Matzen, Michael F Cohen, Bryce Evans, Johannes
Kopf, and Richard Szeliski. Low-cost 360 stereo photog-
raphy and video capture. ACM Transactions on Graphics
(TOG), 36(4):1–12, 2017. 1

[39] Iaroslav Melekhov, Aleksei Tiulpin, Torsten Sattler, Marc
Pollefeys, Esa Rahtu, and Juho Kannala. Dgc-net: Dense
geometric correspondence network. In WACV. IEEE, 2019.
2, 5

[40] Emanuele Menegatti, Takeshi Maeda, and Hiroshi Ishiguro.
Image-based memory for robot navigation using properties
of omnidirectional images. Robotics and Autonomous Sys-
tems, 47(4):251–267, 2004. 1

[41] Negar Nejatishahidin, Will Hutchcroft, Manjunath
Narayana, Ivaylo Boyadzhiev, Yuguang Li, Naji Khos-
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