
Towards Optimizing Large-Scale Multi-Graph Matching in Bioimaging

Max Kahl*1 Sebastian Stricker*1 Lisa Hutschenreiter1 Florian Bernard2

Carsten Rother1 Bogdan Savchynskyy1

1Heidelberg University 2University of Bonn

Abstract

Multi-graph matching is an important problem in computer
vision. Our task comes from bioimaging, where a set of 100
3D-microscopic images of worms have to be brought into
correspondence. Surprisingly, virtually all existing meth-
ods are not applicable to this large-scale, real-world prob-
lem since they either assume a complete or dense problem
setting, and they have so far only been applied to small-
scale, toy or synthetic problems. Despite claims in litera-
ture that methods addressing complete multi-graph match-
ing are applicable in an incomplete setting, our first con-
tribution is to prove that their runtime would be excessive
and impractical. Our second contribution is a new method
for incomplete multi-graph matching that applies to real-
world, larger-scale problems. We experimentally show that
for our bioimaging application we are able to attain results
in less than two minutes, whereas the only competing ap-
proach requires at least half an hour while producing far
worse results. Furthermore, even for small-scale, dense or
complete problem instances we achieve results that are at
least on par with the leading methods, but an order of mag-
nitude faster.

1. Introduction

Establishing correspondences across multiple finite sets is
a fundamental combinatorial problem important for 3D
model retrieval [32], shape matching [16, 38], statistical
shape modeling [18, 47], federated learning [28], and ge-
nomic data analysis [11]. Typically, each object, such as an
image or shape, is represented by a set of keypoints, which
stand for semantically meaningful parts of an object. The
task is to bring these keypoints into correspondence. Fig. 2
shows the primary application of our work, where 100 C. el-
egans worms have to be matched, and the keypoints are
candidates for nuclei. This is a large-scale problem with
about 45M possible keypoint correspondences, a factor of
89 more than previously considered. Given a matching, bi-

*The two authors contributed equally to this paper.

1

2

3

1

2

3

1 2 3 4

V p V q

V r

Cp,r
13,34

Cq,r
34,34

Figure 1. Multi-graph matching and cycle consistency. Shown
are three objects (solid rectangles) V p, V q, V r , whose keypoints
(circles) must be matched (edges). By construction, the setting is
incomplete since V r has 4 keypoints, whereas V p, V q only 3. The
blue and green matchings are cycle-consistent and form cliques
in the shown 3-partite graph. The orange matching is not cycle-
consistent and as such does not form a clique. Examples of linear
and quadratic costs (dashed arrows) and their associated matchings
are also shown.

ologist can extract various statistics [29] about the worm.
The matching must satisfy several conditions, see Fig. 1:
• Uniqueness. Each keypoint of a given object can be

matched to at most one keypoint of any other object. If
“at most” is substituted by “exactly”, one speaks of a com-
plete and otherwise of an incomplete matching. Due to
occlusions or noise during the keypoint extraction pro-
cess, the incomplete setting is prevalent in practice.

• Cycle consistency. If keypoint 1 in object V p is matched
to keypoint 2 in object V q and keypoint 3 in object V r,
then keypoint 2 must be matched to keypoint 3. Similar
transitivity conditions must hold for all matching cycles
across arbitrary object subsets.

• Costs. Matchings must be minimal w.r.t. the given costs,
quantifying the similarity between all keypoints. Costs
for d objects decompose into a sum of costs for each of the
d(d−1)/2 object pairs. The latter, in turn, are sums of lin-
ear, keypoint-to-keypoint costs and quadratic, keypoint-
pair-to-keypoint-pair costs. Quadratic costs allow the
modeling of mutual geometric relations between key-
points, considerably improving matching accuracy [17].

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11569

Figure 2. Two exemplary worms from the considered datasets, side view. We visualize the keypoints as small circles, which represent
candidates for a possible nuclei at the respective 3D location. This forms the input to the multi-graph matching problem, and it can be
observed that even for humans it is a very challenging task to bring the correct keypoints into correspondence. The problem setting is
incomplete since the blue worm has 555 keypoints, the orange one 565 and the total number of nuclei in each worm is exactly 558.
Furthermore, for computational reasons the problem setting has to be sparse. Only about 3% of possible keypoint-to-keypoint matchings
are allowed, i.e., have finite costs. For pre-processing steps like straightening of the worms and cost definitions see [22].

The problem combining these conditions is known as multi-
graph matching (MGM), and it is NP-hard [14, 43] in gen-
eral. Note, the term graph originally stems from interpret-
ing objects as graphs and deriving quadratic costs from dif-
ferences of respective edge attributes. We call an MGM
problem sparse if most keypoint-to-keypoint matchings are
forbidden (otherwise allowed). An MGM problem where
all matchings are allowed is called dense.

Fig. 2 shows two exemplary worms with a different
number of keypoints, moreover, only a small fraction of
keypoint-to-keypoint matchings are allowed. Hence, by
construction, we are given an incomplete MGM problem
with a sparse cost structure. Despite finding a good match-
ing, certainly runtime also plays a key role. Firstly, a
fast method may scale better for problems with a larger
number of worms. Secondly, the cost structure has so far
been designed, and partly learned, using biologically mo-
tivated prior knowledge. In the future, a next step is to
learn, at least, some hyper-parameters of the model with
e.g. Bayesian optimization [40], such as the cost of forcing
keypoints to be matched. This means that the MGM task is
inside a learning-loop and hence must be solved in reason-
able runtime. Thirdly, MGM has so far been used rarely in
practical applications, apart from bioimaging. We conjec-
ture that the reason is a lack of good and fast MGM solvers.

Our contributions are as follows: (1) We prove that
methods addressing the complete multi-graph matching
problem are not practically applicable in an incomplete
setting, since their runtime becomes excessive. (2) We
present a new algorithm, GREEDA, for efficiently solving
the incomplete multi-graph matching problem with sparse
costs, which can handle linear, quadratic, and, theocrati-
cally, any higher-order costs. (3) We considerably outper-
form the state-of-the-art methods for matching the large-
scale worms-100 dataset, both in terms of runtime and total
costs. Furthermore, for small-scale toy and synthetic data
we are better or on par with the leading methods but at
least an order of magnitude faster, depending on problem
size. Our code is available at https://github.com/
vislearn/multi-matching-optimization.

2. Real-world applicability of MGM methods
Large-scale MGMs in bioimaging applications, as in Fig. 2,
have two decisive properties hardly covered by existing
MGM algorithms: Incompleteness and sparsity. Whereas
incomplete MGMs naturally arise due to noise in images
and pre-processing steps like segmentation, sparsity allows
to limit the size of the problem and encode important spatial
relationships. Limiting the size is important as the number
of quadratic costs grows as O(n4d2), where n is the num-
ber of keypoints and d the number of objects. Hence, dense
MGMs with n > 100 become practically infeasible. Addi-
tionally, e.g., forbidding the matching of nuclei in the head
of a worm to those in its tail is an important natural prior
(see Fig. 2).
Complete vs. incomplete MGM. Many approaches [5,
43, 48, 50, 51] only treat complete MGM. Despite popu-
lar claims to the contrary, there is no straightforward and
efficient way to apply them to the incomplete case. While
a polynomial reduction from incomplete to complete graph
matching exists [17], its often-mentioned generalization to
MGM, e.g., [48, 50, 51], is prohibitively expensive. Trans-
forming an incomplete MGM problem with d objects, each
with n keypoints, into a complete one results in nd key-
points in each of the d objects, see Suppl. D. This makes
any complete MGM algorithm impractical. The following
theorem proven in Suppl. D essentially states that there ex-
ists no significantly better reduction.

Theorem 1. Let B be a complete MGM problem instance
that is a clique-wise reduction of an incomplete MGM prob-
lem instance A. Let A have |V | vertices in total. Than each
object in B has at least |V | vertices.

In turn, our approach applies to incomplete MGMs directly.
Sparse problems. As defined above, an MGM problem
is sparse if most keypoint-to-keypoint matchings are for-
bidden. In practice, forbidden matches are modeled by in-
finite costs that are only implicitly present in the problem
description [17, 42, 44], rendering the latter sparse. How-
ever, many methods, especially the solution construction

11570

and synchronization ones, discussed in the following para-
graph, do not apply to infinite costs. Even worse, they often
fail to reconcile infinite costs with their assumptions, e.g.,
by heavily relying on spectral methods [1, 8, 34]. In con-
trast, our method guarantees to return only allowed, finite-
cost matchings for sparse problems.

3. Related work
Graph matching (GM) refers to the well-studied [17] spe-
cial case of matching two objects. Similar to MGM, one dis-
tinguishes complete and incomplete GM. Complete GM is
also known as the NP-hard [35] quadratic assignment prob-
lem (QAP) [26] or, if quadratic costs are zero, the polyno-
mially solvable [25] linear assignment problem (LAP) [10].
MGM can be viewed as d(d− 1)/2 GM problems between
all object pairs, coupled via cycle consistency constraints. If
we wish to distinguish between cost orders similar to GM,
we refer to (complete or incomplete) MGM as Multi-QAP
and, respectively, as Multi-LAP if quadratic costs are zero.
Unlike the LAP, the Multi-LAP is NP-hard [14, 43]. As a
result of this coupled structure, GM solvers are an essential
but interchangeable component of many MGM methods, in-
cluding those considered in this work. We utilize the GM
solver [20] as a GM subroutine since it shows the best re-
sults in the recent GM benchmark [17].
Multi-graph matching Although MGM has not yet re-
ceived the same attention as GM, several types of solvers
have been proposed in recent years. In the following we
review their ability to deal with incomplete and sparse
MGMs. The works most closely related to our algorithm
are additionally addressed in Sec. 4.

GM-solver-based primal heuristics is probably the
largest class of MGM algorithms including ours. These
methods usually consist of construction and local search
subroutines that employ a GM solver as their decisive com-
ponent. Construction methods are usually based on the
composition principle: They assign a matching between
two objects by composition via a third one. This third object
is either iteratively chosen w.r.t. a metric combining costs
and a (pairwise) consistency measure [21, 49] or is a node in
a spanning tree [43, 50, 51] of the complete graph connect-
ing all objects as its nodes. Whereas the first subclass does
not even guarantee cycle consistency of the result, the sec-
ond cannot address sparse problems as forbidden matchings
are often selected through composition. Moreover, existing
methods of this type consider only complete MGMs.

In contrast, our approach extends a feasible solution con-
sisting of k ≤ d objects by one object in each iteration until
the solution includes all objects, i.e., k = d. In combination
with the incomplete GM solver [20], it guarantees a cycle-
consistent and allowed matching.

Local search subroutines are usually based on the obser-
vation that cycle-consistent matchings can be improved by

C
os

ts Feasible Sol.
Construction

Sec. 4.2

GM-LS
Sec. 4.3

Swap-LS
Sec. 4.4

So
lu

tio
n

Figure 3. Conceptual diagram of our MGM method GREEDA.
GREEDA is composed of three parts – a construction heuris-
tic (Sec. 4.2) and two local search heuristics GM-LS (Sec. 4.3),
SWAP-LS (Sec. 4.4).

re-matching one object to the remaining, already matched
(d− 1) objects, see Fig. 4. It turns out that this re-matching
constitutes a GM problem. Hence, one can iteratively re-
match different objects utilizing a GM solver. We refer to
this algorithm as GM local search (GM-LS), see Sec. 4.3
for details. This idea was initially proposed by [4] for
the closely related multi-dimensional assignment problem
(MDAP) and then independently for different MGM vari-
ants [43, 48, 50, 51]. Similarly to the construction subrou-
tine, existing works explicitly consider local search only for
the complete problem.

In this work we parallelize GM local search and make
it applicable to incomplete sparse MGMs. We also propose
another local search method, referred to as (clique) swap
local search, and so far unknown in the computer vision lit-
erature. The related work from the operations research is
discussed in Sec. 4.4.

Synchronization approaches [12, 13, 39] first indepen-
dently solve all pairwise GM problems, which induces a
cycle-inconsistent matching. Afterward, they try to find
a cycle-consistent approximation by changing a minimal
number of matchings [1, 8, 30]. Such synchronization
methods often serve as a subroutine for convex-relaxation-
based MGM solvers, e.g., [5, 41]. However, they are ex-
pensive and prone to suboptimal decisions as they require
the solution of d(d − 1)/2 GM problems and ignore costs
during the approximation. Due to the latter, existing syn-
chronization methods also fail to deal with sparse problems
because they often introduce “blunders” in choosing for-
bidden matchings. In contrast, our algorithm considers the
problem costs in any of its stages and thus avoids blunders.

Convex relaxation-based methods is probably the small-
est subclass among existing MGM techniques. The
work [5] considers lifting-free quadratic relaxation, but ad-
dresses complete problems only. The work [24] proposes
a powerful semi-definite relaxation for incomplete MGMs,
but its scalability is strongly limited due to variable lifting,
as mentioned by the authors. The closest competitor for
our method is the Lagrange relaxation-based method [41],
able to deal with incomplete sparse problems. In Sec. 5 we
demonstrate, however, that our algorithm significantly out-
performs [41] in terms of runtime and objective value.

11571

4. Our method

In Sec. 4.1, we formalize the MGM problem. In Secs. 4.2
to 4.4, we describe each individual building block of our
method, which is summarized in Fig. 3, along with the
respective technical contribution. We term our method
GREEDA alluding to the greedy nature of our construction
algorithm, see Sec. 4.2.

4.1. Formal problem definition

Graph matching concerns itself with matching two fi-
nite keypoint sets V 1 and V 2, further referred to as ver-
tex sets or objects. It considers the undirected complete bi-
partite graph G =

(
V := V 1 ∪ V 2, E := V 1 × V 2

)
with

objects V 1 and V 2 as independent sets, where an edge
ij := (i, j) ∈ E corresponds to matching vertex i ∈ V 1

to vertex j ∈ V 2. Although discussing undirected graphs,
we write the edge set E as a Cartesian product V 1 × V 2

to emphasize the two independent sets V 1 and V 2. Due
to their independence, we can always identify directed with
undirected edges. An incomplete matching between object
V 1 and V 2 is defined as subset of edges E ⊂ E containing
at most one incident edge for each vertex. Complete match-
ings, conversely, contain exactly one incident edge for each
vertex, which demands equal cardinalities of both objects
|V 1| = |V 2|. The goal of GM is to find minimal matchings
w.r.t. given costs C :

(
V 1 × V 2

)2 7→ R. In the matrix iden-
tification C(i, s, j, t) = Cis,jt, diagonal entries Cis,is de-
scribe linear costs, and off-diagonal entries quadratic costs,
see Fig. 1. Linear costs Cis,is penalize vertex-to-vertex
correspondences, i.e., matching vertex i ∈ V 1 to vertex
s ∈ V 2, whereby infinite costs Cis,is = ∞ forbid such
a matching. Quadratic costs Cis,jt, in turn, penalize vertex-
pair-to-vertex-pair correspondences, i.e., matching the pair
(i, j) ∈ V 1 × V 1 to the pair (s, t) ∈ V 2 × V 2.
Multi-graph matching generalizes GM by matching mul-
tiple, d ∈ N≥3 objects V p, p ∈ [d] := [1, d] ∩ N, w.r.t.
costs between all pairs Cp,q : (V p × V q)

2 7→ R, p ̸= q,
p, q ∈ [d]. Instead of a bipartite graph, it considers the undi-
rected complete d-partite graph G =

(
V := ∪p∈[d]V

p, E
)

with objects V p as independent sets. Incomplete multi-
matchings are subsets of edges E ⊂ E s.t. any vertex is
incident to at most one edge connecting the same objects.
Similar to GM, complete multi-matchings require exactly
one such edge and equal cardinalities of objects.
Cycle consistency. A multi-matching E ⊂ E is cycle-
consistent if each path in E can be extended within E to a
cycle with at most one vertex per object. As shown in [41],
enforcing this for all 3-cycles is sufficient. That is, a multi-
matching E ⊂ E is cycle-consistent iff ij ∈ E and jk ∈ E
imply ik ∈ E for all i, j, k ∈ V , see Fig. 1.
Clique representation. In [45], it was shown that a multi-
matching E ⊂ E is cycle-consistent iff the corresponding

subgraph G = (V,E) is a union of cliques, i.e., there exist
partitions {Ql}l∈L of vertices V and {El}l∈L of edges E
indexed via the same finite set L, s.t. for each index l ∈ L
the subgraph G|Ql

restricted to part Ql is a clique with
edges El. Therefore, cycle-consistent multi-matchings are
induced by vertex partitions Q where any part Q ∈ Q con-
tains at most one element per object V p, i.e., |Q∩V p| ≤ 1,
see Fig. 1. They translate to multi-matchings by consider-
ing elements of the same part Q as matched to each other.
We call such vertex partitions feasible and denote the set
of feasible vertex partitions or solutions as Q. The set of
feasible partitions over the vertices V D :=

⋃
p∈D V p of an

object subset D ⊆ [d] is denoted by QD. For simplicity,
partitions permit the empty set. Abusing terminology, we
refer to parts Q ∈ Q of a solution as cliques. The object
subset actually covered by such a clique Q ∈ Q is denoted
as D(Q) ⊆ [d], and a clique’s vertex belonging to object
p ∈ D(Q) as Qp, i.e., {Qp} := Q ∩ V p, see Fig. 4.

The MGM objective is to find cycle-consistent multi-
matchings minimizing the sum of all costs, i.e.,

min
Q∈Q

C(Q) :=
∑

Q,R∈Q

∑
p,q∈D(Q)∩D(R)

p<q

Cp,q
QpQq,RpRq

 , (1)

where we assume Cp,q = Cq,p and count this cost for each
pair of objects p, q ∈ [d], only once by requiring p < q.
Note that the formulation in Eq. (1) implicitly assumes zero
costs for not matching a vertex.
Alternative formulations. The clique formulation from
Eq. (1) is non-standard. Many formulations [13, 41, 52]
represent (multi-)matchings E ⊂ E by partial permutation
matrices X , where Xis = 1 iff is ∈ E. Others [7, 33, 34]
view MGM as a labeling problem, where each vertex of
the same object must be assigned a different label – com-
monly called universe point. Vertices with the same label
are matched to each other, i.e., comprise a clique. We use
the clique formulation because it allows the most natural
description of our algorithm.

4.2. Feasible solution construction

Basic algorithm. The basic construction Alg. 1 ob-
tains feasible solutions by solving a chain of GM prob-
lems. Given a random ordering of objects [d], it iter-
atively extends a partial solution, which, in the k-th it-
eration, matches the objects V 1, . . . , V k. The match-
ing E is the solution of the GM problem with costs
Ck+1,Q

iS,jT , i, j ∈ V k+1, S, T ∈ Q, stemming from the sum-
mation over a clique’s individual elements

Ck+1,Q
iS,jT :=

∑
q∈D(S)∩D(T)

Ck+1,q
iSq,jT q . (2)

11572

S

Q

R

T

V p V q V r

V w

Q

i

j

l

T p

Sp

D(T) = {p, q}

Cw,Q
iS,jT

O

O

Sw
ap

Figure 4. Feasible solution construction and swap local
search. Depicted are three cycle-consistently matched objects
V p, V q, V r . Matched vertices are of the same color, horizon-
tally aligned, and decomposed into cliques S,Q,R, T (ellipses),
yielding a partial solution Q (dashed rectangle). As example, the
clique T spans the objects D(T) = {p, q}, where its vertex T p

belongs to object V p. The costs Cw,Q
iS,jT for matching vertex i and

j of object V w to cliques S and T of the partial solution Q are
also shown. We consider two types of swaps (solid arrow), see
Sec. 4.4: The vertex swap fixes the object p and interchanges the
vertices Sp and T p. The 2-clique swap is more global and jointly
optimizes over all possible vertex swaps between cliques S and T .

The partial solution is extended by adding matched vertices
i ∈ V k+1, iS ∈ E to their assigned cliques {i} ∪ S ∈ Q′.
If a vertex i ∈ V k+1 is unmatched, i.e., ∀jS ∈ E : j ̸= i,
it is added as a singleton {i} ∈ Q′. If a clique S ∈ Q is
unmatched, i.e., ∀iT ∈ E : S ̸= T , it remains unchanged
S ∈ Q′. We denote the (partial) solution resulting from this
merge as Q′ = merge(V k+1,Q;E).

Alg. 1 has six notable properties: (1) It guarantees cycle-
consistency. (2) It can use virtually any GM solver as a
black-box. (3) It is independent of the cost order and thus
applicable to higher-order problems as long as the underly-
ing GM solver is applicable. (4) It is parameter-free w.r.t.
the number of cliques. (5) It scales linearly in the number
of objects d ∈ N≥3. (6) It is randomized, hence the best so-
lution from its multiple parallel runs can be kept, see [15].
Extensions and parallelization. We propose two exten-
sions of Alg. 1: Incremental and parallel construction.

Incremental construction addresses the problem of er-
ror propagation. Errors during early matchings “propagate”
along the chain of pairwise problems, sway later matchings,
and worsen the final solution. Because MGM problems’ re-
strictions to object subsets are again MGM problems, we
propose to weaken such propagations by using a better (but
potentially more expensive) multi-matching solver for the
first s ∈ [d] objects [s].

Parallel construction improves the linear scaling w.r.t.
the number of objects. It generalizes the chain of pair-
wise problems to binary trees, specifically leaf-labeled, or-
dered, binary trees with leaf label set [d]. Leaf labels asso-
ciate leaves with objects. Each tree vertex corresponds to a

Algorithm 1: Basic solution construction.

Q ←
⋃

i∈V 1 {i}
for k ∈ {1, . . . , d− 1} do
// compute matching E between object

(k + 1) and the already matched [k]

E ← (Approx.) solve GM with costs Ck+1,Q (Eq. (2))
Q ←merge(V k+1,Q; E)

(partial) solution Q ∈ QD matching its descendant leaves
D ⊆ [d]. In analogy to the basic variant, a tree vertex’s
(partial) solution is obtained by first solving a GM prob-
lem that matches the cliques of its children A ∈ QDA ,
B ∈ QDB and then merging matched cliques. Pairwise
costs CA,B

IS,JT , I, J ∈ A, S, T ∈ B, are again obtained by
summing costs of a clique’s individual elements,

CA,B
IS,JT :=

∑
p∈D(I)∩D(J)

∑
q∈D(S)∩D(T)

Cp,q
IpSq,JpT q . (3)

Ultimately, the root corresponds to a final solution. GM
problems of tree vertices at the same level can be solved in
parallel. Therefore, balanced trees yield the best accelera-
tion – in sequence only O(log(d)) instead of O(d) problems
need solving. Additionally, most properties of the basic
construction transfer to the parallel version: It is random-
ized w.r.t. the leaf order, allows plug-&-play of pairwise
solvers, guarantees cycle-consistency, and is parameter-free
w.r.t. the number of cliques. Pseudocode and further details
are provided in Suppl. A.
Our novelty and related work. The basic solution con-
struction Alg. 1 was first mentioned in [3] and later used
in [4] for complete Multi-LAPs seen as a special case of the
MDAP. Experiments in [4] also demonstrate its superiority
over star-shaped spanning tree approaches. Its application
to Multi-QAPs and its parallelization using binary trees are
new. Incremental construction conceptually resembles an
idea proposed in [43], where, as part of a spanning tree
heuristic, a local search is run on the hitherto constructed
partial solution. To summarize, our contribution is to intro-
duce the prior art from operations research [3, 4], applying
it to Multi-QAPs instead of Multi-LAPs, and proposing new
extension and parallelization schemes.

4.3. GM local search
Basic algorithm. The basic GM local search step com-
prises splitting and merging an object V p from and to a
given solution Q ∈ Q as defined by Alg. 2. An object V p

is split by subtracting Q \ V p its vertices from all cliques
Q ∈ Q. Merging it back to the split solution works just
as in Sec. 4.2 by solving a GM problem with costs from
Eq. (2) whose solution dictates the merge. While only ac-
cepting improvements, the basic GM local search Alg. 2 re-

11573

Algorithm 2: Basic GM local search.
Input: Solution Q ∈ Q, Object Sequence (pk)k∈N
k ← 1
while stopping criterion not met do

// split object k from the matching Q
Q′ ← { Q \ V pk |Q ∈ Q}
// compute matching E between object k

and the rest

E ← (Approx.) solve GM with costs Cpk,Q′
(Eq. (2))

Q′ ←merge(V pk ,Q′; E)
if C(Q′) < C(Q) then
Q ← Q′ // accept if profitable

k ← k + 1

peats this step along an object sequence (pk)k∈N , pk ∈ [d],
until a suitable stopping criterion is met. In practice, we
run Alg. 2 cyclically along the random object ordering [d]
used in Alg. 1 as long as the solution improves. Like Alg. 1,
the pairwise solver is blackboxed and solutions are always
cycle-consistent.
Extensions and parallelization. A common extension [4]
of this local search is to split a solution Q ∈ Q along a
subset of objects D ⊂ [d]. As a result, two partial solutions
{Q ∩ V D|Q ∈ Q} ∈ QD, {Q ∩ V [d]\D|Q ∈ Q} ∈ Q[d]\D

are merged using Eq. (3). Since these extensions performed
worse than the base in preliminary experiments, we did not
investigate them further.

Our proposed parallelized search step consists of two
passes. First, it runs the basic search step for all objects p ∈
[d] in parallel, splitting d objects Qp := {Q \ V p|Q ∈ Q},
generating d matchings Ep ⊂ V p×Qp, yielding d proposed
solutions, but ultimately leaving the input solution Q ∈ Q
untouched. Second, it splits and merges objects according
to the collected matchings Ep, p ∈ [d], in ascending order
of their proposed solutions’ objective value – only accepting
profits. The more matchings yield profit despite being “out-
dated” (because prior matchings changed the solution), the
more acceleration is generated over the basic search step.
Both the basic and parallel search step sequentially solve
only one GM problem. Additionally, the parallelized step
always accepts the most profitable proposal though this is
only a secondary source of acceleration, as demonstrated in
Sec. 5.1. Further details can be found in Suppl. B.
Our novelty and related work. Again, the basic Alg. 2
was first mentioned in [4] targeting complete Multi-LAPs
as special case of the MDAP. In [4], its extension to ob-
ject subsets is investigated and our preliminary findings are
confirmed for the Multi-LAP. In computer vision, it was in-
dependently proposed in [43, 51] for Multi-LAPs and in
[48, 50] for Multi-QAPs, both only complete. Our paral-
lelized extension is novel.

Algorithm 3: Swap local search.
Input: Solution Q ∈ Q
while stopping criterion not met do

for Q,R ∈ Q do
x∗ ← Approximately solve Eq. (5) for cliques Q,R
// swap the vertices according to x∗

Q′, R′ ← swap(x∗, Q,R)
// update the clique representation

Q′ ← (Q \ {Q,R}) ∪ {Q′, R′}
if C(Q′) < C(Q) then
Q ← Q′ // accept if profitable

4.4. Swap local search
Vertex swap. Given a solution Q ∈ Q, swapping vertices
of the same object between two cliques Q,R ∈ Q main-
tains feasibility. While fixing one object p ∈ [d], a vertex
swap subtracts a vertex covered by either clique from said
clique and adds it to the other, yielding two new cliques,
Q′ and R′, see Fig. 4. For example, if both cliques Q
and R cover the fixed object p ∈ [d], the vertices Qp and
Rp are interchanged, i.e., Q′ = (Q \ {Qp}) ∪ {Rp} and
R′ = (R\{Rp})∪{Qp}. If only one clique covers the fixed
object, only one vertex is exchanged. Finally, all cliques
remain unchanged if none covers the object. After a swap,
cliques still cover at most one vertex per object. The new so-
lutionQ′ = (Q\{Q,R})∪{Q′, R′} is, thus, also feasible.
Furthermore, the objective value change induced by a ver-
tex swap decomposes into a sum of objective value changes
δCp,q

swap(Q,R) between the fixed object p ∈ [d] and all other
objects q ∈ [d] \ {p}, i.e.,

C(Q′)− C(Q) =
∑

q∈[d]\{p}

δCp,q
swap(Q,R) . (4)

A detailed formulation is given in Suppl. C.1.
2-clique swap. We leverage Eq. (4) to jointly consider all
possible swaps between two cliques Q,R ∈ Q. A 2-clique
swap is a set of binary decision variables x = {xp}p∈[d] ∈
{0, 1}d, deciding for every object p ∈ [d], whether the ver-
tex swap fixing it should be performed (xp = 1), or not
(xp = 0). Performing all vertex swaps specified by a 2-
clique swap x ∈ {0, 1}d yields, again, two new cliques Q′

and R′, which we denote by Q′, R′ = swap(x;Q,R). The
optimal 2-clique swap x∗ solves the following quadratic
pseudo-boolean optimization problem [9]:

x∗ ∈ argmin
x∈{0,1}d

∑
p∈[d]

xp

∑
q∈[d]

xq · δCp,q
swap(Q,R)

 , (5)

where x = (1 − x) denotes negation. This problem is NP-
hard [37], which is why we address it using the state of the

11574

art [20] approximative solver QPBO-I [37]. Our swap local
search Alg. 3 iterates over all clique pairs, solving the prob-
lem from Eq. (5) with QPBO-I and performing the obtained
2-clique swap if profitable.
Our novelty and related work. The vertex swap was orig-
inally introduced for the MDAP with three objects [2] and
later extended [23, 31, 36] to consider multiple swaps at
the same time. However, these propositions come without a
method to solve the 2-clique swap problem efficiently. Our
contribution is formulating and solving the 2-clique swap as
a quadratic pseudo-boolean optimization problem.

5. Experimental validation
Our experiments comprise an ablation study (Sec. 5.1) and
a comparison to other methods (Sec. 5.2). Whereas the ab-
lation study compares different variants of our GREEDA al-
gorithm’s construction heuristic and GM-LS, see Fig. 3, in
the comparison to others, we utilize their sequential vari-
ants. We solve GM subproblems of GREEDA using the
state-of-the-art GM solver [19, 20], which we turn from a
randomized algorithm into a deterministic one by fixing its
randomization seed. Further details about the experimental
setup and solver settings are given in Suppl. E.

Contrary to most existing works, we only compare ob-
jective values or costs instead of ground-truth-based accu-
racies since none of the considered algorithms explicitly
optimize the latter or has access to the ground truth. We
leave accuracy comparisons to the works addressing mod-
eling and learning questions.
Datasets. We evaluate methods on the established datasets:
synthetic, CMU hotel and house, and worms. All of them
are widely used in MGM literature and accessible through
the archive accompanying [42]. Additionally, to showcase
our approach, we extended the worms dataset with a new,
large-scale problem instance, worms-29, by combining all
29 worm-based objects available in the worms dataset. In
this instance, we reduced the size of each pairwise problem
by forbidding many high-cost vertex-to-vertex matchings,
making the problem even sparser: Each vertex is allowed
to match 14 instead of 23 other vertices on average. All
other characteristics, including costs and number of vertices
per object, are the same as in worms. Finally, based on the
recently published work [27], we constructed the worms-
100 problem instance with about 45M keypoint correspon-
dences (compared to the 3M of the worms-29 dataset).

5.1. Ablation study
We compare the sequential, parallel, and incremental solu-
tion construction methods from Sec. 4.2 in all possible com-
binations with the sequential and parallel GM local search
from Sec. 4.3. For lack of a better solver, incremental con-
struction uses GREEDA for the first 5 objects. To showcase
our parallelization, we additionally consider a straightfor-

0 50 100 150 200 250 300 350 400
Time (s)

−3.200

−3.175

−3.150

−3.125

−3.100

−3.075

O
bj

ec
tiv

e
va

lu
e
C

×106 worms-10
Construction: sequential
Construction: parallel
Construction: incremental
GM-LS: sequential
GM-LS: parallel
GM-LS: best-improvement

Figure 5. Ablation study. Convergence of sequential and par-
allel GM local search variants after sequential and parallel con-
struction, respectively. For the incremental construction only the
objective value is given to keep readability of the plot. Though
taking notably more time, this method does not result in a better
solution. The result is a single run on the worms-10 dataset and
averaged over the first 10 problem instances.

ward “best-improvement” parallelization of the GM local
search: Although it performs all GM-LS steps in parallel, it
accepts only the most profitable one. In this respect it dif-
fers from the parallel local search as described in Sec. 4.3,
which aims to accept all possible profitable changes. The
experiments were run on worms-10, containing the largest
MGM instances addressed in computer vision [41] so far.
Convergence speed. Fig. 5 depicts costs with respect to
runtime. While all methods converge to virtually the same
value, parallel GM-LS converges fastest. It also notably
outperforms the “best-improvement” parallelization.
Distribution of objective value. To assess the influence
of randomization, we run each algorithm 100 times using
different object orderings. We found the differences to be
negligible and refer to Suppl. F for a discussion and details.

5.2. Comparison to other methods
Algorithms. We compare our sequential variant of
GREEDA to the state of the art MGM methods MP-T [41]
and DS* [5]. While the latter only applies to complete and
dense MGM problems, the former can solve incomplete and
sparse MGM problems. We also compare to the follow-
ing synchronization methods: The projected power itera-
tion (PPI) [12], Sparse Stiefel Synchronization [8], and the
Spectral approach [34] extended by the Successive Block
Rotation Algorithm [6] to yield incomplete matchings. We
do not compare to the recently released pygmtools pack-
age [46], as the respective MGM algorithms only apply to
complete problems and do not guarantee cycle consistency.

Implementation Details. While GREEDA and MP-T are
available in C++, DS*, Stiefel, PPI, and Spectral are Mat-
lab implementations. We use the original software from the
authors for all but PPI, which we re-implemented ourselves.

11575

0 20 40 60
Time (s)

102

103

synthetic density-12

trivial sol. (C = 0)
GREEDA-LS start

GREEDA (best)
GREEDA (worst)

MP-T
DS*

GM-LS
SWAP-LS

PPI
Spectral

Stiefel

0 1000 2000 3000
Time (min)

106

107

C
−
C

in
c

worms-29

(a)

0 25
Time (min)

106

107

worms-29

(b)

0 20 40 60
Time (s)

102

103

synthetic density-12

(c)

0 5 10 15
Time (s)

101

102

103
hotel-8

(d)

Figure 6. Method Comparison. Objective with respect to runtime comparison. Objective plotted in log-scale and offset by the inconsistent
solution’s objective C inc obtained from independently solving d(d − 1)/2 pairwise GM problems. The value C inc approximates, since
[20] is approximative, a lower bound to Eq. (1) provided by the MGM relaxation that ignores cycle consistency.
For our sequential variant of GREEDA, the best and worst result over 10 runs is given. (b) The first minutes of Fig. 6a, illustrating the
considerable difference in construction time between GREEDA and MP-T for large problems. (c) and (d) provide averaged results over all
instances of the 12 object synthetic density and the 8 object hotel dataset respectively. (a), (b) compare only methods able to find allowed
solutions of sparse problems. DS* results are shown for (c) only, as the other datasets contain incomplete problems. Note, that even 10
sequential runs of GREEDA to attain GREEDA (best)’s results would still render the fastest algorithm.

Results. For the worms-100 dataset, the only true competi-
tor MP-T runs out of memory on a machine with 250GB of
RAM. In contrast, GREEDA (without SWAP-LS) constructs
a feasible solution in 10 minutes and converges after about
an hour, using 65GB of RAM.

Otherwise, for brevity, we only provide the comparison
for three representative datasets, and refer to Suppl. H for a
full list of results with all algorithms and datasets (in total
321 problem instances shown in 33 tables).

Fig. 6 shows the costs-runtime plots for different meth-
ods. Because of incomparable implementations (C++,
Python, Matlab), we only consider the final objective value
for synchronization methods and not their runtime. In gen-
eral, the need to compute the initial cycle inconsistent so-
lution by solving all d(d− 1)/2 pairwise problems, though
completely parallelizable, makes runtime comparisons with
direct MGM methods difficult.

Overall, GREEDA consistently outperforms or is on par
with competitors in terms of final objective value, and is
an order of magnitude faster in terms of runtime (where
applicable). In particular, for our new, large-scale worms-
29 dataset, see Fig. 6a, GREEDA achieves a better solu-
tion much faster than the direct competitor MP-T, improv-
ing construction time from half an hour to just two minutes
(see zoom in Fig. 6b and Suppl. G). While MP-T fails to im-
prove upon its initial solution significantly, our local search
subroutines GM-LS and SWAP-LS quickly improve the re-
sult but converge slowly. In our current implementation,
SWAP-LS is the main bottleneck due to its quadratic scaling
in the number of vertices, which is particularly large for the
worms-29 dataset.

As mentioned in Sec. 3, synchronization methods may
introduce blunders that substantially impact the resulting
cost. This can be seen in Fig. 6d, where all synchroniza-

tion methods return a solution that is worse than the trivial
one, which would leave all vertices unmatched.

Fig. 6c includes a comparison to DS*, which yields high-
quality results but is substantially slower than the other
methods, partially due to its Matlab implementation. Since
it is a solver for complete problems, it cannot be applied
to the hotel, house, or worms datasets, as the incomplete to
complete problem transformation would increase the run-
time even further, see Suppl. D.

All plots in Fig. 6 additionally show the application of
GM-LS and SWAP-LS to the results of the other methods.
Although the resulting objective values are comparable to
GREEDA, optimization takes significantly longer.

6. Discussion and limitations
In this work we haven proven that methods for the complete
multi-graph matching (MGM) problem are impractical for
the incomplete setting. We proposed a new method for
large-scale MGM problems that are incomplete and sparse.
In particular, for the large-scale worms problems we obtain
better results in considerably less time than competitors.
But even for small-scale instances we outperform competi-
tors in terms of speed, while having at least on par results.

Our algorithm’s good performance is due to two reasons:
Firstly, it decomposes the MGM problem into a series of
fast to optimize GM problems, while using all costs and
keeping cycle consistency at all times. Secondly, our two
local search methods efficiently explore the exponentially
large neighborhood of a current solution.

The modern approach to MGM includes learning costs
with neural networks. Although a detailed discussion of
such methods is beyond the scope of this work, our solver
can be used within them, due to its reasonable runtime.

11576

Acknowledgements
This work was supported by the German Research Foun-
dation projects 498181230 and 539435352. Authors fur-
ther acknowledge facilities for high throughput calculations
bwHPC of the state of Baden-Württemberg (DFG grant
INST 35/1597-1 FUGG) as well as Center for Information
Services and High Performance Computing (ZIH) at TU
Dresden.

References
[1] Federica Arrigoni, Eleonora Maset, and Andrea Fusiello.

Synchronization in the symmetric inverse semigroup. In
Image Analysis and Processing-ICIAP 2017: 19th Interna-
tional Conference, Catania, Italy, September 11-15, 2017,
Proceedings, Part II 19, pages 70–81. Springer, 2017. 3

[2] Egon Balas and Matthew J Saltzman. An algorithm for the
three-index assignment problem. Operations Research, 39
(1):150–161, 1991. 7

[3] Hans-Jürgen Bandelt, Yves Crama, and Frits CR Spieksma.
Approximation algorithms for multi-dimensional assign-
ment problems with decomposable costs. Discrete Applied
Mathematics, 49(1-3):25–50, 1994. 5

[4] Hans-Jürgen Bandelt, Arjan Maas, and Frits CR Spieksma.
Local search heuristics for multi-index assignment problems
with decomposable costs. Journal of the Operational Re-
search Society, 55(7):694–704, 2004. 3, 5, 6

[5] Florian Bernard, Christian Theobalt, and Michael Moeller.
DS*: Tighter lifting-free convex relaxations for quadratic
matching problems. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018. 2, 3, 7,
13, 14, 15, 16

[6] Florian Bernard, Johan Thunberg, Jorge Goncalves, and
Christian Theobalt. Synchronisation of partial multi-
matchings via non-negative factorisations. Pattern Recog-
nition, 92:146–155, 2019. 7, 13, 14, 15, 16, 17, 18, 19, 20,
21

[7] Florian Bernard, Johan Thunberg, Paul Swoboda, and Chris-
tian Theobalt. Hippi: Higher-order projected power iter-
ations for scalable multi-matching. In Proceedings of the
IEEE International Conference on Computer Vision, pages
10284–10293, 2019. 4

[8] Florian Bernard, Daniel Cremers, and Johan Thunberg.
Sparse quadratic optimisation over the stiefel manifold with
application to permutation synchronisation. Advances in
Neural Information Processing Systems, 34:25256–25266,
2021. 3, 7, 13, 14, 15, 16, 17, 18, 19, 20, 21

[9] E. Boros and P.L. Hammer. Pseudo-boolean optimization.
Discrete Applied Mathematics, 2002. 6

[10] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello.
Assignment Problems. SIAM, 2009. 3

[11] Jiazhou Chen, Guoqiang Han, Aodan Xu, and Hongmin
Cai. Identification of multidimensional regulatory mod-
ules through multi-graph matching with network constraints.
IEEE Transactions on Biomedical Engineering, 67(4):987–
998, 2019. 1

[12] Yuxin Chen and Emmanuel J Candès. The projected power
method: An efficient algorithm for joint alignment from pair-
wise differences. Communications on Pure and Applied
Mathematics, 71(8):1648–1714, 2018. 3, 7, 13, 14, 15, 16,
17, 18, 19, 20, 21

[13] Yuxin Chen, Leonidas J Guibas, and Qi-Xing Huang. Near-
optimal joint object matching via convex relaxation. arXiv
preprint arXiv:1402.1473, 2014. 3, 4

[14] Yves Crama and Frits CR Spieksma. Approximation algo-
rithms for three-dimensional assignment problems with tri-
angle inequalities. European Journal of Operational Re-
search, 60(3):273–279, 1992. 2, 3

[15] Thomas A Feo and Mauricio GC Resende. Greedy random-
ized adaptive search procedures. Journal of global optimiza-
tion, 6:109–133, 1995. 5

[16] Maolin Gao, Zorah Lahner, Johan Thunberg, Daniel Cre-
mers, and Florian Bernard. Isometric multi-shape matching.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14183–14193, 2021.
1

[17] Stefan Haller, Lorenz Feineis, Lisa Hutschenreiter, Florian
Bernard, Carsten Rother, Dagmar Kainmüller, Paul Swo-
boda, and Bogdan Savchynskyy. A comparative study of
graph matching algorithms in computer vision. In European
Conference on Computer Vision, pages 636–653. Springer,
2022. 1, 2, 3

[18] Tobias Heimann and Hans-Peter Meinzer. Statistical shape
models for 3D medical image segmentation: A review. Med-
ical Image Analysis, 2009. 1

[19] Lisa Hutschenreiter, Stefan Haller, Lorenz Feineis, Carsten
Rother, Dagmar Kainmüller, and Bogdan Savchynskyy. Fu-
sion moves for graph matching website, 2021. https:
//vislearn.github.io/libmpopt/iccv2021/.
7

[20] Lisa Hutschenreiter, Stefan Haller, Lorenz Feineis, Carsten
Rother, Dagmar Kainmüller, and Bogdan Savchynskyy. Fu-
sion moves for graph matching. In Proceedings of the IEEE
International Conference on Computer Vision, 2021. 3, 7, 8

[21] Zetian Jiang, Tianzhe Wang, and Junchi Yan. Unifying of-
fline and online multi-graph matching via finding shortest
paths on supergraph. IEEE transactions on pattern analysis
and machine intelligence, 43(10):3648–3663, 2020. 3

[22] Dagmar Kainmueller, Florian Jug, Carsten Rother, and Gene
Myers. Active graph matching for automatic joint segmen-
tation and annotation of C. elegans. In Proceedings of the
International Conference on Medical Image Computing and
Computer Assisted Intervention, 2014. 2

[23] Daniel Karapetyan and Gregory Gutin. Local search heuris-
tics for the multidimensional assignment problem. Journal
of Heuristics, 17:201–249, 2011. 7

[24] Itay Kezurer, Shahar Z Kovalsky, Ronen Basri, and Yaron
Lipman. Tight relaxation of quadratic matching. In Com-
puter graphics forum, pages 115–128. Wiley Online Library,
2015. 3

[25] Harold W Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 1955. 3

[26] Eugene L. Lawler. The quadratic assignment problem. Man-
agement Science, 1963. 3

11577

[27] Yongbin Li, Siyu Chen, Weihong Liu, Di Zhao, Yimeng Gao,
Shipeng Hu, Hanyu Liu, Yuanyuan Li, Lei Qu, and Xiao Liu.
A full-body transcription factor expression atlas with com-
pletely resolved cell identities in c. elegans. Nature Commu-
nications, 15(1):358, 2024. 7

[28] Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi,
Li Shen, and Junchi Yan. Deep neural network fusion via
graph matching with applications to model ensemble and
federated learning. In International Conference on Machine
Learning, pages 13857–13869. PMLR, 2022. 1

[29] Fuhui Long, Hanchuan Peng, Xiao Liu, Stuart K Kim, and
Eugene Myers. A 3d digital atlas of c. elegans and its ap-
plication to single-cell analyses. Nature methods, 6(9):667–
672, 2009. 1

[30] Eleonora Maset, Federica Arrigoni, and Andrea Fusiello.
Practical and efficient multi-view matching. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 4568–4576, 2017. 3

[31] Robert A Murphey, Panos M Pardalos, and Leonidas S Pit-
soulis. A greedy randomized adaptive search procedure for
the multitarget multisensor tracking problem. Network de-
sign: Connectivity and facilities location, 40:277–302, 1997.
7

[32] Weizhi Nie, Anan Liu, Yahui Hao, and Yuting Su. View-
based 3d model retrieval via multi-graph matching. Neural
Processing Letters, 48:1395–1404, 2018. 1

[33] Zhakshylyk Nurlanov, Frank R Schmidt, and Florian
Bernard. Universe points representation learning for partial
multi-graph matching. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 1984–1992, 2023. 4

[34] Deepti Pachauri, Risi Kondor, and Vikas Singh. Solving the
multi-way matching problem by permutation synchroniza-
tion. In Advances in Neural Information Processing Systems,
pages 1860–1868. Citeseer, 2013. 3, 4, 7, 13, 14, 15, 16, 17,
18, 19, 20, 21

[35] Panos M. Pardalos, Franz Rendl, and Henry Wolkowicz. The
quadratic assignment problem - a survey and recent develop-
ments. Quadratic Assignment and Related Problems, 1993.
3

[36] Alexander J Robertson. A set of greedy randomized adap-
tive local search procedure (grasp) implementations for the
multidimensional assignment problem. Computational Op-
timization and Applications, 19(2):145–164, 2001. 7

[37] Carsten Rother, Vladimir Kolmogorov, Victor S. Lempitsky,
and Martin Szummer. Optimizing binary MRFs via extended
roof duality. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2007. 6, 7

[38] Yusuf Sahillioğlu. Recent advances in shape correspon-
dence. The Visual Computer, 36(8):1705–1721, 2020. 1

[39] Yanyao Shen, Qixing Huang, Nati Srebro, and Sujay Sang-
havi. Normalized spectral map synchronization. Advances
in neural information processing systems, 29, 2016. 3

[40] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Prac-
tical bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 25,
2012. 2

[41] Paul Swoboda, Dagmar Kainmüller, Ashkan Mokarian,
Christian Theobalt, and Florian Bernard. A convex relax-
ation for multi-graph matching. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 11156–11165, 2019. 3, 4, 7, 13, 14, 15, 16, 17, 18,
19, 20, 21

[42] Paul Swoboda, Bjoern Andres, Andrea Hornakova, Florian
Bernard, Jannik Irmai, Paul Roetzer, Bogdan Savchynskyy,
David Stein, and Ahmed Abbas. Structured prediction prob-
lem archive. arXiv preprint arXiv:2202.03574, 2022. 2, 7

[43] Da Tang and Tony Jebara. Initialization and coordinate op-
timization for multi-way matching. In Artificial Intelligence
and Statistics, pages 1385–1393. PMLR, 2017. 2, 3, 5, 6

[44] Lorenzo Torresani, Vladimir Kolmogorov, and Carsten
Rother. A dual decomposition approach to feature correspon-
dence. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2013. 2

[45] Roberto Tron, Xiaowei Zhou, Carlos Esteves, and Kostas
Daniilidis. Fast multi-image matching via density-based
clustering. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 4057–4066, 2017. 4

[46] Runzhong Wang, Ziao Guo, Wenzheng Pan, Jiale Ma, Yikai
Zhang, Nan Yang, Qi Liu, Longxuan Wei, Hanxue Zhang,
Chang Liu, Zetian Jiang, Xiaokang Yang, and Junchi Yan.
Pygmtools: A python graph matching toolkit. Journal of
Machine Learning Research, 25(33):1–7, 2024. 7

[47] Rohit Yadav, François-Xavier Dupé, Sylvain Takerkart, and
Guillaume Auzias. Population-wise labeling of sulcal graphs
using multi-graph matching. Plos one, 18(11):e0293886,
2023. 1

[48] Junchi Yan, Yu Tian, Hongyuan Zha, Xiaokang Yang, Ya
Zhang, and Stephen M Chu. Joint optimization for consistent
multiple graph matching. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1649–1656,
2013. 2, 3, 6

[49] Junchi Yan, Minsu Cho, Hongyuan Zha, Xiaokang Yang, and
Stephen M Chu. Multi-graph matching via affinity optimiza-
tion with graduated consistency regularization. IEEE trans-
actions on pattern analysis and machine intelligence, 38(6):
1228–1242, 2015. 3

[50] Junchi Yan, Jun Wang, Hongyuan Zha, Xiaokang Yang, and
Stephen Chu. Consistency-driven alternating optimization
for multigraph matching: A unified approach. IEEE Trans-
actions on Image Processing, 24(3):994–1009, 2015. 2, 3,
6

[51] Junchi Yan, Zhe Ren, Hongyuan Zha, and Stephen Chu. A
constrained clustering based approach for matching a col-
lection of feature sets. In 2016 23rd International Con-
ference on Pattern Recognition (ICPR), pages 3832–3837.
IEEE, 2016. 2, 3, 6

[52] Xiaowei Zhou, Menglong Zhu, and Kostas Daniilidis. Multi-
image matching via fast alternating minimization. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 4032–4040, 2015. 4

11578

