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Abstract

Recent advancements in neural 3D representations, such as
neural radiance fields (NeRF) and 3D Gaussian splatting
(3DGS), have made accurate estimation of the 3D structure
from multiview images possible. However, this capability is
limited to estimating the visible external structure, and it is
still difficult to identify the invisible internal structure hid-
den behind the surface. To overcome this limitation, we ad-
dress a new task called structure from collision (SfC), which
aims to estimate the structure (including the invisible inter-
nal one) of an object from the appearance changes at col-
lision. To solve this task, we propose a novel model called
SfC-NeRF, which optimizes the invisible internal structure
of the object through a video sequence under physical, ap-
pearance (i.e., visible external structure)-preserving, and
keyframe constraints. In particular, to avoid falling into
undesirable local optima owing to its ill-posed nature, we
propose volume annealing, i.e., searching for the global op-
tima by repeatedly reducing and expanding the volume. Ex-
tensive experiments on 115 objects involving diverse struc-
tures (i.e., various cavity shapes, locations, and sizes) and
various material properties reveal the properties of SfC and
demonstrate the effectiveness of the proposed SfC-NeRF.1

1. Introduction
Learning 3D representations from multiview images is a
fundamental problem in computer vision and graphics, with
applications across various domains, including augmented
and virtual reality, gaming, robotics, and autonomous driv-
ing. Recent advancements in neural 3D representations,
such as neural radiance fields (NeRF) [46] and 3D Gaussian
splatting (3DGS) [32], have enabled accurate estimation of
3D structures from multiview images and yielded impres-
sive results in novel view synthesis.

However, this benefit is limited to the estimation of the
visible external structure, and it is still difficult to esti-
mate the invisible internal structure hidden behind the sur-
face.2 For example, in Figure 1, the two objects have dif-

1The project page is available at https://www.kecl.ntt.co.
jp/people/kaneko.takuhiro/projects/sfc/.

2More strictly, when an object is transparent or translucent, it is possi-
ble to estimate the internal structure hidden behind the surface using a vol-
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Figure 1. Concept of structure from collision (SfC). (a) and (c)
Examples of training images taken from a certain viewpoint. (b)
and (d) Cross-sectional views of the internal structures cut per-
pendicular to the viewpoint. The score indicates the chamfer dis-
tance (×103↓) between the ground truth and estimated particles
(the smaller, the better). Here, two objects appear to be identical
in static images (1) but actually have different internal structures
(3). (1) A static 3D representation learning model cannot distin-
guish the difference in internal structures (b)(d) because there is no
difference in appearance in static images (a)(c). (2) To overcome
this limitation, we address SfC. As shown in (a) and (c), changes
in shape and appearance during collision are influenced by the in-
ternal structure. We utilize this property to identify the internal
structure of the object. Although it is still difficult to identify per-
fectly owing to its ill-posed nature, our method has succeeded in
capturing the bias in the location of the holes (b)(d).

ferent internal structures, as shown in Figure 1(3)(b)(d).
However, they are identical in static images, as shown in
Figure 1(1)(a)(c). Consequently, a standard static neural
3D representation learning model (e.g., the voxel-based
NeRF [62] used in this example) learns the same internal

ume rendering-based 3D representation learning model (e.g., NeRF [46])
because it represents appearance on the basis of cumulative volume densi-
ties. However, this effect is limited when an object is nontransparent. This
study aims to identify the internal structure even in the latter case.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16314



structures for all objects (Figure 1(1)(b)(d)) and ignores the
difference in internal structures. This misestimation of the
internal structure can cause issues in practical applications,
such as reproducing and simulating objects in virtual and
augmented reality, as well as controlling forces during in-
teractions with objects in robotics.

To overcome this limitation, we address a novel task
called structure from collision (SfC), the objective of which
is to identify the structure (including the invisible internal
one) of an object based on the observations at collision.
This is motivated by the fact that the changes in appearance
and shape at collision are influenced by the internal struc-
tures. For example, as shown in Figure 1(2), when there is a
hole inside the sphere on the left side (Figure 1(3)(b)) or on
the upper side (Figure 1(3)(d)), the sphere becomes crum-
pled in shape when it hits the ground. We consider using
this property to identify the internal structure of the object.

We formulate SfC as the task of optimizing the invisible
internal structures of an object under physical, appearance
(i.e., visible external structure)-preserving, and keyframe
constraints. Specifically, we implement this approach us-
ing SfC-NeRF, which consists of four components.

(1) Physical constraints. SfC is ill-posed because the ob-
servable data represent just one of many possible solutions.
To address this, we narrow the solution space by incorpo-
rating physical constraints, specifically through the use of
physics-augmented continuum NeRF (PAC-NeRF) [35].

(2) Appearance-preserving constraints. Owing to recent
advancements in neural 3D representations, learning visible
external structures is easier than learning invisible internal
ones. Based on this, we first learn external structures using
a standard static neural 3D representation learning model
(voxel-based NeRF [62] in practice) using the first frame
(e.g., Figure 1(1)). Then, we optimize the internal structures
using a video sequence (e.g., Figure 1(2)). In the second
step, to avoid damaging to the external structures learned in
the first step when fitting to the entire video, we introduce
appearance-preserving constraints, which optimize the in-
ternal structures while preserving the external ones.

(3) Keyframe constraints. In a collision video, a spe-
cific frame (for example, immediately after the collision) is
effective for explaining the shape change caused by the col-
lision. Based on this, we incorporate keyframe constraints
to strengthen shape learning at the keyframe.

(4) Volume annealing. To prevent becoming stuck in un-
desirable local optima owing to the existence of multiple so-
lutions, we develop volume annealing, in which the global
optimum is searched for through an annealing process that
repeatedly reduces and expands the volume.

We comprehensively evaluated our method on a dataset
containing 115 objects with diverse structures (i.e., vari-
ous cavity shapes, locations, and sizes) and various ma-
terial properties. Our results reveal the properties of
SfC and demonstrate the effectiveness of SfC-NeRF. Fig-
ure 1(2)(b)(d) shows examples of the results obtained using

SfC-NeRF. Although it is challenging to perfectly match the
internal structures to the ground truth because of the high
degree of freedom in the solution, SfC-NeRF successfully
identifies the deviation of the hole inside the sphere.

Our contributions can be summarized as follows:
• We address a novel task called SfC, whose aim is to iden-

tify structures (including the internal ones) from the ap-
pearance changes at collision.

• To solve SfC, we propose SfC-NeRF, which consists of
four components: physical, appearance-preserving, and
keyframe constraints, and volume annealing.

• Through extensive experiments on 115 objects, we
demonstrate the effectiveness of SfC-NeRF while clarify-
ing the properties of SfC. We also provide detailed results
and implementation details in the Supplementary Mate-
rial. Video samples are available at the project page.1

2. Related work
Neural 3D representations. 3D representation learning is
a fundamental problem in computer vision and graphics.
Recent advancements in neural 3D representations, such as
NeRF [46] and 3DGS [32], have lead to significant break-
throughs, with various derivative models being proposed.
These models can be roughly divided into three categories
on the basis of their objectives. (1) Improvement of quality
of rendered images or reconstructed 3D data [4–6, 24, 27,
36, 38, 42, 47, 66, 73, 78, 79], (2) improvement of efficiency,
i.e., speeding up and reducing memory usage in training or
inference [3, 10, 12, 16, 19, 22, 23, 30, 33, 34, 41, 43, 48–
50, 56, 57, 59, 61, 62, 67, 70, 77], and (3) incorporation of
other modules or functionalities, such as generative mod-
els [7–9, 11, 14, 18, 20, 29, 39, 51, 53, 58, 60, 63, 64, 69,
72, 76, 80] and physics/dynamics [1, 2, 13, 15, 17, 21, 28,
31, 35, 37, 44, 45, 52, 54, 55, 65, 71, 74, 75]. This study
focuses on the third category, aiming to discover internal
structures on the basis of dynamic observations under phys-
ical constraints. As these models are mutually developed,
applying our approach to other models presents an interest-
ing direction for future research.
Dynamic neural 3D representations. Dynamic neural 3D
representations can be classified into two categories based
on whether they incorporate physics. (1) Non- (or weak)
physics-informed models [17, 37, 44, 45, 52, 54, 65, 74, 75]
and (2) physics-informed models [1, 2, 13, 15, 21, 28, 31,
35, 55, 71]. The first category offers flexibility and can
be applied to scenes or objects that are difficult to describe
physically. However, it requires a large amount of training
data and lacks interpretability owing to its fully data-driven
and black-box natures. The second category, by introduc-
ing physics, provides better interpretability and narrows the
solution space. However, it loses flexibility and is difficult
to apply to scenes or objects that cannot be explained by
physics. This study adopts a physics-informed model (the
second category strategy) because SfC is an ill-posed prob-
lem, and physics plays an important role in narrowing the
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solution space. However, in the future, it would be interest-
ing to explore how the first category strategy could be used
by expanding data and developing new theories.

Physics-informed neural 3D representations. Physics-
informed neural 3D representations can be divided into two
categories based on the problem setting. (1) Forward engi-
neering [15, 28, 55, 71], where a physics-informed model
is optimized to fit static scenes or objects, and then physics-
informed dynamic simulations or interactive manipulations
are performed. In most cases, the inside of the object is
assumed to be filled, and internal factors, such as physical
properties, are manually adjusted to achieve visually plau-
sible results. (2) Reverse engineering [1, 2, 13, 21, 31, 35],
which focuses on system identification—identifying inter-
nal factors (e.g., physical properties) from dynamic obser-
vations (i.e., video sequences). This study falls into the sec-
ond category because it aims to reverse-engineer the inter-
nal structure, which is hidden but essential for describing
the system, from collision videos.

Reverse engineering is generally ill-posed because the
observable data represent just one of many possible solu-
tions. To address this issue, methods in this category typ-
ically impose assumptions on internal factors that are not
optimized. Previous studies have made various assump-
tions about the internal structure, which is the main focus
of this study. For example, [13] assumes that the object is
translucent, like smoke, allowing part of the internal struc-
ture to be visible. Other studies [1, 2, 21, 31, 35] consider
nontransparent objects but assume that the interior is filled.
Consequently, nontransparent and unfilled objects have not
been sufficiently explored. Therefore, this study focuses on
such objects. It is important to note that, as with conven-
tional problems, solving SfC is challenging without mak-
ing any assumptions. In this study, we assume that certain
internal factors, such as physical properties, are known in
advance. Even with this assumption, as shown in Figure 1
(where physical properties, such as mass, Young’s modu-
lus, and density, are identical), multiple solutions still exist,
making SfC a challenging problem. The details of the prob-
lem settings are discussed in Section 3.1.

3. Method
3.1. Problem statement
We begin by defining the problem of SfC. Given a set
of multiview videos in which objects collide (e.g., Fig-
ure 1(2)(a)(c)), the objective of SfC is to identify the struc-
ture of the object, including its invisible internal one, based
on the appearance changes before and after the collision.
Formally, the training data, i.e., a set of multiview videos,
are defined as a collection of ground truth color observa-
tions Ĉ(r, t). Here, r ∈ R3 is a camera ray defined as
r(s) = o+ sd, where o ∈ R3 is the camera origin, d ∈ S2
is the view direction, and s ∈ [sn, sf ] is the distance from
o. During training, r is sampled from R̂, a collection of

camera rays in the training data. t ∈ {t0, . . . , tN−1} rep-
resents the time, where N is the total number of frames.
Given these data, we aim to estimate the 3D structure (both
external and internal ones) of the object PP (t0), which cor-
responds to the ground truth P̂P (t0). Here, we represent
the 3D structures as particle sets, PP (t0) and P̂P (t0), as
shown in Figure 1(b)(d). Note that, during training, only the
external appearance Ĉ(r, t) can be observed, while P̂P (t0),
which includes the internal structure, is not observable.

As discussed in Sections 1 and 2, SfC is an ill-posed
problem with multiple solutions. Internal structures and
physical properties, such as Young’s modulus, have a mutu-
ally dependent relationship because both can explain the re-
lationship between strain and stress. For example, a highly
elastic object can be created either by making the object hol-
low or by using soft materials. To address this issue, PAC-
NeRF [35] optimizes the physical properties on the assump-
tion that the inside of the object is filled. In contrast, we
address a complementary problem, namely optimizing the
internal structure on the assumption that the physical prop-
erties are known. Specifically, we assume that the physical
properties related to the material (e.g., Young’s modulus Ê,
Poisson’s ratio ν̂, and density ρ̂) and mass m̂ are known.
Notably, even with this assumption, SfC remains a challeng-
ing problem because multiple internal structures can satisfy
the same set of physical properties, as shown in Figure 1.

3.2. Preliminary: PAC-NeRF
As explained in the previous subsection, the problem set-
tings differ between the PAC-NeRF study [35] and this
study. However, since our model uses PAC-NeRF to de-
scribe the physics, we briefly review PAC-NeRF here. PAC-
NeRF is a variant of NeRF that bridges the Eulerian grid-
based scene representation [62] with Lagrangian particle-
based differentiable physical simulation [26] for continuum
materials, such as elastic materials, plasticine, sand, and flu-
ids. PAC-NeRF obtains this functionality using three com-
ponents: a continuum NeRF, a particle–grid interconverter,
and a Lagrangian field.
Continuum NeRF. Continuum NeRF is built upon dynamic
NeRF (NeRF for a dynamic scene) [54]. In the dynamic
NeRF, the volume density field and color field for position
x, view direction d, and time t are defined as σ(x, t) and
c(x,d, t), respectively. On this basis, the color of each pixel
C(r, t) is rendered using volume rendering [46],

C(r, t) =

∫ sf

sn

Tr(s, t)σ(r(s), t)c(r(s),d, t)ds, (1)

Tr(s, t) = exp

(
−
∫ s

sn

σ(r(u), t)du

)
. (2)

This model can be trained using a pixel loss.

Lpixel =
1

N

N−1∑
i=0

1

|R̂|

∑
r∈R̂

∥C(r, ti)− Ĉ(r, ti)∥22. (3)
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Dynamic NeRF is extended to continuum NeRF to describe
the dynamics of continuum materials. This is achieved by
applying the conservation laws to σ(x, t) and c(x,d, t):

Dσ

Dt
= 0,

Dc

Dt
= 0, (4)

where Dϕ
Dt = ∂ϕ

∂t + v · ∇ϕ for an arbitrary time-dependent
field ϕ(x, t). Here, v is the velocity field and obeys mo-
mentum conservation for continuum materials:

ρ
Dv

Dt
= ∇ ·T+ ρg, (5)

where ρ indicates the physical density field, T is the inter-
nal Cauchy stress tensor, and g is gravitational acceleration.
This equation can be solved in a differentiable manner via a
differentiable material point method (DiffMPM) [26].
Particle–grid interconverter. DiffMPM is a particle-based
method that conducts simulations in a Lagrangian space.
However, these particles do not necessarily lie on the ray,
making rendering difficult. Considering this, PAC-NeRF
performs rendering in an Eulerian grid space with a voxel-
based NeRF [62] and bridges these two spaces using grid-
to-particle (G2P) and particle-to-grid (P2G) conversions:

FP
p ≈

∑
i

wipFG
i , FG

i ≈
∑

p wipFP
p∑

p wip
, (6)

where FX = {σX(x, t), cX(x,d, t)} for X ∈ {G,P},
where G and P represent Eulerian and Lagrangian views,
respectively. When FX is used with a subscript, i.e., FX

x

(x ∈ {i, p}), subscripts i and p indicate the grid node and
the particle index, respectively. wip is the weight of the
trilinear shape function defined at i and evaluated at p.
Lagrangian field. The physical simulation and rendering
pipeline in PAC-NeRF proceeds as follows: (1) Volume
densities and colors are initialized over the first frame of
the video sequence in an Eulerian grid field FG′

(t0). Here,
we use superscript G′ to distinguish FG′

from FG used in
Step (4). (2) Using the G2P process, FG′

(t0) is converted
to a Lagrangian particle field FP (t0). In this step, particles
PP (t0) are sampled at intervals of half of the grid, i.e., ∆x

2
(where ∆x is the grid size), with random fluctuations. The
alpha value (or amount of opacity) αP

p is calculated for each
particle by αP

p = 1− exp(−softplus(σP
p )), and a particle is

removed if αP
p < ϵ (ϵ = 10−3 in practice). (3) The particle

field in the next step, FP (t1), is calculated from FP (t0)
via DiffMPM [26], where t1 = t0 + δt, and δt is the dura-
tion of the simulation time step. Similarly, the particle field
in t, FP (t), is calculated for t ∈ {t0, . . . , tN−1}. (4) Us-
ing the P2G process, FP (t) is converted to an Eulerian grid
field FG(t). (5) C(r, t) is rendered based on FG(t) using
voxel-based volume rendering [62].

During training, two-step optimization is conducted. (i)
FG′

(t0) is initially optimized using the first frame of the
video sequence by conducting the above process (1)–(5) for
t = t0. (ii) Physical properties, such as Young’s modulus
E and Poisson’s ratio ν, are optimized for the entire video
sequence by conducting the above process (1)–(5) for t ∈
{t0, . . . , tN−1}. In both optimizations, Lpixel (Equation 3)
is used as the objective function.

3.3. Proposal: SfC-NeRF
Similar to PAC-NeRF, SfC-NeRF performs two-step opti-
mization, as shown in Figure 2. The first-step optimiza-
tion (Figure 2(i)) is the same as that in PAC-NeRF; that is,
FG′

(t0) is initially optimized using the first frame of the
video sequence. In this step, the filled object is learned,
as shown in Figure 1(1). In contrast, the second step of
optimization (Figure 2(ii)) differs owing to the difference
in the optimization target. In PAC-NeRF, physical proper-
ties are optimized in this step, whereas in SfC-NeRF, the
internal structure is optimized. Specifically, as explained
in the previous section, we obtain particles PP (t0) based
on σP (t0), which is calculated from σG′

(t0) (Steps (1) and
(2)); therefore, we select σG′

(t0) as an optimization tar-
get.3 In particular, we formulate SfC as a problem of op-
timizing σG′

(t0) under physical, appearance (i.e., external
structure)-preserving, and keyframe constraints along with
volume annealing.
Physical constraints. As discussed in Section 3.1, we as-
sume that the physical properties related to the material
(e.g., Young’s modulus Ê, Poisson’s ratio ν̂, and density
ρ̂) and mass m̂ are known. We utilize them to narrow the
solution space of SfC.
Physical constraints on material properties. We can reflect
material-specific physical properties (e.g., Young’s modulus
Ê, Poisson’s ratio ν̂, and density ρ̂) explicitly when con-
structing DiffMPM [26]. Motivated by this fact, we opti-
mize σG′

(t0) under explicit material-specific physical con-
straints imposed by DiffMPM.
Physical constraints on mass. Unlike physical material
properties, mass is not determined only by the material and
varies depending on the individual objects. Therefore, in-
stead of representing the mass explicitly in DiffMPM, we
constrain the mass using a mass loss.

Lmass = ∥ log10(m)− log10(m̂)∥22, (7)

m =
∑

p∈PP (t0)

ρ̂ ·
(
∆x

2

)3

· αP
p , (8)

3Note that Lagrangian particle optimization (LPO) [31] also consid-
ers a similar optimization (i.e., optimizing FP (t0) or FG′

(t0) through
a video sequence) for few-shot (sparse-view) learning. However, it aims
to compensate for the external structure where the viewpoint is missing,
and has not sufficiently considered the components necessary for estimat-
ing the internal structures, which are discussed in the next paragraphs. We
demonstrate the limitations of LPO in the experiments (Section 4).
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Figure 2. Optimization pipelines of SfC-NeRF. (i) The grid field FG′
(t0) is initially optimized using the first frame of the video sequence.

(ii) Subsequently, the structure (i.e., volume density σG′
(t0) ∈ FG′

(t0)) of the object is optimized through the entire video sequence with
physical constraints (Lmass and DiffMPM), appearance-preserving constraints (i.e., Lpixel0 and Ldepth0 ), and keyframe constraints (Lpixelk )
along with standard pixel loss (Lpixel).

where m and m̂ are the estimated and ground truth masses,
respectively. m is calculated by summarizing the mass of
each particle indexed by p ∈ PP (t0). The mass of each
particle is calculated by multiplying the physical density ρ̂,
the unit volume of particles

(
∆x
2

)3
, and the alpha value αP

p .
In Equation 7, we employ a logarithmic scale to prioritize
the matching of the scale.
Appearance-preserving constraints. As mentioned
above, we use two-step optimization, i.e., (i) FG′

is ini-
tially optimized using the first frame of the video sequence
(Figure 2(i)), and then (ii) σG′

is optimized through a video
sequence (Figure 2(ii)). In Step (ii), the external structure
(or surface) learned in Step (i) does not need to be changed,
considering that learning the external structure is easier than
learning the internal structure; however, the physical con-
straints discussed above are not sufficient to satisfy this
requirement. Hence, we introduce appearance-preserving
constraints at both the loss and training scheme levels.
Appearance-preserving loss. The standard pixel loss (Equa-
tion 3) treats the loss for each frame equally. It is insuffi-
cient to prevent the external structure, which is well learned
in Step (i), from changing as a result of fitting the en-
tire video sequence. Considering this, we employ a pixel-
preserving loss, which encourages preservation of the ap-
pearance of the initial frame.

Lpixel0 =
1

|R̂|

∑
r∈R̂

∥C(r, t0)− Ĉ(r, t0)∥22. (9)

This is the variant of the pixel loss (Equation 3) when

N = 1. Because the constraints on the 2D projection plane
alone are insufficient to preserve the 3D structure (e.g., ob-
jects with reversed concavity may be learned), we also in-
corporate a depth-preserving loss to encourage the preser-
vation of the depth of the initial frame.

Ldepth0 =
1

|R̂|

∑
r∈R̂

(∥∆hZ(r, t0)−∆hZ̃(r, t0)∥22,

+ ∥∆vZ(r, t0)−∆vZ̃(r, t0)∥22), (10)

where Z(r, t0) and Z̃(r, t0) are the depths predicted by
the current model and the model before performing Step
(ii), respectively. We use Z̃(r, t0) because the ground
truth depth is not observable. Z(r, t0) is calculated by
Z(r, t0) =

∫ sf
sn

Tr(s, t)σ(r(s), t)sds, and Z̃(r, t0) is cal-
culated in a similar manner. ∆h and ∆v are the operations
that calculate the difference from the horizontally or verti-
cally adjacent pixels, respectively. We compare differences
rather than raw data to mitigate the negative effect of depth
estimation errors caused by the change in volume densities.
Appearance-preserving training. Ideally, when an object
is nontransparent, its appearance is not expected to change
even if the internal volume density is changed. However,
in the preliminary experiments, we found that it is difficult
to retain the appearance learned in Step (i) by simple adap-
tation of the appearance-preserving losses. This motivates
us to employ appearance-preserving training, i.e., reopti-
mizing FG′

(t0) using the first frames of the video sequence
every time after optimizing σG′(t0) for the entire sequence.
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Keyframe constraints. As mentioned in the explanation
of the appearance-preserving loss, the standard pixel loss
treats the loss for each frame equally. However, in the pre-
liminary experiments, we found that certain frames, partic-
ularly the frame immediately after the collision, are espe-
cially useful for explaining shape changes due to the inter-
nal structures. On the basis of this observation, we impose
a keyframe pixel loss defined as follows:

Lpixelk =
1

|R̂|

∑
r∈R̂

∥C(r, tk)− Ĉ(r, tk)∥22, (11)

where k is the index of the keyframe (the frame immediately
after the collision is used in practice).
Volume annealing. As previously discussed, we begin the
optimization from the state in which the inside of the object
is filled (Figure 2(i)). The internal structure is then opti-
mized by reducing the volume using the above-mentioned
techniques. Owing to these learning dynamics, if the vol-
ume reduction goes in the wrong direction and leads to a
local optimum, it becomes challenging to find the global op-
timum. To address this issue, we introduce volume anneal-
ing, which involves alternating between the volume reduc-
tion mentioned above and the volume expansion. This strat-
egy facilitates the search for the global optimum. Specifi-
cally, we implement the volume expansion by performing
the G2P and P2G processes successively and replacing the
obtained FG(t0) with FG′

(t0).
Full objective. The full objective used in Step (ii) is ex-
pressed as follows:

Lfull = Lpixel + λmassLmass

+ λpres(Lpixel0 + wdepthLdepth0) + λkeyLpixelk (12)

where λmass, λpres, wdepth, and λkey are weighting hyperpa-
rameters. The effect of each loss is analyzed through an
ablation study presented in Section 4.

4. Experiments
4.1. Experimental setup
We conducted three experiments to evaluate SfC-NeRF and
explore the properties of SfC. First, we examined the im-
pact of changes in internal structure, focusing on cavity
sizes (Experiment I in Section 4.2) and locations (Experi-
ment II in Section 4.3). Additionally, we explored the effect
of material properties in Experiment III (Section 4.4). The
main results are summarized here, with detailed results and
implementation details provided in the Supplementary Ma-
terial. Video samples are available on the project page.1

Dataset. Since SfC was a new task and there was no estab-
lished dataset, we created a new dataset called SfC dataset
based on the protocol of the PAC-NeRF study [35]. In
particular, we prepared a total of 115 objects by changing
the external shape, internal structure, and material of the

(a) Sphere (b) Cube (c) Bicone (d) Cylinder (e) Diamond

Figure 3. Examples of data in SfC dataset.

objects. Figure 3 shows examples of data in this dataset.
First, we prepared five external shapes: sphere, cube, bi-
cone, cylinder, and diamond. Regarding the internal struc-
ture and material, we set the default values as follows: the
cavity size rate for the filled object, sc, was set to ( 23 )

3,
the cavity location, lc, was set to the center, and the mate-
rial was defined as an elastic material with Young’s mod-
ulus Ê = 106 and Poisson’s ratio ν̂ = 0.3. For this
default properties, one of them was changed as follows.
(a) Three different sized cavities: sc ∈ {0, ( 12 )

3, ( 34 )
3}.

(b) Four different locations of cavities: the center lc is
moved in {up, down, left, right}. (c) Eight different elas-
tic materials: those with four different Young’s moduli Ê ∈
{2.5× 105, 5× 105, 2× 106, 4× 106} and those with four
different Poisson’s ratios ν̂ ∈ {0.2, 0.25, 0.35, 0.4}. Ad-
ditionally, seven different materials: two Newtonian fluids,
two non-Newtonian fluids, two plasticines, and one sand.
The physical properties of these seven materials were based
on the PAC-NeRF dataset [35]. Thus, we created 5 exter-
nal shapes × (1 default + 3 sizes + 4 locations + (8 + 7)
materials) = 115 objects.

Following the PAC-NeRF study [35], the ground-truth
data were generated using the MLS-MPM simulator [25],
where each object falls freely under the influence of gravity
and collides with the ground plane. The images were ren-
dered under various environmental lighting conditions and
ground textures using a photorealistic renderer. Each scene
was captured from 11 viewpoints using cameras spaced on
the upper hemisphere including the object.

Preprocessing. Following the PAC-NeRF study [35], we
made two assumptions and preprocessing to focus on solv-
ing SfC. (1) The intrinsic and extrinsic parameters of cam-
eras were known, and (2) the collision objects, such as
the ground plane, were known. As mentioned in [35],
the latter can be easily estimated from observed images.
For preprocessing, we applied video matting [40] to ex-
clude static background objects and concentrate the com-
putation on the object of interest. This process also pro-
vides a background segmentation mask B̂(r, t). NeRF
can estimate a background segmentation mask B(r, t) by
B(r, t) = 1− Tr(sf , t). Taking advantage of this property,
we also used a background loss Lbg = ∥B(r, t)− B̂(r, t)∥22
when calculating the pixel-related losses (Lpixel, Lpixel0 , and
Lpixelk ) with a weighting parameter of wbg. In the experi-
ments, this technique was applied to all models.
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Figure 4. Comparison of learned structures for sphere objects with
sc = ( 2

3
)3. The score under paticles indicates the CD (×103↓).

(c)–(f) GO/LPO failed to find optimal learning directions. (g)–(k)
The ablated models failed to avoid improper solutions. (l) The full
model overcomes these issues and achieves the best CD.

Comparison models. Since there is no established method
for SfC, we adapted previous methods to make suitable for
SfC. Specifically, we used grid optimization (GO) and La-
grangian particle optimization (LPO) [31] as baselines. GO
and LPO are improved variants of PAC-NeRF, optimizing
FG′

(t0) and FP (t0), respectively, by utilizing Lpixel across
a video sequence for few-shot (sparse-view) learning. For a
fair comparison with SfC-NeRF, GO and LPO were trained
with the ground-truth physical properties. Although the
original GO and LPO do not use the mass information for
training, it might not be fair to apply it solely to the pro-
posed method. Therefore, we also examined GOmass and
LPOmass, extensions of GO and LPO that incorporate Lmass.
Furthermore, as an ablation study, we compared SfC-NeRF
with various variants: SfC-NeRF−mass, SfC-NeRF−APL, SfC-
NeRF−APT, SfC-NeRF−key, and SfC-NeRF−VA, in which the
mass loss (Lmass),4 appearance-preserving losses (Lpixel0
and Ldepth0 ), appearance-preserving training, keyframe loss
(Lpixelk ), and volume annealing were ablated, respectively.
We also examined Stacic, a model trained only using the
first frame of the video sequence, to assess the impact of
optimization across videos.
Evaluation metric. As mentioned in Section 3.1, we use
particles PP (t0) to represent the structure (including the
internal structure) of an object, and aim to estimate PP (t0)

that matches the ground truth P̂P (t0). Therefore, we evalu-
ated the model by measuring the distance between PP (t0)

and P̂P (t0) using a chamfer distance (CD). The smaller the
value, the higher the degree of matching.

4.2. Experiment I: Influence of cavity size
We first investigated the influence of the cavity size inside
the object. Table 1 summarizes the quantitative results,
while the qualitative results are provided in Figure 4, Ap-
pendix B.1, and on the project page.1 Our findings are
threefold. (1) Limitations of GO and LPO [31]. GO, simple
voxel grid optimization using Lpixel, failed to find an appro-
priate optimization direction and led to the deterioration of

4As explained in Appendix C.3, the mass information is not only used
in the loss but also in adjusting the learning rate. In this experiment, we
also ablated the latter to simulate a case where the mass is unknown.

sc 0 ( 1
2
)3 ( 2

3
)3 ( 3

4
)3 Avg.

Static 0.093 0.294 0.920 1.574 0.720

GO 0.091 0.301 0.941 1.586 0.730
GOmass 0.081 0.319 1.244 2.291 0.984
LPO 0.092 0.284 0.841 1.406 0.656
LPOmass 0.087 0.284 0.876 1.477 0.681

SfC-NeRF−mass 0.089 0.226 0.550 1.148 0.503
SfC-NeRF−APL 0.106 0.423 0.898 1.326 0.688
SfC-NeRF−APT 0.085 0.261 0.332 0.661 0.335
SfC-NeRF−key 0.082 0.127 0.211 0.325 0.186
SfC-NeRF−VA 0.146 0.293 0.370 0.456 0.316

SfC-NeRF 0.081 0.122 0.195 0.262 0.165

Table 1. Comparison of CD (×103↓) when varying the cavity size
sc. The scores were averaged over five external shapes.

lc left right up down Avg.

Static 0.841 0.842 0.815 0.813 0.828

GO 0.874 0.853 0.878 0.870 0.869
GOmass 1.349 1.334 1.104 1.001 1.197
LPO 0.791 0.787 0.796 0.743 0.779
LPOmass 0.824 0.817 0.828 0.775 0.811

SfC-NeRF−mass 0.513 0.485 0.705 0.479 0.545
SfC-NeRF−APL 0.845 0.783 0.805 0.583 0.754
SfC-NeRF−APT 0.624 0.428 0.384 0.464 0.475
SfC-NeRF−key 0.308 0.296 0.307 0.313 0.306
SfC-NeRF−VA 0.542 0.596 0.333 0.385 0.464

SfC-NeRF 0.303 0.258 0.274 0.291 0.281
(0.367) (0.431) (0.448) (0.417) (0.416)

Table 2. Comparison of CD (×103↓) when varying the cavity lo-
cation lc. The gray score in parenthesis indicates ACD (×103).

PP (t0) as it fits the video. LPO showed slight improve-
ment by moving particles within physical constraints via
DiffMPM, but its effectiveness was limited because signifi-
cant particle movement could alter the unit volume density,
making it difficult to find the optimal internal structure. Fur-
thermore, in both GO and LPO, using the mass knowledge
with Lmass did not improve performance possibly because
they lack appearance-preserving mechanisms, and forcing
m close to m̂ can damage the overall structure. (2) Effec-
tiveness of each component. The ablation study confirms
the importance of each model component. (3) Increased dif-
ficulty with increased cavity size. Because the optimization
begins from a filled state, large cavity sizes require signif-
icant volume changes. We believe that this is a key reason
for performance deteriorates as the cavity size increases.

4.3. Experiment II: Influence of cavity location
We next examined the influence of cavity location. Table 2
summarizes the quantitative results, while qualitative results
are available in Appendix B.1 and on the project page.1

Similar to Experiment I, we observed two main findings:
(1) limitations of GO and LPO and (2) effectiveness of each
component. In addition, we discuss (3) how well SfC-NeRF
captures the cavity location. A simple CD is insufficient
for this evaluation because it does not account for the de-
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Ê 2.5×105 5.0×105 1.0×106 2.0×106 4.0×106

Static 0.920 0.921 0.920 0.920 0.920

SfC-NeRF 0.289 0.254 0.195 0.314 0.374

ν̂ 0.2 0.25 0.3 0.35 0.4

Static 0.920 0.919 0.920 0.920 0.921

SfC-NeRF 0.196 0.198 0.195 0.207 0.224

Table 3. Comparison of CD (×103↓) when varying Young’s
moduls Ê and Poisson’s ratio ν̂.

Newtonian Non-Newtonian Plasticine Sand

Static 0.921 0.919 0.920 0.920

SfC-NeRF 0.196 0.218 0.230 0.222

Table 4. Comparison of CD (×103↓) for various materials.

viation. Therefore, we calculated the anti-chamfer distance
(ACD), which measures the chamfer distance between the
predicted particles PP (t0) and the ground truth particles
P̃P (t0), where the cavity is placed on the opposite side. It
is expected that this distance is larger than the original CD.
The results confirmed that the original CD was smaller than
the ACD. These findings indicate that SfC-NeRF can cap-
ture the positional deviation of the cavity.

4.4. Experiment III: Influence of material
Finally, we investigated the influence of material proper-
ties. Table 3 summarize the quantitative results for elastic
materials when Ê and ν̂ were varied. Table 4 summarizes
the quantitative results for other materials. Qualitative re-
sults are available in Appendix B.2 and on the project page.1

These results demonstrate that SfC-NeRF improves struc-
ture estimation compared to the initial state, regardless of
the material. However, the improvement rate depends on
the material. For instance, when the object is soft, its shape
changes significantly, making it difficult to capture the dy-
namic changes. In contrast, when the object is hard, there
are fewer shape changes, which provide limited cues for es-
timating the internal structure, making learning more diffi-
cult. Thus, the proposed method is most effective when the
object is moderately soft or hard. As an initial approach to
address SfC, we proposed a general-purpose method in this
study. However, it would be interesting to develop methods
specifically tailored to individual materials in future work.

4.5. Application to future prediction
To demonstrate the practical importance of SfC, we inves-
tigated the effectiveness of SfC-NeRF for future predic-
tion. Specifically, the first 14 frames were used for train-
ing, and the subsequent 14 frames were used for evalu-
ation. We compared SfC-NeRF, which optimizes inter-
nal structures with fixed physical properties, with PAC-
NeRF [35], which optimizes physical properties with fixed
(filled) internal structures. Table 5 summarizes the results.
SfC-NeRF outperforms PAC-NeRF in terms of peak-to-

Internal structure PSNR↑ SSIM↑

PAC-NeRF Fixed (filled) 23.44 0.975
SfC-NeRF Optimized 26.60 0.981

Table 5. Results of future prediction. The scores were averaged
over all cavity sizes and locations for the 40 objects examined in
Experiments I and II.

Error rate −30% −20% −10% 0% 10% 20% 30%

Young’s modulus Ê 0.363 0.242 0.216 0.195 0.213 0.231 0.244
Poisson’s ratio ν̂ 0.240 0.231 0.208 0.195 0.200 0.214 0.236

Density ρ̂ 0.798 0.533 0.289 0.195 0.207 0.259 0.308

Table 6. Comparison of CD (×103↓) for inaccurate physical prop-
erties. In the 0% case, an elastic material with default settings
(sc =

(
2
3

)3, lc = center, Ê = 106, and ν̂ = 0.3) was used.

signal ratio (PSNR) and structural similarity index measure
(SSIM) [68]. These results indicate that optimizing the in-
ternal structure is also crucial in practical scenarios.

5. Discussion
Based on the above experiments, we observed promising
results for SfC. However, our method has some limitations.
(1) Our approach assumes that objects deform during col-
lisions. Therefore, its performance depends on the mate-
rial. For example, it may be difficult to apply to metal ob-
jects that do not deform. However, detecting small changes
might help overcome this issue. (2) Since SfC is a novel
task, this study focused on evaluating its fundamental per-
formance using simulation data, leaving the validation with
real data as a challenge for future research. Alternatively,
to explore its potential with real data, we assessed its ro-
bustness to inaccurate physical properties. Table 6 presents
the results when errors of up to 30% are introduced in the
physical properties. A significant error (e.g., −30%) in ρ̂
causes a notable degradation owing to its negative impact
on volume estimation in Lmass. However, in other cases,
the degradation is moderate. All scores exceed those of the
baselines listed in Table 1 (e.g., 0.841 by LPO). These re-
sults indicate that the proposed method is somewhat robust
to inaccurate physical properties. Additional challenges re-
lated to real data are discussed in Appendix A.4.

6. Conclusion
We approached SfC to identify the invisible internal struc-
ture of an object, a task that remains challenging even with
the latest neural 3D representations. We proposed SfC-
NeRF as an initial model for addressing this challenge. SfC-
NeRF solves SfC by optimizing the internal structures under
physical, appearance-preserving, and keyframe constraints,
along with volume annealing. As discussed in Section 5,
our method has certain limitations. Nonetheless, this study
suggests a new direction in the development of neural 3D
representations, and we believe that future developments in
this field will overcome these limitations.
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