
ShotAdapter: Text-to-Multi-Shot Video Generation with Diffusion Models

Ozgur Kara1,2 Krishna Kumar Singh2 Feng Liu2 Duygu Ceylan2

James M. Rehg1 Tobias Hinz2
1UIUC 2Adobe

Project Webpage: https://shotadapter.github.io/

"a woman knits on the couch in a warm living room" "she then organizes clothes in a walk in closet"

"a man plays the guitar in his music room" "he then records a song on his laptop, listening with headphones"

"a woman sits at a kitchen table, softly illuminated 
by morning light as she glances out the window"

"she sips her coffee, her eyes drifting thoughtfully 
across the room" 

"the woman then begins to eat a simple meal, her 
movements slow and deliberate"

"a man sketches in a notebook at a quiet cafe, his 
hand moving quickly across the page"

"he pauses, looking up thoughtfully before 
continuing his drawing"

"later, the man steps outside, his notebook tucked 
under his arm as he takes in the city around him"
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Figure 1. ShotAdapter is a lightweight framework that enables text-to-multi-shot video generation by fine-tuning a pre-trained text-
to-video model. It allows control over number and duration of shots as well as shot content through shot-specific text prompts. The
framework maintains character identity while being able to preserve backgrounds (e.g. 3rd row) or transition to new ones (e.g. 4th row),
featuring distinct activities (e.g. playing guitar, then using laptop) and perspectives.

Abstract

Current diffusion-based text-to-video methods are lim-
ited to producing short video clips of a single shot and lack
the capability to generate multi-shot videos with discrete
transitions where the same character performs distinct ac-
tivities across the same or different backgrounds. To ad-
dress this limitation we propose a framework that includes
a dataset collection pipeline and architectural extensions
to video diffusion models to enable text-to-multi-shot video
generation. Our approach enables generation of multi-shot
videos as a single video with full attention across all frames
of all shots, ensuring character and background consis-
tency, and allows users to control the number, duration, and
content of shots through shot-specific conditioning. This
is achieved by incorporating a transition token into the
text-to-video model to control at which frames a new shot
begins and a local attention masking strategy which con-

trols the transition token’s effect and allows shot-specific
prompting. To obtain training data we propose a novel data
collection pipeline to construct a multi-shot video dataset
from existing single-shot video datasets. Extensive exper-
iments demonstrate that fine-tuning a pre-trained text-to-
video model for a few thousand iterations is enough for the
model to subsequently be able to generate multi-shot videos
with shot-specific control, outperforming the baselines. You
can find more details in our webpage.

1. Introduction

While diffusion models [18, 38] have shown impressive ca-
pabilities in the image domain [2, 12, 17, 33, 37, 39, 40,
51, 55, 59], extending them to video synthesis presents sig-
nificant challenges due to the dynamic nature of videos.
One group of researchers has explored various methods to
adapt text-to-image (T2I) models for video synthesis [14,
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21, 22, 41, 52]. In contrast, another group has focused
on text-to-video (T2V) diffusion models [4, 20, 34] which
demonstrate superior performance by processing the entire
video as a unified input rather than handling each frame in-
dependently. Despite their state-of-the-art performance in
video generation, all existing models are designed to gener-
ate a single continuous video, which imposes inherent lim-
itations when attempting to generate a multi-shot video of
the same character engaged in multiple distinct activities,
where each shot is separated by discrete cuts in dynamic
elements. This challenge becomes particularly significant
when each activity requires a unique setting, even within the
same background (Fig. 2, 1st column: a man writes code and
then sketches diagrams on a whiteboard) or when the back-
ground needs to change while maintaining the same iden-
tity (Fig. 2, 2nd column: transitioning from a home gym to a
park bench). Moreover, existing models are limited to gen-
erating videos of very short durations, and therefore lack
flexibility. Because they have been trained exclusively on
single-shot videos, they are ill-suited for multi-shot video
synthesis. Consequently, these limitations hinder their ap-
plicability in real-world contexts, such as film production,
where narratives rely on multiple shots, each featuring dis-
tinct actions or perspectives and often featuring the same
character across diverse scenes and time frames.

The simplest approach to multi-shot synthesis is to gen-
erate a single-shot video by combining all shot-specific
prompts into a single prompt. However, this method cannot
create “cuts” (transitions between shots) and struggles to
provide different backgrounds for the same character. Even
within a same background, it cannot generate characters
featuring different activities requiring distinct settings, as
it is constrained to generating short videos (Fig. 2 (a)). An
extension of this approach is to generate each shot many
times individually, then concatenate the most similar shots,
which requires the generation of numerous videos (Fig. 2
(b)). An improvement to this baseline entails first gener-
ating consistent keyframes of a character using a reference
image, then animating these keyframes with an image-to-
video (I2V) model, and finally concatenating the generated
clips to produce a multi-shot video. However, this base-
line is inevitably limited by the capabilities of off-the-shelf
methods, as they struggle with maintaining consistency and
quality. Additionally, it remains challenging to depict the
character within the same background performing distinct
activities (Fig. 2 (c)).

Given the limitations of potential baselines, we in-
troduce ShotAdapter, a simple yet powerful, model-
agnostic framework for controllable text-to-multi-shot
video (T2MSV) generation. ShotAdapter transforms a
single-shot T2V generator into a T2MSV generator with
minimal fine-tuning, requiring only five thousand iterations
(less than 1% of the total pre-training iterations), on a multi-
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Same background, different activities Different background, different activities

"a man lifts weights
in a home gym"

"he then sits on a
park bench,

drinking water"

"a man writes code
on a laptop in his

home office"

"he then sketches
diagrams on a
whiteboard"

Shot 1

Shot 1

Shot 1

Shot 2

Shot 1 Shot 2

Shot 1 Shot 2

Shot 1 Shot 1

Shot 1 Shot 2

Shot 1 Shot 2

Shot 1 Shot 2

Figure 2. Comparison with baselines. Each row displays
frames from generated 2-shot videos, guided by shot-specific text
prompts. The left column shows results with same background and
different activities, while the right column presents results both
with different backgrounds and activities.

shot video dataset. This transformation is made possible
through a novel attention-layer masking strategy and a spe-
cial learnable token, called “transition token”, which signals
the transition between shots. It enables multi-shot video
generation where the camera perspective can shift abruptly
between shots (Fig. 1, 2nd row) within a single background
with the character performing different activities, or the
background itself can change (Fig. 1, 4th row), all while pre-
serving the character’s identity. Notably, ShotAdapter
offers users precise control over the content of each gen-
erated shot through shot-specific text prompts, along with
the flexibility to specify the number and duration of shots.
Additionally, the use of a unified input for the T2V model
ensures consistency across shots with minimal fine-tuning
on an appropriate multi-shot video dataset.

To address the lack of training datasets, we propose two
novel pipelines to construct a multi-shot video dataset from
a single-shot video dataset through pre- and post-processing
steps, which eliminates the need to collect actual multi-
shot video. Recognizing the lack of an evaluation standard
for T2MSV generation, we propose an evaluation pipeline
and several baseline comparisons to assess synthesis results
based on identity and background consistency, text align-
ment, and shot-duration precision. In summary, our main
contributions are as follows:
• We propose a model-agnostic and computationally ef-

ficient framework that transforms a T2V model into a
T2MSV generator with minimal fine-tuning, ensuring the
preservation of character identity across all generated
shots.

• Our approach allows user-defined control over the num-
ber of shots, their duration, and the content of each shot
through text prompts, leveraging a novel “transition to-
ken” coupled with a localized attention masking strategy.

• We propose two novel data collection strategies to con-
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struct a multi-shot video dataset derived from single-shot
video dataset, along with pre- and post-processing steps.

• We believe we are the first to frame the T2MSV gen-
eration task as a challenge for the research community.
Therefore, we introduce an evaluation pipeline to assess
performance in this domain and will release a validation
dataset to promote standardized evaluation.

2. Related Works
Text guided video synthesis Text-guided video synthe-
sis is a rapidly evolving field. Early methods adapted
pre-trained text-to-image (T2I) diffusion models [38] for
video synthesis by modifying architecture, such as adding
temporal layers [52], altering latent inputs [22], and in-
troducing temporally correlated noise for frame consis-
tency [13]. However, T2I models struggle with frame co-
herence due to their lack of temporal processing. Recent
approaches, such as T2V models using unified video in-
puts and Diffusion Transformer (DiT) frameworks, address
this. OpenAI’s SORA [4] and Gen-Tron [7] enhance DiT
with large datasets and advanced text-conditioning. Com-
mercial models like Luma Dream Machine [24], Mini-
Max [29], and Kling AI [1] achieve coherence through ex-
tensive training. MovieGen [34] enables instruction-based
editing and personalized generation. Open-source contribu-
tions have advanced T2V methods, such as W.A.L.T [15],
which uses a two-stage algorithm for training on image and
video datasets, and Latte [28], which employs Transformer
blocks. RIVER [9] and PyramidFlow [20] use autoregres-
sive generation with flow-matching, while OpenSora [60]
and OpenSora-Plan [23] aim to replicate SORA more effi-
ciently. In contrast to prior works that focus on single-shot
video generation, we introduce a framework for fine-tuning
T2V models, transforming them into T2MSV generators.
Image/Video story generation Personalized identity-
preserving image generation presents challenges in main-
taining consistent identity across diverse settings. Tech-
niques like DreamBooth [39] and Textual Inversion [12]
achieve this through time-consuming test-time fine-tuning.
Some line of work [27, 51, 53] use adapter models whereas
other works [25, 49, 54, 56] incorporate ArcFace [10] or
keypoints on face features for conditioning. In image
story generation, StoryMaker [62] ensures stylistic con-
sistency, while ConsiStory [44] enhances subject consis-
tency through a shared attention block and feature injec-
tion. DreamStory [16] leverages Large Language Models,
and StoryDiffusion [61] introduces an attention mechanism
for consistent character representation. In video story gen-
eration, DreamBooth [39], adapted in Tune-A-Video [52],
requires fine-tuning for each input video, limiting scalabil-
ity and restricting outputs to short, single-shot videos based
on reference images. Recognizing the lack of a unified
solution for multi-shot video generation, one of our base-

lines combines StoryMaker [62] with an I2V model, though
this integration shows limited performance. Our approach
achieves superior multi-shot video generation results com-
pared to this baseline.

3. Methodology
3.1. Preliminaries

Diffusion formulation Diffusion models [18, 38, 42] gen-
erate realistic data by learning to reverse a noise-adding pro-
cess. During training, data is progressively noised over mul-
tiple time steps, and the model learns to denoise it step by
step, starting from pure noise ϵ ∼ N (0, I). A noisy version
x
(t)
i at timestep t is obtained by adding scaled noise x

(t)
i =√

αt xi +
√
1− αt ϵ, where αt controls the noise level.

The training loss Ldiffusion(θ) = Exi,ϵ,t

∥∥∥ϵ− ϵθ(x
(t)
i , t)

∥∥∥2
minimizes the difference between the true noise ϵ and the
model’s prediction ϵθ(x

(t)
i , t) This loss trains the model to

predict the noise, enabling it to reconstruct the original data
through reverse diffusion.
Latent video diffusion models Given an input video sam-
ple xi ∼ pdata(x) with dimensions xi ∈ RF×C×H×W , the
process begins by encoding the video using a 3D encoder
E , yielding a latent representation zi ∈ RF ′×C′×H′×W ′

,
where F ′ = F/ft, H ′ = H/fs, and W ′ = W/fs, with fs
and ft being the spatial and temporal compression ratios, re-
spectively. The latent video representation is further trans-
formed into a sequence of N tokens for a DiT-based model,
denoted as {x̄n

i }n=N
n=1 , where each token x̄n

i ∈ RD has a
hidden dimension D. Patchification is performed along the
width, height, and frame depth, patch sizes represented by
fpw

, fph
, and fpf

, respectively.

3.2. Text-to-Multi-Shot Video Generation

Inline with the definitions in previous works [6, 45, 57], a
shot is defined as the smallest segment of a video—a sin-
gle, uninterrupted clip with continuous motion. Each shot
is characterized by dynamic elements, including the fore-
ground object, background setting, object actions, and cam-
era movement. A multi-shot video is defined as a video
composed of multiple individual shots, each being sepa-
rated by a “cut” [45], which is an instantaneous change in
the dynamic elements. More formally, an N-shot video V
can be represented as V = {sK1

1 , . . . , sKN

N }, where each
shot sKi

i is a set of Ki frames, sKi
i = {f1, . . . , fKi

}, with
each frame fj ∈ RC×H×W representing an image with
channel (C), height (H), and width (W). Our work focuses
on multi-shot videos featuring a single foreground object,
specifically humans, as they are often the main characters
and present challenges in maintaining identity consistency
for real-world applications. We aim to preserve the identity
of the foreground object across shots, even as it performs
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Colors in the masks are used for visualization purposes
only; they all represent areas where attention is applied.

Figure 3. Fine-tuning framework with transition token and local attention masking. (a) ShotAdapter fine-tunes a pre-trained T2V
model by incorporating “transition tokens” (highlighted in light blue). We use n− 1 transition tokens, initialized as learnable parameters,
alongside an n-shot video with shot-specific prompts, which are fed through the pre-trained T2V model. (b) The model processes the
concatenated input token sequence, guided by a “local attention mask” through joint attention layers within DiT blocks. (c) The local
attention mask is structured to ensure that transition tokens interact only with the visual frames where transitions occur, while each textual
token interacts exclusively with its corresponding visual tokens.

different activities. Furthermore, when the background is
designated as a fixed location, we require background con-
sistency throughout the entire video. More formally, our
task is to generate an N-shot video given a set of input con-
ditions {C1, C2, ...} where each Ci denotes shot-specific
conditions, e.g. Ci = {shot caption, shot duration, · · · }.

ShotAdapter introduces model-agnostic novel exten-
sions to transform pre-trained T2V diffusion models into
T2MSV generators with minimal fine-tuning along with a
multi-shot video dataset curation method. Our method al-
lows users to control the number and duration of each shot
as well as the content through shot-specific text prompts.

3.3. Model

Model architecture We use a diffusion transformer
(DiT) [32] based T2V framework similar to OpenSora [60]
and MovieGen [34], shown in Fig. 3 (a). Our model inte-
grates a 3D Variational Autoencoder (3D-VAE) for video
encoding, along with a variant of joint-attention layers [11]
for conditioning. Specifically, input videos are first subject
to temporal and spatial encoding via the 3D encoder be-
fore being patchified. The textual condition tokens are then
concatenated with these patchified visual tokens and sub-
sequently processed by the DiT. We leverage a pre-trained
T2V model that can generate 128 frames with 192×320
resolution, and fine-tune it to enable multi-shot generation.
This extension is achieved by introducing a transition to-
ken and implementing local attention masking. Note that
our framework also supports cross-attention based condi-
tioning.
Transition token Inspired by the commonly employed
‘[EOS]’ (End of Sentence) token in natural language pro-
cessing, which signals the model to recognize the end of a

sentence, we propose a novel, learnable embedding referred
to as the “transition token” which enables the model to learn
transitions between consecutive shots within a multi-shot
video. Specifically, we initialize a set of learnable param-
eters at the start of fine-tuning, matching the hidden di-
mension of the input tokens. We repeat these parameters
n − 1 times—where n represents the specified number of
shots—and append them to the end of the input visual and
textual token sequence (Fig. 3 (a)). In the model’s attention
layers, we implement a masking strategy that ensures the
transition token interacts only with the tokens correspond-
ing to the frames where transitions are intended to occur
(Fig. 3 (b) and (c)). This approach allows the model to fo-
cus on transition frames, enabling it to learn to generate cuts
between shots, while also allowing users to specify both the
number of shots and their respective durations, by simply
replicating the transition token and adjusting the attention
mask accordingly.

Local attention masking To enable shot-specific control,
we introduce a local attention masking technique (Fig. 3
(c)). Without masking, all tokens interact with each other,
diluting the impact of shot-specific information. Our pro-
posed local attention masking strategy overcomes this lim-
itation by restricting attention interactions to specific to-
ken groups. Specifically, the attention matrix is masked
to enforce the interactions, where the transition token at-
tends only to the tokens at the transition frames, while vi-
sual and textual tokens are restricted to self-attention. Addi-
tionally, to enhance precise and localized control of textual
tokens over their corresponding shot-visual tokens, each
textual token attends solely to its associated visual tokens.
Consequently, the fine-tuned model is better equipped to
capture fine-grained dependencies between frames, shot-
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Figure 4. Multi-shot video dataset collection pipeline. A high-level overview of this pipeline is presented in (a). Our first method (gray
box in (b)) samples videos with large motion, randomly splits them into n-shots with varied durations, and concatenates them into multi-
shot videos. Our second method (yellow box in (b)) randomly samples n videos from pre-clustered groups containing videos of the same
identities and concatenates them to form a multi-shot video. Finally, we post-process (c) the multi-shot videos to ensure identity consistency
and obtain shot-specific captions using LLaVA-NeXT [58].

specific text prompts, and shot transitions, resulting in im-
proved control over the T2MSV generation.

3.4. Data

To perform fine-tuning we require a suitable dataset con-
sisting of multi-shot videos where each shot depicts the
same identity both in same and different backgrounds, fea-
turing different activities. We develop two methods to cu-
rate multi-shot videos given access to a large-scale video
dataset (Fig. 4 (c)). The first method creates multi-shot
videos from long single-shot videos that exhibit large mo-
tion while the second method combines multiple indepen-
dent videos of the same human subjects to produce multi-
shot videos. Post-processing is then applied to obtain shot-
specific captions and ensure that the foreground identity re-
mains consistent across shots.

Multi-shot videos from single-shot videos In this ap-
proach we generate a multi-shot video from a single-shot
video with large motion by randomly trimming short sub-
clips and combining them to create a new n-shot video.
(Fig. 4 (a), gray box). We first obtain optical flow maps us-
ing RAFT [43] and compute the average motion in the x and
y directions (tx, ty) along with scaling ratio s for each video
(see Supplementary for details). Videos with motion met-
rics below specified thresholds are discarded, retaining only
those with significant motion in at least one metric. Ad-
ditionally, videos with fewer than 250 frames are excluded
to ensure sufficient variability. Finally, we choose random
sub-clips of random duration and concatenate them in a ran-
dom order to generate a dataset of multi-shot videos.

Multi-shot videos from independent videos Despite fo-
cusing on large-motion videos, the previous approach en-
counters limitations in terms of diversity in camera perspec-
tive, motion and backgrounds, reducing the variety of gen-
erated multi-shot videos. To enhance the dataset variabil-
ity we perform clustering on the single-video dataset, i.e.
D = {GM1

1 , · · · , GMn
n }, where each cluster GMj

j contains
Mj videos featuring the same foreground object. These
clusters are constructed by choosing videos uploaded by the
same user within the same time-frame (e.g. 3 days), and
videos that match based on the similarity of their captions.
we obtain approximately 550K clusters, with an average
of 6 videos per cluster. Subsequently, we generate a fixed
number of multi-shot videos for each cluster by randomly
trimming clips from separate videos within the same cluster
(Fig. 4 (a), gray-yellow). This methodology significantly
enhances the dataset’s richness and variability, introducing
a wider array of scenes and perspectives.
Post-processing We apply several post-processing
pipelines (Fig. 4 (c)) to (i) obtain shot-specific prompts and
(ii) ensure identity consistency across shots. Since each
shot in the multi-shot video dataset requires a specific text
description, we employ the LLaVA-NeXT [58] model to
generate shot-specific captions. Additionally, we apply an
additional filtering stage to the multi-shot video dataset to
ensure identity consistency across shots. Videos containing
more than one character or featuring different identities
are filtered out using YOLO [46] as a person detector in
the middle frames of each shot within a multi-shot video.
To verify identity consistency, we utilize embeddings
from DINOv2 and applied a threshold to ensure the same
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"a young girl paints at an easel in her bedroom" "she then reads a comic book in her bed"

"a man lifts weights in a small home gym" "he takes a break to drink water" "he then does pushups, counting each one out loud"

"a woman sits at a sunny beachside cafe, sketching 
the coastline in a small notebook"

"she switches to reading a novel, the ocean breeze 
gently turning the pages"

"she pulls out her phone, snapping a few photos as 
the sky transitions to shades of pink and orange"

"a medieval knight in full armor sits in 
a grand hall, sharpening a sword"

"he stands, admiring an ancient 
tapestry depicting past battles"

"he moves to a wooden table, adjusting 
a map with miniature figures 

representing armies"

"finally, he kneels at a stone altar, 
offering a quiet prayer in the dim 

candlelight"

"scientist in lab coat examines a specimen" "she writes notes on a clipboard" "she adjusts dials on a machine" "she pours a liquid into a beaker"
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Figure 5. Qualitative results. Our approach enables multi-shot video generation depicting different actions and background guided by
shot-specific prompts. In the 2nd row, the shots maintain a consistent background while capturing different perspectives, whereas the 3rd

row depicts the same woman in related backgrounds that subtly change in response to the prompt. For complete videos, see Supplementary.

identity appears across all shots. This post-processing
step filters out 38% of the multi-shot videos, resulting in
a dataset composed of multi-shot videos with 2, 3, and
4 shots of varying durations, where a single consistent
identity performs similar or different activities across
diverse backgrounds and motions.

4. Experiments
Since there is no existing evaluation pipeline for the
T2MSV generation task, we design a benchmark to enable
standardized evaluations (see Supplementary for implemen-
tation details).
Evaluation dataset Our dataset is partitioned according to
whether the background remains constant or changes and to
the number of shots as specified in the text prompts. For
each multi-shot configuration (2, 3, and 4 shots) we provide
8 prompts per scenario (i.e. background remains the same
or changes) resulting in a total of 48 prompts for multi-shot
settings. These prompts are designed to depict a human
subject by including terms such as “a person” performing
different activities in each shot using ChatGPT [31] (see
Supplementary). In total, we generate 128 frames for each
sample, with randomly selected shot durations.
Baselines To evaluate our approach in the absence of di-
rectly comparable methods we devise three baselines. Ran-
dom Shots (RS) generates each shot guided by detailed
text descriptions as a single-shot video multiple times (i.e.

48) and concatenates the randomly selected shots. Simi-
lar Shots (SS) improves on this by selecting shots based on
DINOv2 embedding similarity across foreground objects.
Shots by Reference (SR) first generates keyframes of con-
sistent characters using StoryMaker [62] and then animates
those into individual video shots using our model’s I2V ca-
pability. Note that for all baselines, we use the original
pre-trained model, providing a fair comparison by using the
same underlying model architecture.

Quantitative evaluation We adapt commonly used met-
rics from single-shot video generation [19]: (a) Identity
Consistency (IC), which calculates the average DINOv2 [5]
embedding similarity between the segmented persons (seg-
mented using YOLO [46]) at the middle frames of each
shot; (b) Text Alignment (TA), which assesses the align-
ment of generated content with text prompts by calculating
the similarity between text features and shot features ex-
tracted by ViCLIP [50], then averaging across shots; and
(c) Background Consistency (BC), which measures similar-
ity by segmenting the background and computing DINOv2
embedding similarity across the middle frames of each shot.
Our approach outperforms all previous baselines in preserv-
ing identity for 3- and 4-shots, while achieving competitive
results with SR for 2-shots, as measured by the IC metric
(Table 1). As the number of shots increases, there is a de-
cline in performance due to the propagation and accumu-
lation of errors in generating consistent identities. Addi-
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Figure 6. Qualitative comparison. We compare our approach to single-shot generation and baseline methods for (a) 2-shot, (b) 3-shot,
and (c) 4-shot videos. Our model (last row) enables local control over shot content while Single-Shot Generation fails to feature distinct
activities (1st row). Random Shots (2nd row) and Similar Shots (3rd row) struggle to preserve character identity, especially facial features
(cropped below frames in red bounding boxes), which our method effectively maintains. Shots by Reference (4th row) improves identity
consistency to some extent but falls short in maintaining both identity (e.g. shot 4 in (c)) and background coherence (e.g. shot 3 in (b)),
where our model demonstrates superior performance. For the full videos, please see Supplementary.

tionally, when the background changes (diff bg), a mod-
est overall decrease in performance is observed. We re-
port background consistency for samples where the back-
ground is intended to remain constant (same bg), where
our model outperforms all other approaches across every
shot by a large margin. In terms of text alignment, RS and
SS generally perform better, as expected, since they gen-
erate each shot individually, effectively serving as an up-
per bound for this score. However, our approach achieves
competitive results, demonstrating that it preserves iden-
tity and background consistency more effectively without
significantly compromising text alignment. For additional
comparisons to SEINE [8], MEVG [30], FreeNoise [36] and
Gen-L-Video [48], see Supplementary.

User study To complement the quantitative metrics, we
conduct a user study on the Prolific [35] platform with 75
participants. Each participant views two videos simultane-
ously, selected from a pool of 10 randomly chosen videos
from the generated results, with one video always generated
by ShotAdapter. Participants are then asked to choose
their preferred video based on identity consistency (IC),
background consistency (BC), and text alignment (TA). Our

approach achieves superior results in a 1-to-1 comparison
with baselines (Table 1) in identity and background consis-
tency. In terms of text alignment, it achieves a slight im-
provement over SS and RS, while outperforming SR by a
substantial margin, confirming the trends observed in the
quantitative metrics.
Ablation study We conduct two ablation studies: (i) re-
moving the transition token while retaining the local at-
tention mask (Table 1 ShotAdapter w/o TT), and (ii)
fine-tuning the model exclusively on 2-shot videos (Table 1
ShotAdapter w/ 2-shots). Including transition tokens
yields a slight improvement in IC, BC, and TA, as it assists
the model in generating cuts, thereby enhancing localized
control over shot transitions. Although fine-tuning on only
2-shot videos reduces the dataset size, results on 3- and 4-
shot videos reveal the model’s generalizability, maintaining
better identity and background consistency overall than the
baselines, despite a slight performance decrease compared
to the final model.
Qualitative evaluation Fig. 1 and Fig. 5 show our model’s
T2MSV generation capabilities across 2, 3, and 4-shot
videos, addressing scenarios that require either background
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Table 1. Quantitative comparison. We evaluate our approach against baseline methods across Identity Consistency, Background (BG)
Consistency, Text Alignment and a User Study on 2, 3, and 4-shot videos under conditions with background changes (diff bg), without
background changes (same bg), and with both types (all). ShotAdapter w/o TT indicates the model fine-tuned without Transition
Tokens (TT) and ShotAdapter w/ 2-shots fine-tuned only on a dataset of 2-shot videos. The user study assesses Identity Consistency
(Q1), Background Consistency (Q2), and Text Alignment (Q3). ↑ and ↓ indicate the direction toward better performance for each metric.

Identity Consistency ↑ BG Consistency ↑ Text Alignment ↑ User Study

Shot Number 2 3 4 2 3 4 2 3 4 Q1 (IC) Q2 (BC) Q3 (TA)
Background Change diff bg same bg diff bg same bg diff bg same bg same bg all Ours vs Baseline (Selection ratio in 1-to-1 comparison)

Random Shots (RS) 71.03 80.47 54.76 63.72 48.08 55.87 84.46 65.77 59.18 26.84 26.47 25.44 77.19% / 22.81% 73.27% / 26.73% 56.73% / 43.27%
Similar Shots (SS) 73.94 82.55 55.15 66.17 49.25 58.67 88.85 67.02 60.20 26.40 26.13 25.16 72.92% / 27.08% 69.20% / 30.80% 53.13% / 46.87%
Shots by Reference (SR) 81.74 84.98 67.92 72.97 57.83 67.74 82.11 64.85 56.81 25.59 23.97 21.98 73.43% / 26.57% 82.28% / 17.72% 73.03% / 26.97%

ShotAdapter w/o TT 77.17 84.78 68.95 70.98 58.83 70.24 87.94 72.93 70.48 26.64 23.15 22.84 N/A N/A N/A
ShotAdapter w/ 2-shots 78.05 85.46 70.12 71.53 56.99 68.37 89.08 75.53 73.19 25.97 23.59 22.97 N/A N/A N/A

ShotAdapter 78.67 86.33 70.30 76.44 61.86 74.89 89.48 77.66 76.55 27.12 23.65 22.17 N/A N/A N/A

Table 2. Transition token generalizability. We compute the abso-
lute difference in frames between the generated and ground truth
shot duration as the Mean Shot Duration Error (MSDE), and the
error per-shot is reported with a range of 2 to 8 shots per video.

Shots 2 3 4 5 6 7 8

MSDE 2.00 0.83 1.00 1.70 1.33 0.92 1.21

transitions (e.g. a transition from a living room to a walk-in
closet) or distinct activities within the same setting (e.g. a
character lifting weights, drinking water, and doing push-
ups). Our model effectively generates multi-shot videos
of the same characters, with “cuts” even in diverse set-
tings (full videos are available in the Supplementary). In
Fig. 6, we provide a qualitative comparison of our approach
with single-shot video generation using extended prompts
(row 1) and baseline methods RS, SS and SR for 2, 3,
and 4-shot videos. Single-shot generation with localized
shot control can result in scenes where actions are intermin-
gled (Fig. 6 (a), where the model fails to transition from
walking to eating ramen). RS produces the least consis-
tent outcomes, generating characters with random identi-
ties (Fig. 6, zoomed-in faces highlighted with red bound-
ing boxes) and incoherent backgrounds due to the random
concatenation of shots. SS shows a minor improvement in
identity consistency by selecting shots based on foreground
similarity, yet still generates visually distinct identities, de-
spite similar clothing (Fig. 6 (b)), and struggles to maintain
coherent backgrounds. SR, achieves better identity con-
sistency than previous baselines as it generates consistent
characters using an off-the-shelf method [62] but suffers
from quality degradation as the number of shots increases
and lacks temporal coherence between keyframes, result-
ing in notable inconsistencies, such as complete environ-
ment changes (Fig. 6 (c)). In contrast, our approach ef-
fectively addresses these limitations, generating multi-shot
videos with consistent character identity across different
background requirements as directed by text prompts.

Transition token generalizability To further assess the
generalizability of the transition token, we test our model
on videos with 2 to 8 shots, using the Mean Shot Duration
Error (MSDE) metric, which is calculated by averaging
the absolute difference between ground-truth and generated

shot durations in terms of frames, where SceneCut [3] is
used to detect the cuts. Quantitative results (Table 2) show
that despite the temporal compression applied during en-
coding and patchification, the model achieves an average
offset of only 1 to 2 frames per shot, even in 8-shot exam-
ples. These findings confirm that the transition token serves
effectively as an “End of Shot” marker and can be extended
to accommodate multiple shots.
Limitations While our experiments demonstrate the effec-
tiveness of our approach in T2MSV generation this study
is limited to human foreground objects, as experiments
with non-human subjects (e.g. animals) were not conducted.
This limitation is primarily due to dataset filtering choices.
Additionally, the maximum duration the model can gen-
erate is restricted by the underlying model used for fine-
tuning, which is limited to 128 frames in this study. For fu-
ture work, we aim to extend the duration by employing an
autoregressive approach to generate additional shots condi-
tioned on previously generated ones. It is worth noting that
our method experiences a slight quality reduction in the user
study compared to baselines, though it remains highly com-
petitive. We hypothesize that this minor drop is primarily
due to fine-tuning with a 90% smaller batch size compared
to the baseline as well as our model better adhering to mul-
tiple text captions while the baselines often ignore larger
parts of the text (see Supplementary for quality analysis).

5. Conclusion
In this paper, we present ShotAdapter, a lightweight
framework that transforms single-shot T2V models into
multi-shot T2MSV generators with minimal fine-tuning.
Our approach incorporates a transition token and localized
attention masking, applied to a multi-shot video dataset col-
lected through a novel data collection pipeline. Extensive
evaluations demonstrate that our method outperforms base-
line models in identity and background consistency without
compromising text alignment scores, as further validated by
a user study. Additionally, our findings highlight the frame-
work’s generalizability to videos with an increasing number
of shots, affirming the effectiveness of the “transition token”
concept.
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