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Abstract

Machine learning (ML) classifiers can make mistakes that
are perceptually and cognitively disturbing to humans. The
most notorious examples of such errors are adversarial vi-
sual metamers. This paper investigates the phenomenon of
adversarial Doppelgängers (AD), which encompasses ad-
versarial visual metamers, and compares the performance
and robustness of ML classifiers to human performance.

We find that ADs are inputs that are close to each other
with respect to a perceptual metric defined in this paper, and
show that ADs are qualitatively different from the usual ad-
versarial examples. The vast majority of classifiers are vul-
nerable to ADs and robustness-accuracy trade-offs may not
improve them. Some classification problems do not admit
any AD-robust classifiers because the underlying classes
are ambiguous. We provide criteria to determine whether
a classification problem is well defined; describe the struc-
ture and attributes of AD-robust classifiers; introduce and
explore the notions of conceptual entropy and regions of
conceptual ambiguity for classifiers that are vulnerable to
AD attacks; and discuss methods to bound the AD fooling
rate of an attack. We define the notion of classifiers that ex-
hibit hypersensitive behavior, that is, classifiers whose only
mistakes are adversarial Doppelgängers. Improving the AD
robustness of hypersensitive classifiers is equivalent to im-
proving accuracy. We identify conditions guaranteeing that
all classifiers with sufficiently high accuracy are hypersen-
sitive.

1. Introduction
Perceptual metamers1 are the most striking adversarial ex-
amples studied by the machine learning community. Two
perceptual metamers are shown in Figure 1. The phe-
nomenon of metamersim studied in the visual domain, in-

*This material is based upon work supported by the National Science
Foundation under Grant No. 2433241

1“images that are physically distinct but perceptually indistinguish-
able”, [6]. See also “metameric images”, [37]

cluding perceptual metamers, is a manifestation of the exis-
tence of Doppelgängers: different inputs or stimuli that are
perceptually indiscriminable. The research community has
engaged in active studies of adversarial vulnerability ever
since the publication of [73]. Adversarial Doppelgängers,
that is, adversarial examples which are Doppelgängers, are
qualitatively different from the vast majority of known ad-
versarial examples which humans readily discriminate from
correctly classified input samples (Figure 2). There is no

(a) (b)

Figure 1. Most people cannot discriminate image (a) from image
(b). MobileNetV2 classifies the later image as “persian” and the
former picture as “taby”.

(a) Labrador (b) Weimeraner

Figure 2. Applying a Fast Signed Gradient perturbation to the
image (a) classified by MobileNetV2 as Labrador yields the image
(b) which is classified by MobileNetV2 as Weimeraner.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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evidence that Doppelgängers can be studied and understood
completely using the ℓp norms or more general geodesic
distances on manifolds, which have been employed to quan-
tify sample differences and to investigate adversarial exam-
ples. Perception and context impose topology on a space
of inputs, but it rarely aligns with a manifold topology. We
will denote this context-relative topology by τδ. It is de-
fined by the context-relative ability to acquire and deploy
knowledge.

In this paper, we explore the context-relative perceptual
topologies on a space of inputs X and examine the vulner-
ability and robustness of machine learning classifiers to ad-
versarial Doppelgängers. We show that, while the majority
of classifiers are vulnerable to adversarial Doppelgängers,
safe (Doppelgänger robust) classifiers do exist if the clas-
sification problem is well defined. However, these robust
classifiers may be very rare.

In Section 3, we discuss the context-relative notion of
(active) indiscriminability and the topology τδ that it in-
duces on a space of inputs. The separability and metric
properties of various motivating examples of τδ. Addition-
ally, we show that the distances between Doppelgängers are
small if measured by a perceptually-based context-relative
metric. We also examine the relation between indiscern-
ability, indsicriminability, and feature representations. The
existence and structure of Doppelgänger robust classifiers
is discussed in Section 4. In Section 5, we investigate the
relationship between Doppelgängers and misclassified in-
put samples, define the notion of hypersensitive behavior,
and show that improved adversarial Doppelgänger robust-
ness does not have to lead to a reduction in accuracy.

The structure of perceptually regular, i.e., AD robust
classifiers are discussed in Section 6. By definition, a classi-
fier is not regular if and only if some inputs can be attacked
by adversarial Doppelgängers. Not surprisingly, it turns out
that some inputs are more vulnerable than others. In Sec-
tion 7, we provide measures of adversarial Doppelgängers
vulnerability and upper bounds on the fooling rate of an ad-
versarial Doppelgänger attack.

2. Related work
The pair (X, indiscriminability relation) is a tolerance
space. Tolerance spaces, rough sets, and granular comput-
ing have been discussed extensively. See [59, 62, 66, 88,
89]. The color and image metamers studied by many au-
thors including [3, 6, 9, 18, 22, 37, 39, 41, 42, 51, 76, 86]
are Doppelgängers. 2

The research on adversarial examples to date builds on
the hypothesis that the space of input samples is a met-
ric space (X, distX). A misclassified input x∗ is consid-

2Some metamers arising in other fields including biology and chemistry
are not Doppelgängers, for example, segments in many earthworms are
considered metamers but are visually discriminable.

ered an adversarial example if it is nearby a correctly clas-
sified input sample x, i.e., distX(x, x∗) is small. Usu-
ally X is assumed to be Rn, endowed with the ℓp, norm,
p = 1, 2, . . . ,∞ or at least locally homeomorphic to Rn,
i.e., a manifold, equipped with some geodesic distance.
Somewhat non surprisingly many authors have shown that
every classifier can be attacked with such adversarial ex-
amples [5, 17, 25, 52] or at least that this is true in many
contexts, [44, 47, 67].

Other papers indicate that there are paths toward elim-
inating adversarial examples completely, i.e., it is possi-
ble to achieve provable “adversarial robustness” by fix-
ing/retraining the classifier [1, 24, 36, 43, 72, 74]. A
widely accepted tenet is that “there is a clear trade-off be-
tween accuracy and [adversarial] robustness, and a better
performance in testing accuracy in general reduces [adver-
sarial] robustness”, [71]. For empirical evidence for this
trade-off and some attempts to explain this phenomenon see
[71, 78, 90].

3. Perceptual Topology
3.1 Indiscriminability and Topology

The ability to decide whether one stimulus/input is dis-
tinct from another is essential for adaptation, survival, and
intelligent life. Intelligent agents are uniquely capable to ac-
tivate knowledge to judge distinction. Williamson calls this
context-relative process discrimination ([84]) and defines a
context-relative symmetric and reflexive binary relation de-

noted by
αδ

≈ and called indiscriminability: 3

Definition 1 ([84]). Two inputs x and y are called indis-
criminable to a subject at a time t if and only if at time t
the subject is not able to activate (acquire or employ) the
relevant kind of knowledge that x and y are distinct.4

Indiscriminability generates a context-relative topology on
the set of inputs X.

Definition 2. The the phenomenal neighborhood of an

input x ∈ X, is the set d(x) =

{
y ∈ X : y

αδ

≈ x

}
. A

point y ∈ d(x) \ {x} is called a Doppelgänger [of x]. The
perceptual topology τδ is the topology generated by the
sub-basis Dαδ = {d(x)}x∈X.

Example 0: An input x ∈ X is called optimal if it
does not have non-trivial/non-identical Doppelgängers, i.e.,

3Context and its role in discrimination and similarity judgments have
been studied extensively and by many authors including [11, 23, 30, 45,
60, 77, 79, 81].

4Some authors refer to indiscriminability as active indiscriminabil-
ity, see [16]. Poincaré discusses indiscriminability in [58] but refers to it
as indiscernability. Similarly Poston studies indistinguishibility, basing it
on the “limit of discrimination” of the biological senses and instruments,
[59].
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if d(x) = {x}.5 In particular, if
αδ

≈ is the identity relation-
ship = (i.e,. all inputs are optimal within the given context),
then the perceptual topology τδ is discrete. However, the
finiteness of human observations (they are subject to finite
time and finite work constraints) and the bounded rational-
ity constraints imposed by the limitations on the availability
of information and computational capabilities to humans,
[68], indicate that the scenario d(x) = {x} for every x ∈ X
may be highly unlikely.

Often reflexive binary relations are defined and discussed
as coverings of the underlying space. Indeed, every re-
flexive binary relation (RBR) ≈ on X defines a covering
{g(x) = {y : y ≈ x}}x∈X, of X and vice versa one can
define reflexive binary relationships through coverings of
X. See Appendix, Section A. In particular, the perceptual
topology, τδ, is a tolerable topology, cf., Definition 10 in
Appendix, Section A.

The active psychophysics research on just noticeable
difference initiated by Weber and Fechner, [19, 20, 82, 83],
provides one of the few classes of examples where we
have empirically supported understanding of the perceptual
topology.

Example 1: Let X be the closed bounded interval [a, b] ⊂
(0,+∞). Suppose that Weber’s law holds and let k > 0 be
the Weber constant. Let w = 1 + k, then

d(x) =


[a, xw) , a ≤ x < aw

(x/w, xw) , aw ≤ x ≤ b/w

(x/w, b] , b/w < x ≤ b.

(1)

The covering {d(x)}x∈[a,b] defines a symmetric RBR but
the relation is not transitive. The corresponding perceptual
topology is T0 but not T1, and the topology is not pseudo-
metric.

The transitivity or more more often the lack of transitiv-

ity of
αδ

≈ have been studied extensively and proven or postu-
lated in many human experiences, [2, 6, 10, 16, 26, 27, 32,
54, 61, 84, 85].

Definition 3. We will denote by ∼σ the transitive closure

of the indiscriminability relation
αδ

≈ on X. It is defined ex-
plicitly as x ∼σ y iff there exists a finite chain of Dop-

pelgängers x = x0
αδ

≈ x1
αδ

≈ x2
αδ

≈ · · ·
αδ

≈ xn = y. We
will call the relation ∼σ perceptual metamorphy and will
refer to any two inputs x ∼σ y as metamorphic. Extending
Pawlak’s terminology, [53] we call the equivalence classes
in X/∼σ (perceptually) elementary sets.

5Optimal objects and light sources have been described and studied in
colorimetry, [42, 87].

Example 2: If the indiscriminability relation is transitive,
then each d(x) is an elementary set. The perceptual topol-
ogy may be optimal (recall Example 0) or not. In the for-
mer case it is Hausdorff and in fact (X, τδ) is a discrete
manifold, in the later case the topology τδ is not T0. See
Part A.1 in the Appendix. Human visual perception pro-
vides a fundamental example where d(x) ̸= {x}. If two
images x and y differ only in unattended regions for ex-

ample due to low saliency values (cf. [92]), then x
αδ

≈ y.
Visual metamers have been studied by many authors, in-
cluding [3, 6, 9, 18, 22, 28, 37, 39, 41, 42, 51, 76, 86]. In
these studies, the input space is assumed to be endowed with
Grassmann structure (see [39]), and in particular, the indis-
criminability relation is transitive.6

We are not aware of perceptual topologies that are met-

ric. Still, every Doppelgänger y
αδ

≈ x of an input x is a
small perturbation of x in the sense that the y is a nearest
neighbor of x with respect to an appropriate metric dw (·, ·)
on X. Indeed, let the discrimination graph Γ (X, Eαδ) be
the undirected simple graph, where X is the set of vertices
and we say that there is an edge {x, y} ∈ Eαδ between the

vertices x, y ∈ X iff x
αδ

≈ y.

Definition 4. We will call the discrimination graph dis-
tance d∞ (x, y) between the vertices x and y and, in par-
ticular, d∞ (x, y) = ∞ iff x ̸∼σ y the extended per-
ceptual distance. The perceptual distance is the metric
dw : X×X → [0, 1] defined by:

dw (x, y) =
d∞ (x, y)

1 + d∞ (x, y)
,∀x, y ∈ X. (2)

The metric dw does not generate the perceptual topol-
ogy.7 It is certainly not the usual lp or any other manifold
metric used in ML.8

3.2 Indiscriminabile may not be Indiscernible
Let Φ be the space of all features of the inputs/stimuli

x ∈ X and let Φx ⊂ Φ be the set of features attributed to
x in a given context. Following [21], we say that x and y
are indiscernible, in a given context, if Φx = Φy .9 Many
researchers use the terms indiscriminability and indiscerni-

bility as synonyms. This is only accurate when
αδ

≈ is transi-
6In these studies, indiscriminable inputs are referred to as “matching”

or “metameric”, or “alike”.
7The open metric ball B̊w

1/2
(x) equals {x}, for all inputs x ∈ X. On

the other hand, the finiteness of human observations and the hypothesis of
bounded rationality suggest that biologically plausible perceptual topolo-
gies are not discrete.

8The existence of the extended metric was hinted at in [46]; it was
discussed in a related context in [65] and rediscovered and exploited in
[59]. For more discussion see Part F.1 in the Appendix.

9Leibniz discussed indiscernability and postulated the Principle/Law of
Identity of Indiscernibles, (Φx = Φy) =⇒ (x = y), in [80] and in the
third and fourth papers addressed to Samuel Clarke, [8].
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tive.10 In general, the relationship between indiscriminabil-
ity and indiscernibility is not well understood. However,
indiscernibility implies indiscriminability if {Φx}x∈X is a
perceptually discriminative feature representation, i.e.,

Φx

⋂
Φy ̸= ∅ ⇐⇒ x

αδ

≈ y. (3)

The biological plausibility of discriminative feature rep-
resentations is an open question. Still, they provide in-
sight into the structure of the perceptual topology. The
attributed discriminative features11 represent structures of
Doppelgängers. Indeed, let {Φx}x∈X be a a feature repre-
sentation and let cl(ξ) be the context-dependent semantic
cluster of inputs sharing the feature ξ ∈ Φ. Specifically,

cl(ξ) = {x ∈ X, s.t., ξ ∈ Φx}.12 (4)

In particular, if {Φx}x∈X is a discriminative feature
representation, then every attributed discriminative feature
ξ ∈ Φx is associated to, and in some way explained by, a
collection of Doppelgängers since cl(ξ) ⊂ d(x). For more
detailed discussion and examples of discriminative feature
representations see Part B in the Appendix.

4. Classifiers and Adversarial Doppelgängers.
A classifier R (with m labels) is called fully populated iff
the labeling function labelR : X → {1, . . . ,m} is sur-
jective mapping onto the range of labels {1, . . . ,m}. For
any classifier R, with m labels, we will denote by Rc

the level set of the labeling function labelR for each label
c ∈ {1, . . . ,m}.13

Definition 5. We say that x is a Doppelgänger adversar-
ial to the classifier R iff ∃y ∈ d(x) such that labelR(x) ̸=
labelR(y) and we will refer to both x and y as adversar-
ial Doppelgängers when the classifier R is clear from the
context.

A classifier R is called (perceptually) regular iff it does
not admit adversarial Doppelgängers. If R is regular, then
Dαδ = {d(x)}x∈X are R coherent coverings (as defined in
[66]).

We say that the classification problem with m-labels is
well defined if there exists a fully populated and percep-
tually regular classifier with m labels. Otherwise we say
that the classification problem with m-labels is not well de-
fined.

10See Observation 7, in Part B of the Appendix.
11A feature ξ ∈ Φ is called attributed if ξ ∈ Φx for some input x ∈

X. It is plausible that Φ = ∪
x∈X

Φx, and so all features are attributed.

However, many models do not preclude the existence of spurious latent
traits.

12The semantic cluster of inputs sharing the feature ξ ∈ Φ is defined for
any feature representation. A feature ξ is attributed in a given context, iff
cl(ξ) ̸= ∅; a feature is a hypothetical feature, when cl(ξ) = ∅.

13R is fully populated iff Rc ̸= ∅ for every label c ∈ {1, . . . ,m}.

The labeling function labelR of a regular classifier is con-
tinuous with respect to the perceptual topology τδ. Further-
more, if R is not regular and x is a point of discontinuity
of labelR : (X, τδ) → {1, . . . ,m}, then x is an adversar-
ial Doppelgänger. The discontinuity is an indication of the
cognitive disruption that occurs when one encounters some
AD.

It is well known that in some experiences perceptu-
ally unambiguous categories and hence perceptually regu-
lar classifiers do not exist. A simple example is provided by
the perceptual topology in Example 1. Indeed, in this case
X/∼σ is a singleton, i.e, every two inputs are metamorphic
and hence there is a only one elementary set which equals
the whole X. Therefore, every classifier with two or more
labels must have adversarial Doppelgängers.14

Clearly, no amount of “robust training” will get rid of
adversarial examples of a classifier with a surjective label-
ing function labelR : (X, τδ) → {1, . . . ,m} if X cannot be
broken into m perceptually unambiguous categories. In the
rest of this section we investigate the non existence, exis-
tence and internal structure of regular classifiers.

In Part D of the Appendix we show a specific example of
a well defined classification problem and discuss the actual
regular classifier.

Example 3: If
αδ

≈ is transitive then for every number of
labels m smaller than the number of equivalence classes

card
(
X/
αδ

≈
)

there exists a fully populated regular classi-

fier with m labels, but if the number of labels m is bigger

than card
(
X/
αδ

≈
)

then every fully populated classifier with

m labels must admit adversarial Doppelgängers.

Example 3 indicates that if the transitive closure ∼σ is
trivial,i.e., ∼σ= X×X, then no label is safe. Namely:

Observation 1. If the transitive closure ∼σ of the indis-

criminability relation
αδ

≈ is trivial, then every fully popu-
lated classifier with two or more classes admits adversar-
ial Doppelgängers. In particular, let R be a fully populated
classifier with a surjective labeling function labelR : X →
{1, 2, . . . ,m}, then for every label c there exist adversarial
Doppelgängers x(c) ∈ X and x∗(c) ∈ d(x(c)) such that
c = labelR (x(c)) and labelR (x∗(c)) ̸= labelR (x(c)).

The proof follows from the fact that every finite chain
of Doppelgängers connecting points that are labeled differ-
ently by a classifier must contain a pair of adversarial Dop-
pelgängers. See Lemma 2 in Appendix Section C.

A straight-forward argument shows that if R is a per-
ceptually regular fully populated classifier, then x ∈ Ri iff

14See Lemma 3 and the short argument that follows it in Appendix, Sec-
tion C.
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[x]∼σ ⊂ Ri, i.e., each level set is a disjoint union of ele-
mentary sets [x]∼σ . The pigeonhole principle yields:

Observation 2. If the number of equivalence classes
card (X/∼σ) ≥ 2, then for every natural number 2 ≤
m ≤ card (X/∼σ) there exists a perceptually regular fully
populated classifier with m labels. However, if m >
card (X/∼σ), then every fully populated classifier with m
labels must have adversarial Doppelgängers.

In particular, if p = card (X/∼σ) ≥ 2 is finite, then
for every natural number m ≤ p there are exactly S(p,m)
regular fully populated classifiers with m classes. Here
S(p,m) is the Sterling number of the second kind.

Observation 2 shows that the problem of finding a fully
populated perceptually unambiguous classifier R with pre-
cisely m labels is not well defined if card (X/∼σ) < m and
vice versa that the same problem is well defined for every m
such that card (X/∼σ) ≥ m. In the former case solutions
do not exist while in the later case solutions exist and each
class segment Ri is a union of equivalence classes [x]∼σ ,

Ri =
⋃

x∈Ri

[x]∼σ
. (5)

The existence and properties of discriminative feature
representations provide insight whether a classification
problem is well defined. In particular, if there exists a dis-
criminative feature representation and the set of attributed
features is finite, then every classification problem, whose
number of labels exceeds the number of attributed features,
is not well defined. See Observation 9 in Appendix Part
B.2. Further discussion of the structure of class segments
of a regular classifier including the class/category core and
fringe are discussed in Section 6.

5. Accuracy and Adversarial Doppelgängers.
The accuracy-adversarial robustness trade off observed and
discussed in the literature involves various measures of ac-
curacy [48, 50, 71, 78, 90]. We will discuss classification
accuracy. We will show that there is a strong relationship
between classifier accuracy and vulnerability to adversar-
ial Doppelgängers. In particular, we will identify (percep-
tual) scenarios in which low accuracy classifiers are criti-
cally vulnerable to adversarial Doppelgänger attacks but on
the other hand all high accuracy classifiers can be fooled
only by Doppelgängers.

5.1. The Probabilistic Setup.
We will assume that (X,F , µ) is a probability measure
space equipped with perceptual topology τδ generated by an

indsicriminability relation
αδ

≈ such that for every x ∈ X the
set of Doppelgängers d(x) and the equivalence class [x]∼σ

are events, (d(x) ∈ F and [x]∼σ
∈ F , ∀x ∈ X) .

In the rest of this section we will assume that the classi-
fication problem with m ≥ 2 labels is well defined and let
Ω be a perceptually regular classifier; we will reserve the
notation R to denote any classifier (R may or may not be
perceptually regular) such that Ri ∩ Ωi, i = 1, . . . ,m are
the true positives (of class i). To define accuracy we will
focus only on regular models and classifiers s.t., Ωi ∈ F
and Ri ∈ F , for all i = 1, . . . ,m. The accuracy of the
classifier R defined as

accuracyΩ(R) = µ(R1 ∩ Ω1) + · · ·+ µ(Rm ∩ Ωm). (6)

Furthermore let us assume that µ(Ωi) > 0 for every i =
1, . . . ,m and thus we can define recall rates

ρi =
µ(Ri ∩ Ωi)

µ(Ωi)
, i = 1, . . . ,m (7)

Bounds on the recall rates imply bounds on the accuracy.
Namely if

ρ ≤ ρi ≤ ρ̄, i = 1, . . . ,m

then since µ is a probability measure on X , and

µ(Ri ∩ Ωi) = ρiµ(Ωi), i = 1, . . . ,m (8)

we get

ρ ≤ accuracyΩ(R) =

m∑
i=1

ρiµ(Ωi) ≤ ρ̄.

5.2. Are Trade-Offs Possible?
Let i(x) ∈ {1, . . . ,m} be the object class label of x ∈ X
i.e., x ∈ Ωi(x) and

k̄(Ω) = sup
x∈X

(
µ
(
Ωi(x)

)
µ(d(x))

)
. (9)

Every classifier whose recall rates do not exceed 1/k̄(Ω)
is totally unsafe in the sense that every correctly classified
input admits adversarial Doppelgängers. Specifically:

Observation 3. Suppose that the sets of Doppelgängers
are not negligible and inf

x∈X
µ(d(x)) > 0, and let Ω =

{Ω1, . . . ,Ωm} be a regular world model and let R =
{R1, . . . , Rm} be a classifier whose recall rates are strictly
smaller than 1/k̄(Ω) and so

µ
(
Ri(x) ∩ d(x)

)
µ(d(x))

≤ ρ̄k̄(Ω) < 1. (10)

Thus every correctly classified input x has adversarial Dop-
pelgängers.
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Observation 3 shows that sacrificing accuracy may lead
to increasing the probability of encountering adversarial
Doppelgängers and in fact that there is no trade off for ac-
curacies that are sufficiently low provided that all sets of
Doppelgängers have positive measure.

The lack of an opportunity for a trade-off is even more
striking when one tries to improve high recall rate (and
hence high accuracy) classifiers.

Observation 4. 15 If inf
x∈X

µ(d(x)) > 0, and let R =

{R1, . . . , Rm} be a classifier whose recall rates are suffi-
ciently high so that ρ > 1− 1/k̄(Ω). i.e.,(

1− ρ
)
k̄(Ω) < 1. (11)

Then every misclassified input x is an adversarial Dop-
pelgänger.

Definition 6. We say that a classifier has a hypersensitive
behavior if every misclassified input is an adversarial Dop-
pelgänger.

For classifiers with hypersensitive behavior adversarial
robustness can only be improved by improving accuracies,
i.e., by eliminating misclassification. Observation 4 shows
that if µ(d(x)) > 0, for all inputs x ∈ X, then all classi-
fiers with sufficiently high accuracy are either regular (when
accuracy equals to one) or have hypersensitive behavior.

In summary adversarial Doppelgänger robustness - accu-
racy trade-off may happen for classifiers with middling ac-
curacy rates or when there are inputs whose Doppelgängers
are negligible in measure.

6. Life without borders.

A important property of the perceptual topology is that the
if a classifier Ω is perceptually regular, then it “imposes an
open [topological] borders policy”, that is, ∂Ωc = ∅ for
every label c. Linguists and psychologists, have observed
and postulated that natural perceptual and semantic cate-
gories are borderless. See for example [64]. Class/decision
boundaries are studied and exploited in many works on clas-
sifiers, and in particular on adversarial robustness. These
boundaries are artifacts of the metric topology used by the
researchers, they are not perceptual phenomena.

However, we are all familiar with the idea that some
stimuli are more intrinsic/representative to/of a given
class and at the same time frequently there are ob-
jects/stimuli/inputs that, while they are firmly with in the
class, are less representative/share few(er) features com-
pared to the rest of the elements in the class, that is, they
”are/belong to the fringe” of the class.

15The proof is in Appendix Part E.

Definition 7. Let s be a similarity scale, i.e., a function
s : X ×X → R such that s(x, x) ≥ s(x, y),∀x, y ∈ X as
in [79], [45] (measuring similarity within a fixed context)
and [40].

The values s(x, x) can be and sometimes are used to rep-
resent the salience or equivalently importance of the input
within X, see for example [79]. The similarity scale pro-
vides a method to quantify the affinity of a input/stimulus
to a given measurable subset D ⊂ X and the notions of
prototype and fringe. The (s-)affinity of x with a measur-
able set D is defined as

P (x,D) =

∫
D

s(x, y) (12)

This is a straightforward generalization of the notion of
prtototypicality defined in [79].

Definition 8. x ∈ D is called a prototype of D (with re-
spect to the integrable similarity scale s : X × X → R) if

P (x,D) = sup
z∈D

P (z,D) (13)

x ∈ D is called a fringe element of D (with respect to
the integrable similarity scale s : X×X → R) if

P (x,D) = inf
z∈D

P (z,D) (14)

One is tempted to think of prototypes as the stimuli that
are “clearest cases, best examples”. “easy to tell apart”
and to ”be a good representative” and hence that optimize
salience [13, 31, 63, 64, 79]. However, clearly there is no
reason to expect that a stimulus that is unlikely to be ob-
served/encountered would be selected as a prototype. The
examples below show that prototypes and fringes are ob-
tained by optimizing a mixture of the frequency of appear-
ance (likelihood to encounter) and salience.

The core and fringe sets may be empty. In practice one
is often satisfied with finding elements that may not be true
prototypes but belong to the M -core, i.e., have affinity ex-
ceeding a fixed threshold M . Similarly, elements whose
affinity is below a given threshold τ belong to the τ -fringe.

Many perceptual and cognitive processes exploit the in-
telligent agents’ abilities to measure and/or compare the
salience/importance of features. In some simple cases it is
expected and it even might be true that salience/importance
is a probability measure fΦ on on the space of (all possi-
ble) features Φ and the feature representations Φx are mea-
surable subsets of Φ. In many accounts including Tver-
sky’s feature contrast model [79] the salience scale fΦ is a
context dependent, nonnegative function defined on a col-
lection Υ(Φ) of subsets of Φ which is closed under fi-
nite unions and intersections, and set differences. Further-
more, Φx ∈ Υ(Φ),∀x ∈ X; and the non-negative func-
tion fΦ is feature additive, i.e, fΦ(A ∪ B) = fΦ(A) +
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fΦ(B), if A ∩B = ∅. The value f(x) = fϕ(Φx),∀x ∈ X
is called the salience/prominence of the input x, [79]. We
will call a (Tversky) salience scale fΦ perceptually reg-
ular if the prominence/salience function f(x) = fϕ(Φx)
is perceptually regular. We will call a perceptually regu-
lar salience scale fΦ fully deployable if it can be used to
judge the distinguishing features of inputs/stimuli. In par-
ticular, we can use fΦ(Φx \ Φy) to discriminate x from
y. Thus if fΦ is fully deployable, then fΦ(Φx \ Φy) = 0

and fΦ(Φy \ Φx) = 0 whenever x
αδ

≈ y or equivalently

fΦ(Φx ∩ Φy) = f(x) if x
αδ

≈ y.

The following special case provides a particularly useful
insight into the nature of prototypes and the possible
internal structure of categories as discussed in [64].

Example 4: If s is a contrast similarity [79] such that
fΦ(Φx) = s(x, x)/θ is fully deployable, θ ∈ (0,+∞), and
furthermore, fΦ(Φx∩Φy) = fΦ(Φx) for every pair x ∼σ y
and Φx ∩ Φy = ∅ if x ̸∼σ y, then for every regular class
D ⊂ X, and every x ∈ D we get

P (x,D) = Θµ(D)

(
µ([x]∼σ

)

µ(D)
− α

Θ

)
fΦ(Φx)− βIΦ(D),

(15)
where Θ = (α + β + θ) and α, β, and θ are non-negative
constants. In particular, if D is a finite union of equivalence
classes ζj ∈ X/∼σ , then both prototypes and fringe ele-
ments exist. Furthermore, if x is prototype/fringe then so
are all stimuli in its component ζ = [x]∼σ

. Similar state-
ments hold for M-core and τ -fringe elements.

If the class D is fixed, then
µ ([x]∼σ

)

µ(D)
is just the proba-

bility to encounter (and learn) a set of stimuli, and fΦ(Φx)
can be interpreted as the level of prominence. So the opti-
mization process involves learning prominent examples that
can be encountered reasonably often. Thus in this case the
prototype does not fall in either of the two main branches of
prototypes, that is inputs that represent the central tendency
in the regular class vs. prototypes as highly ”representative
exemplar(s) of a category”, see [15], page 52.

More generally, when the similarity scale is bounded, for
example, this is true for real similarity measures deployable
by humans, then, as predicted by modern prototype theory,
each perceptually regular subset D ⊂ X corresponding to
real (natural) categories created and analyzed by real intel-
ligent agents consists of core elements (possibly M-core), a
layer of fringe (possibly τ -fringe) elements, and layers of
elements of various levels of intermediate affinity with D.
In Part I of the Appendix we introduce class invariants of
regular classifiers including structural entropy, expected in-
dex of coincidence, and importance.

7. Quantifying Doppelgänger Vulnerability.
By definition if a classifier R is not regular, then it is vulner-
able to adversarial Doppelgängers attacks, that is, for some

input x there exists a(x)
αδ

≈ x and such that labelR (x) ̸=
labelR (a(x)). In particular, we say that R is conceptually
ambiguous at x and we call the set

Α(R) = {x ∈ X : ∃y
αδ

≈ x and labelR (x) ̸= labelR (y)}
(16)

the region of conceptual ambiguity. When (X,µ) is a
probability measure space and µ(d(x)) > 0, we use the
probability distribution of labels at x:

pj(x) =
µ (Rj

⋂
d(x))

µ(d(x))
, j = 1, . . . ,m (17)

and the conceptual entropy of R at x defined as

HR(x) = −
m∑
j=1

pj(x) log(pj(x)) (18)

to detect whether R is conceptually ambiguous at x (i.e.,
HR(x) > 0), and to quantify the likelihoods of various ad-
versarial Doppelgänger attacks.

Definition 9. Let R be a classifier and â : X → X, we
will call the inner measure of the set {x : labelR (â(x)) ̸=
labelR (x)} the R-fooling rate of the mapping â, and we
will denote it by FR(â). A mapping â : X → X is called
an adversarial Doppelgänger attack to a classifier R if

and only if â(x)
αδ

≈ x, ∀x ∈ X, and the R-fooling rate
FR(â) is positive.

The set {x : labelR (â(x)) ̸= labelR (x)} is a subset of
the region of conceptual ambiguity of R, which yields an
upper bound on the R-fooling rate by the outer measure of
A(R):

FR(â) ≤ µ∗(A(R)). (19)

In specific scenarios it is possible to get an upper bound on
the size, possibly the outer measure, of A(R) which in turn
shows that the R-fooling rates are bounded away from one.
See Example 11 in Part J in the Appendix.

Adversarial Doppelgänger attacks are distinct from the
adversarial attacks studied to date. The universal adversar-
ial attacks, [47], can achieve fooling rates as close to one as
one desires. As illustrated above, adversarial Doppelgänger
attacks may not be able to reach fooling rates that are too
high. On the other hand in some cases, the optimal fooling
rate of one can be achieved.

Observation 5. If R is conceptually ambiguous at every
x ∈ X, e.g., when HR(x) > 0 for every x ∈ X, then there
exists an adversarial Doppelgänger attack with R-fooling
rate equal to one.
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Indeed, if R is conceptually ambiguous at every x ∈ X,
then {y ∈ d(x) : labelR (y) ̸= labelR (x)} ̸= ∅, for ev-
ery x, and therefore the axiom of choice implies that there
exists a map â : X → X such that â(x) ∈ {y ∈ d(x) :
labelR (y) ̸= labelR (x)}, for every x ∈ X . It turns out that
in practice there may be many classifiers that are conceptu-
ally ambiguous at every input.

Example 5: Consider the case when
αδ

≈ is transitive, i.e.,
αδ

≈
equals its transitive closure ∼σ , e.g, when X is equipped
with a Grassmann structure as in [39], and there exist
at least two different equivalence classes. Thus binary
classification is a well defined problem. There exist at
least

∏
ζ∈X/∼σ

{U ⊂ ζ : 0 < µ(U) < µ(ζ)} worth of fully-

populated binary classifiers which are conceptually ambigu-
ous at every input x ∈ X.

The last example and Observation 5 show that even high
accuracy classifiers can be vulnerable to adversarial Dop-
pelgänger attacks with fooling rate equal to one.

We conclude this section with a warning that popular
methods to deal with unseen data, including marking miss-
ing data and imputation, may introduce conceptual am-
biguity. For example, if a model is trained on a data set
T ⊂ X that includes only parts of some elementary sets,
then adding a class label NA to label unseen data can com-
promise adversarial Doppelgänger robustness. Indeed, let
S be a nonempty set of training data such that S ⊊ ζ ∈
X/∼σ . There exists, x ∈ S such that d(x) \ S ̸= ∅. Every
z ∈ d(x)\S, labeled as NA, is an adversarial Doppelgänger
of x.

8. Discussion and Conclusions.
A central focus of this paper is the adversarial Dop-
pelgängers phenomenon, where classifiers assign different
labels to inputs that humans cannot discriminate. Until now,
this phenomenon has not been well understood, possibly
due to the limitations of the distance-based analysis that has
dominated the field. In the “absence of a distance measure
that accurately captures the perceptual differences between
a source and adversarial example many researchers have de-
cided to use the ℓp distance”, [29]. The available empirical
observations and models - both perceptual and cognitive, in-
cluding those based on just noticeable differences - provide
no evidence that biologically plausible perceptual topolo-
gies are metric. This paper advances the understanding of
context-related perceptual topologies in input spaces, which
are rarely metric. Our investigation shows that adversar-
ial Doppelgängers are very close to each other with respect
to the context-relevant perceptual metric dw, this metric is
not a manifold metric and does not generate the percep-
tual topology. This distinction highlights the shortcomings
of traditional, purely manifold metric-based representations
and analysis of perceptual spaces.

The machine learning community has expended signif-
icant efforts aimed to build adversarially robust classifiers.
This may be a march towards a bridge too far. Philoso-
phers, experimental psychologists, and linguists, are well
aware that many classification problems are not well de-
fined due to perceptual ambiguities. Any fully populated
classifier for a classification problem that is not well defined
is doomed to be a victim of the adversarial Doppelgängers
phenomenon. Our results reveal the structure of adversarial
Doppelgänger-robust classifiers, regular classifiers, and cri-
teria and methods to establish whether a classification prob-
lem is well defined or not. The new understanding of the
structure of regular classifiers, the analysis of zones of am-
biguity, and the methods to measure and bound the fooling
rates of adversarial Doppelgänger attacks provide guidance
on how to design adversarially robust training to improve
classifiers that are not regular. In addition to revealing the
impossibility to use accuracy-robustness trade-offs in many
scenarios, including robustifying hypersensitive classifiers,
our analysis indicates that marking unseen data can jeopar-
dize robustness if the training data contains only a proper
subset of an elementary set.

We explore feature representations, the related concept
of indiscernibility introduced by Leibniz, and their connec-
tion to indiscriminability. This investigation reveals the na-
ture of class prototypes and fringe inputs, and how the size
of a discriminative feature representation can be used to de-
termine whether a classification problem is not well defined.
Indiscernibility and indiscriminability, are often conflated
in the machine learning literature. Elucidating the distinc-
tion between them is vital for understanding the limitations
of current classifiers and addressing the shortcomings in
their design.

Our discussion of the Doppelgängers phenomenon
brings to light a significant divergence between human
perception and artificial neural network models, including
feedforward models, RNN models and ResNet. The in-
discriminability relations of these artificial neural network
models, studied in [18], are transitive16 while it is well ac-
cepted, that, in many contexts, the human indiscriminability
relation is not transitive.

The results and insights gained from this investigation
point to concrete warnings and actionable steps for improv-
ing the training and testing of classifiers.

16See Part K in the Appendix.
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