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Figure 1. The RollingDepth model takes an unconstrained video and reconstructs a corresponding depth video. Unlike methods that rely

on video diffusion models, it extends a single-image monodepth estimator such that it can process short snippets. To account for temporal

context, snippets with varying frame rates are sampled from the video, processed, and reassembled through a global alignment algorithm

to obtain long, temporally coherent depth videos. Depth is colour-coded near far.

Abstract

Video depth estimation lifts monocular video clips to 3D by

inferring dense depth at every frame. Recent advances in

single-image depth estimation, brought about by the rise of

large foundation models and the use of synthetic training

data, have fueled a renewed interest in video depth. How-

ever, naively applying a single-image depth estimator to ev-

ery frame of a video disregards temporal continuity, which

not only leads to flickering but may also break when camera

motion causes sudden changes in depth range. An obvious

and principled solution would be to build on top of video

foundation models, but these come with their own limita-

tions; including expensive training and inference, imperfect

3D consistency, and stitching routines for the fixed-length

(short) outputs. We take a step back and demonstrate how

to turn a single-image latent diffusion model (LDM) into a

state-of-the-art video depth estimator. Our model, which we

call RollingDepth, has two main ingredients: (i) a multi-

frame depth estimator that is derived from a single-image

LDM and maps very short video snippets (typically frame

triplets) to depth snippets. (ii) a robust, optimization-based

registration algorithm that optimally assembles depth snip-

pets sampled at various different frame rates back into a

consistent video. RollingDepth is able to efficiently han-

dle long videos with hundreds of frames and delivers more

accurate depth videos than both dedicated video depth es-

timators and high-performing single-frame models. Project

page: rollingdepth.github.io.

1. Introduction

Inferring 3D scene structure from a video stream is a fun-

damental capability of a vision system. Besides its scien-

tific relevance as an elementary building block of machine

perception, it has a broad range of applications, including

mobile robotics and autonomous driving, augmented real-

ity, media production, and content creation.

Traditionally, a video would be converted into a 3D

world model by recovering the camera trajectory with

structure-from-motion (SfM) techniques [16, 53], then ap-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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plying multi-view reconstruction based on either stereo tri-

angulation [14, 70] or, more recently, inverse volume ren-

dering [24, 41]. That approach has the attractive property

that it delivers a full 3D scene model in a common coordi-

nate frame. The price to pay is that it is only feasible un-

der narrowly defined conditions: the camera motion must

be just right, and the scene must have a static background

with cooperative texture and lighting conditions. In prac-

tice, both SfM and multi-view reconstruction fail more of-

ten than not when applied to in-the-wild videos.

This is where video depth comes in. Not all applica-

tions require full-scale 3D reconstruction, and it turns out

that information about the scene structure can be recovered

much more reliably if one aims for a more modest goal:

augment every video frame with a dense 2.5D depth map,

in such a way that those depth maps are consistent through

time. The past years have witnessed tremendous progress

in depth estimation from a single image, sidestepping cam-

era pose estimation (and often also calibration of the focal

length) [5, 23, 49, 68]. A common thread is that recent

methods build on foundation models trained on internet-

scale data, such as DINOv2 [43] or StableDiffusion [51],

and fine-tune them for depth estimation, often using pre-

dominantly synthetic RGB+depth image pairs that can be

generated in large quantities and have accurate depth. The

underlying, rich visual priors afford these depth estimators

excellent zero-shot generalization across scene types, imag-

ing, and lighting conditions.

In general, applying a single-image depth estimator to

a video frame-by-frame does not yield satisfactory results,

but leads to depth flicker and drift. These artifacts are

caused by multiple factors. Most obviously, neither the

model training nor the inference procedure have any notion

of temporal coherence between adjacent frames. Moreover,

monodepth estimation requires scene understanding, which

may also suffer from the lack of temporal context (e.g.,

when a partially visible object only becomes recognizable

after zooming out). What is more, in a video the depth range

between nearby and distant scene parts may change all of a

sudden (e.g., when a foreground object enters the viewfield,

or when the camera pans to a window), making consistent

monodepth estimation difficult.

Some authors [22, 55] have explored the idea of repur-

posing generative video models like Stable Video Diffu-

sion [4] for depth prediction. These methods enable infor-

mation exchange along the time axis and acquire a strong

flow and motion prior during training, hence they achieve

excellent local consistency through time. On the downside,

video LDMs – besides being computationally demanding –

are trained for fixed, short sequence lengths and cannot be

applied directly to uncurated footage of varying lengths. To

be practically useful, the diffusion routine must be wrapped

into a partitioning scheme that splits the input video for pro-

cessing and stitches the depth estimates back together, often

resulting in low-frequency flickering and gradual drift. We

also find that current LDM-based video depth models tend

to be less accurate on distant scene parts.

Rather than design more refined video LDMs, which

require huge resources for training, we take a step back

and re-examine how far one can take video depth estima-

tion with augmented single-image LDMs. We design a set

of measures that, taken together, extend a per-image mon-

odepth framework like Marigold [23] in a way that en-

ables it to handle video input. Importantly, these measures

greatly improve local and global consistency across time

while maintaining a constant memory footprint such that

one can process long sequences. Specifically, we employ a

“rolling” inference with a sliding window of a few frames

(typically three, but other numbers are possible). Those

snippets are sampled from the video with varying spacing,

i.e., they can be immediately adjacent but also dilated along

the timeline to cover long-range context. They are then

fed into a multi-frame LDM fine-tuned from a single-frame

model, with a modified cross-frame self-attention mecha-

nism to enable information exchange. To reassemble the

snippets, we propose a robust optimization-based global co-

alignment, followed by averaging the aligned frames. Op-

tionally, the resulting video can be degraded with moderate

random noise and denoised again with the same per-snippet

LDM to further refine spatial details.

To summarize, our approach estimates accurate and tem-

porally consistent video depth without resorting to cumber-

some video diffusion models. To that end, we contribute:

1. an LDM for monocular depth estimation in video snip-

pets of a few frames, adapted from the Marigold [23]

single-frame model but able to capture temporal patterns

across frames via self-attention;

2. a rolling inference scheme that operates on snippets with

multiple different (temporal) resolutions and enables ef-

ficient propagation of contextual information through

video sequences of arbitrary length (up to minutes);

3. a global alignment procedure, based on robust optimiza-

tion, to recompose the snippets into a depth video whose

depth values remain consistent over long time periods;

4. an optional refinement of the final output with another

round of multi-frame diffusion, where the same LDM is

applied starting from a moderately degraded video.

2. Related Work

2.1. Monocular Depth Estimation

Monocular depth estimation is a dense regression task. The

pioneering work by Eigen et al. [11] showed that metric

depth values can be recovered from single sensors. Succes-

sive advancements include including various parameteriza-

tions (ordinals, bins, planar guidance maps, piecewise pla-
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narity, CRFs, etc.) [2, 12, 29, 31, 36, 42, 45, 75, 81], switch-

ing CNN backbones to vision transformers [1, 3, 32, 65],

considering camera intrinsics [18, 21, 46, 47, 74], and

patch-wise processing [5, 34, 35]. To handle “in-the-wild”

settings, extensive internet photo collections are used for

training [30, 73]. MiDaS [49] improves the generality by

training on a mixture of multiple datasets. Depth Any-

thing [67, 68] takes data scaling to the next level by relying

on DINOv2 [43], a foundational model trained on 142M

images in a self-supervised manner, and subsequently train-

ing with 62M pseudo-labels, 1M real depth annotations,

and 0.5M synthetic ones. Recent trends leverage generative

models, particularly diffusion models [20, 56], for depth es-

timation [10, 52, 80, 80]. Marigold [23] proposed to fine-

tune Stable Diffusion [51], a generative text-to-image latent

diffusion model (LDM) trained with LAION-5B [54], to-

wards affine-invariant depth using 74k samples. This ap-

proach has been improved in many aspects including fewer

steps [15, 17, 19, 64], finer details [77], and more modali-

ties [13, 19].

2.2. Video Depth Estimation

Video depth estimation calls for dedicated mechanisms to

ensure smoothness of adjacent frames, and correct han-

dling of varying depth range. Existing approaches can be

grouped into three main categories: test-time optimization,

feed-forward prediction, and diffusion-based. Test-time op-

timization methods [7, 27, 40, 78] often rely on camera

poses or optical flow and perform optimization for each

new video during inference. While these methods can pro-

duce depth estimates that are temporally consistent, their

dependence on camera poses and long processing time ham-

per their application to open-world video scenarios. Feed-

forward prediction methods estimate depth sequences di-

rectly from input videos [33, 58, 60, 71, 72, 76]. For ex-

ample, DeepV2D [58] integrates camera motion estimation

with depth prediction, MAMO [71] adopts memory atten-

tion mechanisms, and NVDS [61, 62] introduces a stabi-

lization network as a post-processing module. However, the

generalization of these methods to in-the-wild videos is of-

ten constrained by the limited diversity of training data and

model capacity.

Very recently, concurrent with our work, several au-

thors have investigated the use of video diffusion models,

in particular SVD [4], for video depth. ChronoDepth [55]

DepthCrafter [22] and DepthAnyVideo [66] all modify

video diffusion for conditional generative depth predic-

tion. From the underlying video diffusion model they in-

herit high training and inference costs, and a restriction to

short video clips of at most ≈100 frames. In contrast, in

RollingDepth we explore how to turn an image diffusion

model into a temporally consistent depth estimator, which

can handle long videos of 1000 frames or more.

2.3. Image Diffusion Models for Video Tasks

Image diffusion models have been employed in various

video inverse problems, such as video generation, inpaint-

ing, and super-resolution [9, 28, 82]. A large amount

of work [48, 69, 79] focusses on video editing, either

by fine-tuning text-to-image diffusion models on video

data [37, 63] or through training-free approaches using

cross-frame attention and latent fusion [6, 25]. However,

these works [6, 37, 63] predominantly address video-to-

video translation tasks, where both the input and output

reside in RGB space. In contrast, our approach leverages

image diffusion priors to generate consistent depth videos,

with the additional challenge to accommodate large varia-

tions of the depth range, as the near and far planes change

– often suddenly – due to camera and object motion. Im-

plementation tricks when using single-image models, like

fixing the initial noise or blending consecutive latent rep-

resentations, can somewhat mitigate the lack of knowledge

w.r.t. temporal coherence, but do not solve it [23].

3. Method

Let x ∈ R
NF×3×H×W be an RGB video of length NF ,

the goal of a monocular video depth estimator is to pre-

dict a depth video d ∈ R
NF×H×W . All frames in that

depth video should share a common depth scale and shift,

i.e., depth values should not drift unless the associated pixel

moves relative to the camera. In the following, we present

our RollingDepth framework for predicting d from x. The

proposed approach is based on a per-snippet LDM, test-time

depth co-alignment, and an optional refinement of the re-

sulting video, as illustrated in Fig. 2.

3.1. Marigold Monocular Depth Recap

Several recent methods [10, 23, 52], including our base

model Marigold [23], cast monocular depth estimation as

conditional image generation, where a pre-trained LDM is

retargeted to generate the depth map given the input image.

To that end, the model progressively adds noise to depth

samples d
i and learns to reverse that degradation, to ap-

proximate the conditional distribution p(di|xi).
In detail, the model is trained to predict the added noise

ϵ at each step by minimizing the objective

  \mathcal {L}(\theta ) = \mathbb {E}_{(\depth ^i_0,\video ^i)\sim \Prob _{\depth ^i,\video ^i},t\sim \mathcal {U}, \epsilon \sim \mathcal {N}} \left [ \left \| \mathbf {\epsilon } - \mathbf {\epsilon }_\theta (\depth ^i_t,\video ^i, t) \right \|^2 \right ].  























At inference time the model starts from the input xi and

pure Gaussian noise di
T ∼ N (0, I), and gradually maps the

latter to a depth map d
i
0 by iteratively applying the learned

denoising step. For computational efficiency, the denois-

ing process operates a low-dimensional latent space Z , with

an auto-encoder to map images to latent embeddings, and

depth maps back to image space [51].
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Figure 2. Overview of the RollingDepth Inference Pipeline. Given a video sequence x (with i is i
th frame), we construct NT

overlapping snippets using a dilated rolling kernel with varying dilation rates, and perform 1-step inference to obtain initial depth snippets

( kkk ). Next, depth co-alignment optimizes NT pairs of scale and shift values to achieve globally consistent depth throughout the

full video. An optional refinement step further enhances details by applying additional, snippet-based denoising steps.

3.2. Extension to Snippets

Inspired by multi-view diffusion models [26, 38], we ex-

tend Marigold [23] to handle multiple frames by modify-

ing its self-attention layers. In each self-attention block, we

flatten tokens from all frames in a snippet into a single se-

quence, such that the attention mechanism operates across

frames and captures spatial and temporal interactions. Un-

like video diffusion models with factorized spatial-temporal

attention, this approach can handle frames with varying

temporal spacing, which makes it possible to sample snip-

pets at lower frame rates and capture long-range dependen-

cies, an advantage when processing long videos.

The original Marigold model predicts (affine-invariant)

depth between image-specific near and far planes. This

parametrization poses problems for video depth estimation,

where the depth range can vary over time. We therefore re-

train Marigold to predict inverse depth (like several other

monodepth estimators [49, 68]), which is less sensitive to

such variations, particularly in the far field.

3.3. From Snippets to Video

Our multi-frame depth estimator operates on short snip-

pets of n frames, where n ≪ NF . As these snippets are

processed independently, each has its own scale and shift

– which are arbitrary in the case of affine-invariant meth-

ods [17, 23, 49] including Marigold, but will in practice

not be perfectly aligned even when using a metric depth

estimator [35, 46, 74]. To resolve that ambiguity, we con-

struct overlapping snippets with different temporal dilation

rates. The frames shared between different snippets are sub-

sequently used to align all depth predictions to one common

scale and shift.

Dilated Rolling Kernel. We construct multi-scale snippets

using the dilated rolling kernel. For instance, for 3-frame

snippets with dilation rate (frame spacing) g and stride h,

the kernel picks frames (xi−g,xi,xi+g) from the input

video, where i ∈ {g +1, g+1+h, g+1+2h, . . .}. By

varying the dilation rate, we sample snippets with differ-

ent frame rates, in order to capture temporal dependencies

at different time scales. For each snippet of n frames, we

then predict depth using the multi-frame LDM, to obtain a

corresponding n-frame depth snippet.

Depth Co-alignment. At this stage we have generated NT

depth snippets. Each of them has its own scale and shift pa-

rameters {(sk, tk), k ∈ 1 . . . T}, which are shared across its

constituent frames. Our goal is to jointly compute NT scale

and shift values such that they optimally align all snippets

into a consistent video. At a given frame x
i, there are N i

different individual depth maps {di
j , j = 1 . . . N i} orig-

inating from different snippets, where N i can vary from

frame to frame. Let k(i, j) be an indexing function that

retrieves the snippet index k for the j-th depthmap at frame

i. To estimate the best alignment, we minimize the L1 loss

over all individual depth predictions,

  \label {eq:reg_loss} \min _{s_k>0,t_k} \left ( \sum _{i=1}^{N_F} \sum _{j=1}^{N^i}\left |s_{k(i,j)}\depth _j^i + t_{k(i,j)} - \overline {\depth ^i} \right |\; \right ), 























   









  (1)

with the mean depth

  \overline {\depth ^i} = \frac {1}{N^i}\sum _{j=1}^{N^i} \left (s_{k(i,j)}\depth _j^i + t_{k(i,j)}\right )\;. 














 



 (2)

The solution to eq. (1) is found with gradient descent, sta-

bilized by putting more emphasis on snippets with high di-
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Figure 3. Depth Refinement encodes the co-aligned depth video

into latent space, contaminates it with a moderate amount of noise,

then denoises it with a series of reverse diffusion steps with de-

creasing snippet dilation rate. After each step, overlapping latents

are averaged to propagate information between snippets.

lation rates, and additional regularization. Once the depth

snippets have been aligned in a common frame with the es-

timated scale and shift values, the depth maps at every frame

x
i are obtained by taking the pixel-wise mean di, resulting

in a single, consistent depth video with one depth map per

frame. See the supplementary material for further details.

Depth Refinement. To enhance visual quality and cap-

ture finer details, we optionally apply a diffusion-based re-

finement step to the merged depth video d, as illustrated

in Fig. 3. The video is again encoded into latent space

frame by frame, and contaminated with a moderate amount

of noise, corresponding to step T/2 of the diffusion sched-

ule, halfway between the clean latent and pure noise. The

degraded video is again split into snippets with the dilated

rolling kernel and each snippet is denoised individually with

the same LDM as above. To integrate information across

overlapping snippets, the latent embeddings of every frame

are averaged after every denoising step. We find that this

partial (reverse) diffusion works best when applied in a

coarse-to-fine manner in time, starting with a large snippet

dilation rate and gradually decreasing it along the denoising

process. The refinement process enhances high-frequency

detail without altering the global scene depth layout, at the

cost of increased inference time due to the additional round

of denoising diffusion.

3.4. Multi­Frame Training

We exploit the flexible design of the multi-frame self-

attention mechanism to fine-tune the model with varying

snippet lengths. Training snippets are randomly picked to

have one, two, or three frames, making sure that the mo-

tion between frames is small enough to have overlapping

view frustra. To fully utilize the value range of the diffusion

model for best performance, inverse depth values are nor-

malized on a per-snippet basis, using the 2nd and 98th per-

centiles for robustness. We found it important to jointly nor-

malize the values within each snippet rather than normaliz-

ing each frame individually. In this way, the same frame is

normalized differently depending on the context it appears

in, and normalized depths remain comparable within a snip-

pet, enabling the model to understand and correctly handle

rapid changes in the depth range, which routinely appear in

longer video sequences.

4. Experiments

4.1. Implementation Details

Training Datasets. To finetune the snippet LDM, we use

TartanAir [59], a synthetic video dataset with various (in-

door and outdoor) scenes, styles, and camera motions. We

visually inspect the scenes and select 18 scenes consisting

of 369 sequences. Training snippets are randomly sampled

from a sequence, with a minimum overlap ratio of 30%. To

increase the diversity of scenes and avoid a significant sim-

to-real gap we additionally use Hypersim [50], a photore-

alistic single-image dataset containing 365 diverse scenes,

treating images as 1-frame snippets.

Training Settings. Training images are resized to 480×640
for efficiency, with random horizontal flipping as data aug-

mentation. To align with the refinement setting, we employ

depth range augmentation, where we randomly squeeze

the normalized depth snippets to a smaller range and then

slightly rescale and shift the depth range in each frame.

As optimizer, we use AdamW [39] with a learning rate of

3 × 10−5 and exponential decay. Training is run on four

Nvidia A100 GPUs with a batch size of 32 and takes ap-

proximately 18k iterations or two days to converge.

Inference Settings. During inference, we fix the snip-

pet length to n = 3, with three different dilation rates

g ∈ {1, 10, 25} to capture short- to mid-range temporal

relations. For each snippet we perform 1-step inference.

Long-range temporal relations are covered by the depth co-

alignment, which is initialized with sk=1 and tk=0 and

optimized with 2000 steps of gradient descent, using the

Adam optimizer. For the optional refinement, we start at

timestep T/2 of the diffusion trajectory and perform 10 de-

noising steps, gradually reducing the dilation rate from 6 to

1. Input images are resized to a maximum side length of

768 pixels. For evaluation, the final result is up-sampled to

match the original resolution in the dataset.

4.2. Evaluation

Evaluation Datasets. We evaluate RollingDepth on four

datasets that include both static and dynamic scenes with

varying camera and scene motions: PointOdyssey [83] is

a synthetic dataset with individually animated characters

that move independently, designed for long-term tracking.
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Table 1. Quantitative comparison of RollingDepth with baseline methods on zero-shot benchmarks. Bold numbers are the best,

underscored second best, numbers in the bracket after each dataset denote video sequence length. RollingDepth demonstrates superior

performance across both short and long video sequences, despite being an image-based model.

PointOdyssey (250) ScanNet (90) Bonn (110) DyDToF (200) DyDToF (100)

Abs Rel↓ δ1 ↑ Abs Rel↓ δ1 ↑ Abs Rel↓ δ1 ↑ Abs Rel↓ δ1 ↑ Abs Rel↓ δ1 ↑

S
in

g
le

fr
am

e

Marigold∗ [23] 14.9 80.4 14.9 78.3 10.5 86.7 25.3 55.5 16.4 73.5

DepthAnything [67] 16.3 76.0 12.9 84.0 9.9 89.4 25.4 54.3 16.4 75.6

DepthAnythingv2 [68] 14.4 81.4 13.3 82.6 10.5 87.4 24.8 55.9 16.0 76.6

V
id

eo

NVDS (DPT-Large) [61] 26.6 68.2 18.5 67.7 10.5 88.1 24.7 56.0 18.8 69.3

ChronoDepth [55] 51.7 71.2 16.8 73.8 10.9 86.9 26.9 53.2 19.9 66.5

DepthCrafter [22] 36.3 75.0 12.7 84.3 6.6 96.7 22.1 60.7 16.2 74.7

RollingDepth (ours, fast)† 9.6 90.4 10.1 89.7 7.9 93.6 17.7 69.6 12.7 81.6

RollingDepth (ours) 9.6 90.5 9.3 91.6 7.9 93.9 17.3 71.7 12.3 83.0

∗Inverse depth version, retrained with the original training code. †Run at half-precision (fp16), with dilation rates {1, 25}, without refinement.

Figure 4. Qualitative comparison between different methods. RollingDepth excels at preserving fine-grained details (cf . the chandelier

in the first sample and the tripod in the third sample) and recovering accurate scene layout (cf . the far plane in the second sample).

We filter out overly simplistic toy scenes and retain 35 se-

quences. For each sequence, we follow the videodepth lit-

erature and exclude frames with camera zoom, then select

the first 250 frames in each sequence. ScanNet v2 [8] is

an indoor dataset of static scenes recorded with the Kinect

RGB-D sensor. We use its test set of 100 sequences, taking

the first 270 frames of each sequence and downsample the

frame rate by a factor 3, Bonn RGBD [44] is an RGB-D

dataset of moving people in indoor spaces. Following [22],

we use frames 30-140 from five different dynamic scenes.

DyDToF [57] is a photorealistic synthetic dataset featuring

moving objects including people and animals. It has several

videos per scene, we always take the first video and create

two subsets of different lengths from it, by clipping frames

50-250, respectively frames 50-150.

Evaluation Protocol. We extend the affine-invariant depth

evaluation protocol [49] to videos, i.e., depth predictions d̂

are aligned to the ground truth with a scale and shift found

with least squares fitting, where we fit one pair of trans-

formation parameters per video, i.e., all frames in a video

share a common scale and shift. We quantify the depth es-

timation accuracy with two standard metrics [22, 23, 49,

61]: the absolute mean relative error (AbsRel), defined as
1
M

∑M

j=1 |d̂j − dj |/dj , where M is the total number of

pixels; and the δ1-accuracy, which measures the fraction of

pixels for which max(d̂j/dj ,dj/d̂j) < 1.25. Metrics are

always given as percentages. We provide additional tempo-

ral smoothness evaluation in the supplementary material.

4.3. Comparison with Other Methods

We compare RollingDepth against six state-of-the-art

methods for zero-shot monocular depth estimation:

Marigold [23], DepthAnything [67] and DepthAny-

thingv2 [68], which are single-frame methods; as well as

NVDS [62], ChronoDepth [55], and DepthCrafter [22],

which are video-based approaches.
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Figure 5. AbsRel error over time: The line plot (left) shows the depth error at every individual frame, end-of-line numbers are the average

error across the video. The images (right) display error maps (low high) for two specific frames. RollingDepth achieves the lowest

error overall, competing methods recover scene layout less faithfully and tend to be biased towards the foreground or the background.

Figure 6. Qualitative comparison of depth predictions (near far) from in-the-wild videos. To graphically show temporal con-

sistency, we display temporal profiles (red box) for a fixed column (marked with a red line). RollingDepth picks up subtle details like

accessories and wrinkled cloth, and mitigates spurious depth discontinuities (cf . background in temporal profile of the first sample) in time.

Quantitative Comparison. As shown in Tab. 1,

RollingDepth outperforms both single-frame and video-

based approaches across multiple datasets and different se-

quence lengths, often by considerable margins. We at-

tribute this to its ability to combine the accuracy of image-

based models with the temporal coherence afforded by

our snippet-based inference and global depth co-alignment.

On PointOdyssey, which includes many challenging scenes

with highly variable depth ranges, RollingDepth achieves

by far the best result. Methods based on video models strug-

gle on this dataset, and are in fact even unable to match

the performance of single-frame methods. We observe that

the performance of video models drops especially in scenes

with sudden, large changes in the depth range (e.g. a hand

gesture in front of the camera). We hypothesize that the un-

derlying video prior is too rigid and prevents a correct adap-

tation to the rapid change, see the supplementary material

for details. Also on DyDToF, RollingDepth greatly reduces

the error compared to other methods, again underscoring its

ability to handle dynamic scenes and variations of the near

and far planes. Still, the good performance is not limited to

dynamic scenes with strong depth variations. RollingDepth

also performs well on indoor data, reaching the lowest er-

ror on the static ScanNet scenes and the second-lowest error

on the Bonn data. Here DepthCrafter shines – we observe

that it generally tends to do well in scenes dominated by

foreground objects, particularly humans.

Qualitative Comparison. To make our findings more tan-

gible, we provide qualitative comparisons both on evalua-

tion data and on in-the-wild examples. Figure. 4 confirms

that RollingDepth consistently produces high-quality depth

maps that preserve fine detail, both near the camera in the

distance. DepthCrafter and ChronoDepth produce locally

smooth videos with little frame-to-frame flicker, but have a
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tendency to distort the overall scene layout in a way that cer-

tain objects are segmented well but placed at incorrect (rel-

ative) depths. Single-image estimators are seemingly more

accurate in that respect, but suffer from flickering and a lack

of temporal coherence. We further illustrate these trends in

Fig. 5, where we plot per-frame errors, as well as per-pixel

errors for selected frames.

To demonstrate generalization to real-world video clips,

Fig. 6 shows depth predictions for videos collected from

the internet. Also in these cases, RollingDepth accurately

recovers fine details and maintains long-term coherence.

To better illustrate the evolution of the depth estimate over

time, we extract temporal profiles for fixed image columns.

They exhibit no significant high-frequency variations along

the time axis that would indicate frame-to-frame flicker. We

also do not observe drift or unwarranted jumps in the depth

values that would indicate systematic biases. DepthCrafter

for the most part also recovers plausible depth, but misses

depth variations within the main segments and sometimes

exhibits instabilities along the time axis. Chronodepth re-

covers depth boundaries rather well, but delivers billboard-

like, layered depth maps.

4.4. Ablation Studies

We validate our main hyper-parameters and design choices

on a subset of 10 sequences from the PointOdyssey test set

and 20 sequences from the ScanNet test set.

Dilation of Initial Predictions. We start by ablating the ar-

guably most crucial hyper-parameter of RollingDepth, the

dilation rate for snippet sampling, see Tab. 2. The base set-

ting uses only dilation rate {1} for minimal information ex-

change and smoothness between adjacent frames. Having a

high dilation rate {1,25} gives the model access to longer-

term motion patterns on the order of 1 second and greatly

stabilizes the co-alignment step, which in turn reduces the

AbsRel error by >6 percept points on PointOdyssey and

by >2 percent points on the (static) ScanNet. This is what

we use in our fast setting (c.f. Tab. 1), which takes 81s

for a 768×432 video of 250 frames (ChronoDepth: 121s,

DepthCrafter: 284s). An additional, intermediate dilation

rate {1,10,25} further intensifies the information exchange

across time. This further boosts the quality of the estimated

depth maps, but as expected yields diminishing returns.

Effectiveness of Co-Alignment and Refinement. We fur-

ther isolate the effect of the RollingDepth’s components,

see Tab. 3. The snippet diffusion step is mandatory to ob-

tain any depth estimates at all and cannot be left out. For

the experiment we switch on and off the two remaining

steps, co-alignment and refinement, and test all combina-

tions. Simply merging overlapping latents without prior

alignment proves to be insufficient, i.e., their individually

estimated depth ranges are too inconsistent to average them

into a coherent sequence. The refinement step cannot fix

Table 2. Ablation of dilation rates for snippet prediction. We

report values before the optional refinement step. The minimal

base setting uses only dilation rate 1. Adding a high dilation rate

25 brings a marked performance gain. Yet another dilation rate 10

gives a further, smaller boost.

PointOdyssey ScanNet

Dilation rates Abs Rel↓ δ1 ↑ Abs Rel↓ δ1 ↑

{1} 16.7 75.5 12.8 83.2

{1, 25} 10.2 89.5 10.6 88.8

{1, 10, 25} 10.2 89.6 9.9 90.1

Table 3. Ablation of components. Depth co-alignment is a cru-

cial functionality for the snippet-based strategy of RollingDepth,

whereas the additional refinement has only a small effect on the

performance metrics, despite visibly enhanced image detail.

PointOdyssey ScanNet

Co-Alignment Refinement Abs Rel↓ δ1 ↑ Abs Rel↓ δ1 ↑

× × 13.0 84.4 12.4 84.3

× ✓ 13.0 84.6 12.3 84.8

✓ × 10.2 89.6 9.9 90.1

✓ ✓ 10.2 89.8 9.8 90.2

that problem. Conversely, the co-alignment does the heavy

lifting to fuse depth snippets with different scales and shifts

into a coherent video and contributes the lion’s share of the

improvement. Subsequent refinement of the aligned video

only results in a marginal increase of the performance met-

rics, but visibly improves the result by recovering sharp de-

tails that have been missed or blurred in the preceding steps.

5. Conclusion

We have introduced RollingDepth, a novel method for

monocular video depth estimation that is derived from a

single-image (latent) diffusion model. The core compo-

nents of our method (i) are a monodepth estimator for short

snippets, sampled at various frame rates to capture temporal

context at different time scales; (ii) an optimization-based

co-alignment procedure that optimally registers all snippets

of a video into a common depth range; and (iii) an op-

tional refinement step, again based on the same denoising

diffusion scheme for snippets, that enhances fine details in

the depth video. RollingDepth strikes a favorable balance

between accurate per-frame depth prediction and tempo-

ral coherence, and can process long video with hundreds

of frames. It empirically delivers best-in-class performance

across multiple datasets, also outperforming alternatives de-

rived from full-blown video diffusion models. That being

said, the RollingDepth framework is flexible and offers the

possibility to replace individual components. For instance,

an interesting avenue for future work would be to swap out

the snippet-based refinement and replace it with a gener-

ative video model or a flow-based method for even better

motion reconstruction.
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