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Figure 1. Results of our reflection removal system. We use linear (RAW) images with an optional contextual photo, and output the clean
and reflection images in linear color for editing, at full resolution (shown at 2K). Prior works use tone-mapped images at ≈ 256p, yielding
lower quality and inaccurate color. Brightness/contrast changes relative to captured photos arise from reflection removal, and are correct.

Abstract

We describe a system to remove real-world reflections from
images for consumer photography. Our system operates on
linear (RAW) photos, and accepts an optional contextual
photo looking in the opposite direction (e.g. the “selfie”
camera on a mobile device). This optional photo disam-
biguates what should be considered the reflection. The sys-
tem is trained solely on synthetic mixtures of real RAW pho-
tos, which we combine using a reflection simulation that
is photometrically and geometrically accurate. Our system
comprises a base model that accepts the captured photo and
optional context photo as input, and runs at 256p, followed
by an up-sampling model that transforms 256p images to
full resolution. The system produces preview images at 1K
in 4.5-6.5s on a MacBook or iPhone 14 Pro. We show SOTA
results on RAW photos that were captured in the field to em-
body typical consumer photos, and show that training on
RAW simulation data improves performance more than the
architectural variations among prior works.

1. Introduction

Taking pictures through glass is difficult. Light reflects off
of the glass and linearly mixes with the subject, creating a
distraction. Photos from cars and airplanes show the cabin,
photos from buildings include the ceiling lights, paintings
are covered by haze, and window shopping shots are photo-
bombed by the photographer—to name just a few cases.

Removing unwanted reflections is difficult because they
occur in a diverse range of locations and situations. Loca-
tions include shopping spots, traveling (cars, planes), build-
ings, museums, and special cases (eyeglasses, screens). Re-
flections depend on the time, lighting (e.g. incandescent),
scene (trees, streets), illuminant power, and appearance
(complex textures or simple shapes). These factors create
priors because glass is placed carefully in the world.

One way to remove reflections involves capturing a sec-
ond photo with a black material placed behind the glass to
allow only reflected light to reach the camera. If this reflec-
tion image, and the original mixture image, are stored in a
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format that preserves the linear relationship between pixel
values and the scene luminance (e.g., RAW), then these two
scene-referred images can be subtracted to obtain the im-
age that transmitted through the glass. This transmission
image can be recovered because light mixes by addition
in photosites on the sensor. Subtraction has been used for
datasets [28, 48], but fails under motion or lighting changes;
this severely restricts data collection. Alternatively one can
place glass panes in the scene, but the scene and lighting are
typically similar on both sides. Training and evaluating on
such unrealistic data can be unhelpful and misleading.

This paper presents a reflection removal system for con-
sumer photography that targets the following requirements:
1. Handle typical reflections in consumer photography.
2. Minimize user interactions (steps, taps, strokes).
3. Allow photo capture in a typical amount of time.
4. Produce results on-screen for review in about 5 seconds.
5. Produce results at the input image resolution.
6. Facilitate editing for error correction and aesthetics.

Few prior works satisfy these, which affect design and
evaluation. In particular, data should match how the system
will be used. For req. 1, one needs a large dataset of real-
istic photos. Prior works require ground truth photos, but
capturing them restricts the dataset size and diversity. We
synthesize realistic and diverse photos in large quantities.

We synthesize reflections by combining, for example, an
image looking at a storefront with one of sunlit buildings
presumed to be behind the photographer. To make the syn-
thesis accurate, we use linear scene-referred images with
known photometric and colorimetric calibration, and com-
bine them in a physically correct way. For example, the
reflected buildings are typically brighter and bluer than the
storefront, but will be attenuated by reflection off the glass.

To address req. 2 (capture time) and 4 (processing time),
we avoid asking the user to capture video, bursts of frames,
or stereo photos. These help identify what created the re-
flection, but they slow down processing. Instead, we allow
the user to capture an optional, contextual photo. This photo
does not need to be captured simultaneously, or registered
with the original photo. In fact, it could be captured by
quickly turning around and looking away from the window.

To address req. 5, we use a novel upsampler with a flex-
ible output resolution. Note that upsampling is imperative
and non-trivial, but mostly disregarded in the literature. To
meet req. 6 we output reflection and transmission images so
users can remix them to fix the long tail of practical failures.
Contributions. In this work, we
1. show how to synthesize training data such that models

do not need to be fine-tuned on real images;
2. show that training/testing on RAW improves perfor-

mance significantly—more than prior model variations;
3. use a contextual photo to help identify the reflection;
4. significantly reduce upsampling artifacts while produc-

ing output at 1K in 5s for review, and at full resolution.
This paper is best read with hyperlinks into the supple-
ment. See arXiv or the project website for a complete
version. Prior work is outlined in Sec. 2, reflection synthe-
sis (Sec. 3), removal (Sec. 4), and results (Sec. 5). In sup-
plemental sections we discuss simulation (Sec. A–C), data
collection (Sec. D), modeling (Sec. E), and results (Sec. F).

2. Prior work
Removing reflections is a long-standing problem. Prior
works have used multi-image capture and machine learn-
ing. Among the latter, upsampling low-resolution results is
an important sub-problem. We survey each category.

Multiple input images. Prior methods use video [5, 16],
image sequences [17, 30, 33, 37, 38, 41, 42, 55], flash [4,
26], near infrared [19], polarization [12, 25, 27, 34, 53], and
dual pixel images [36], as well as light fields [49]. We use
an optional and additional photo of the reflected scene (not
of the glass) to identify the reflection. This contextual photo
is any for which the camera is pointed at the reflected scene
(e.g., the camera is turned 180◦ as in a “selfie” camera).

Reflection synthesis. Prior methods are trained with
heuristically mixed pairs of tone-mapped images [6, 9, 11,
16, 20, 21, 31, 47, 56, 57]. Such mixing is inaccurate, so
non-linear methods have been used [24, 52]. Physically
based methods nonetheless use tone-mapped images [24].
Successful methods however require ground truth images to
train models that generalize [28], typically at approximately
a 10:1 ratio of synthetic and real [20, 28, 29, 32, 35, 47, 51,
59]. This ratio raises issues of dataset scale and diversity
because ground truth capture is tedious and restrictive. The
largest dataset of real images to-date [60] has 14,952 pairs
(104), but methods like [20, 47, 59] require pre-training on
datasets larger than 106 (e.g., ImageNet [40]). We syn-
thesize photometrically accurate images to obviate ground
truth training images, and train models from scratch on
more than 1M examples, which improves performance.

Removing high resolution reflections. Most methods
operate at ≈2562 pixels, and cannot be trivially scaled up.
Useful systems must create preview images at ≈1K pixels,
and final outputs beyond 4K. Prasad [35] use a base model
at 2562 pixels, and an upsampler that yields ≥ 4K pixels.
Their fast upsampler re-introduces sharp reflections. Our
upsampler is similarly fast, but removes sharp reflections.

Inference on RAW images. Most prior methods apply
reflection removal to 8-bit display-referred images, such as
internet JPEGs. Such images have been white-balanced,
tone-mapped, denoised, sharpened, and compressed. We re-
frame dereflection to operate on scene-referred (RAW) im-
ages. Lei [26] subtract pairs of RAW images to suppress the
reflection before converting to 8-bit for full removal. We
operate on RAW end-to-end. RAW inputs improve prior
methods, but our system outperforms them.

162



3. Reflection synthesis
Our pipeline for removing reflections uses a base model and
an upsampler that are trained solely on simulated images
(Sec. 4), which overcomes the scaling bottleneck of need-
ing to capture real reflections. We simulate reflections pho-
tometrically by summing pairs of scene-referred images,
which are linear with respect to scene luminance. In con-
trast, images in most 8-bit formats are display-referred—
non-linearly related to luminance. Scene-referred images
originate from sensor data stored in RAW format, such
as Adobe Digital Negative (DNG). The transformation of
RAW data into display-referred images is described by
Adobe Camera RAW (ACR), the DNG spec. [1] pp.99-104,
and the DNG SDK [1] as follows:
1. Linearize (e.g. remove vignetting and black levels)
2. Demosaic
3. Subtract the scalar black level
4. Convert to XYZ color
5. White balance1

6. Convert to RGB color
7. Dehaze, tone map (spatial adaptive highlights, shadows,

clarity); enhance texture; adjust local contrast, hue, color
tone, whites, and blacks.

8. Gamma compress
Step 8 yields an 8-bit finished image for storage, but its pixel
values are non-linearly related to scene luminance because
Step 7 performs proprietary, non-linear, and spatially vary-
ing effects that cannot be modeled with a gamma curve as
is often done [29, 53, 59]. Realistic reflections therefore
cannot be simulated by summing pairs of finished images.

Which earlier step is most appropriate for simulation?
The outputs of Steps 5 and 6 are linear, but the illuminant
color has been removed by white balancing—accurate re-
flections cannot be simulated here because scenes that re-
flect from and transmit through glass are often illuminated
by light sources with differing colors, and those colors mix
before white balancing. The output of Step 3 is linear,
preserves the illuminant color, and has been demosaicked,
but its colors are with respect to a sensor-specific spectral
basis—images from different sensors cannot be summed
here. The output of Step 4 is however ideal: the XYZ

1ACR defines two white balancing paths, and we leverage one that dif-
fers from many cameras and the literature [3, 7, 22]. In the literature, white
balance is applied before converting to XYZ with the forward matrix. ACR
also supports that ordering (DNG Spec.[1] p103, matrix FM), but reflection
simulation requires the opposite (as explained in Sec. 3). Fortunately, ACR
specifies a second path that uses color matrices (DNG Spec. [1] pp101-
103, matrix CM), to transform to XYZ before white balancing. All DNGs
are required to provide such color matrices, whereas the forward matrices
of the first path are optional. ACR recommends forward matrices under
extreme lighting (DNG Spec. [1] pp.101-103), for which they are more
precise. Both paths however depend on the as-shot illuminant; see ACR
Funcs. S9, S4, S7. In Sec. 5, we show that this color processing yields
synthetic training data with sufficient realism for models to generalize to
photos in-the-wild from other cameras, while prior methods do not.

color space is sensor-independent, the illuminant color is
preserved (unlike prior works [3]), and pixels are linear with
respect to luminance. We therefore select Step 4 and XYZ
color space to simulate photometrically accurate reflections.

3.1. Photometric reflection synthesis
Our most fundamental simulation principle is the additive
property of light: glass superimposes the light fields from
a reflection and transmission scene to form a mixture. The
resulting mixture image m = t+r accumulates (with equal
weight) photons from the two scenes into a transmission
image t and a reflection image r. We simulate t and r from
images in linear XYZ color (ACR Step 4).

The first photometric property is the illuminant color,
which often differs between t and r because the glass
in consumer photographs typically separates indoor and
outdoor spaces. Otherwise, the photographer could walk
around the glass to take their photo. Even in specialized
scenes like museum display cases, the case is often inter-
nally illuminated, making its illuminant color different than
in the gallery at large. By representing t and r in XYZ color
before white balancing, the illuminant colors are mixed.

The second property is the illuminant power. In typi-
cal scenes, this power differs on either side of the glass (t
and r differ in brightness). The number of captured pho-
tons is scaled by the exposure e = s · g/n2, for shutter
speed s, aperture n, and gain g (ISO). We normalize the ex-
posures of t and r by e so pixels are proportional to scene
luminance up to a shared constant. This un-exposed mix-
ture is m′ = t′ + r′, t′ = t/et, and r′ = r/er, for ex-
posures et and er. We simulate a capture function C that
re-exposes and re-white balances m′ by exposing the mean
pixel to a target value τ , m = C(m′) = We′m′, and
e′ = τ/E[m′], where W is a 3 × 3 matrix that white bal-
ances in XYZ (Func. S2, Sec. A.1). If pixels in t or r are
saturated, e′ = 1/min(max(t′), max(r′)), to ensure they
remain so. Lastly, m is converted to scene-referred, linear
RGB to train models.

The full simulation is described in Func. 1 and Sec. A.
This function produces mixtures m are photometrically ac-
curate, but they aren’t always useful. When saturation dic-
tates the re-exposure e′, pixels can be clipped, modeling
over-exposed m. Images t′ or r′ can also be so dark that
they are invisible, or so mutually destructive that one would
struggle to identify the subject. These photos do not model
m that photographers care about. We therefore collect a
large dataset of images and search for well exposed and well
mixed m. This search introduces photometric and semantic
priors on m, t, and r (e.g., skies often reflect). See Sec. D.

3.2. Geometric reflection synthesis
Our second fundamental simulation principle is that mix-
tures must be geometrically valid. Denoting the images to
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Function 1 Simulate reflection examples (m, t, r, c).
Input: A random pair of XYZ images (i, j)
Output: Simulated components and context image.
1: Split j into non-overlapping reflection and context parts (r, c).
2: Split i similarly: randomly select a transmission part t.
3: Unexpose t and r by using their exposure metadata.
4: Apply the geometric simulation to (t, r).
5: Composite m = t+ r.
6: Compute a new exposure e for m. {Func. S1}
7: Compute WB matrix XYZ to XYZ awb. {Func. S2}
8: White balance (WB) m by applying XYZ to XYZ awb.
9: Apply the same white balance to (t, r, c).

10: Get the transform XYZ D50 to sRGB. {SDK Func. S12}
11: Transform (m, t, r, c) to linear sRGB.
12: return (m, t, r, c)

be summed as t and r, and our source image pairs as (i, j),
we synthesize t = T (i) and r = R(j) by modeling spatially
varying Fresnel attenuation, perspective, double reflection,
and defocus. We omit from T the effects of global color,
dirt, and scratches; editing tools can correct them. We
model a physically calibrated amount of defocus blur; most
reflections are sharp as also noted in [28]. See Sec. B.

3.3. The contextual photo
We accept an optional contextual photo c that directly cap-
tures the reflection scene to help identify the reflection r.
Capture of c can be simultaneous with the secondary front
camera (selfie) on a mobile device, or briefly later. We make
three observations about the views of c and r (see Fig. S3):
1. Even if the cameras are collocated, the viewpoints of c

and r will be translated by twice the distance to the glass.
2. If the mixture is captured obliquely to the glass, rotating

the contextual view 180◦ yields little common content.
3. If the selfie camera is used, the reflection scene might be

partially occluded by the photographer.
Image c will therefore often contain little content that
matches with r unless it is captured carefully. We avoid
placing such a large burden on the user, and allow them
to capture any view, c, of the reflection scene. Crucially,
this relaxation also facilitates the geometric simulation. We
scalably model c by cropping source images into a disjoint
left/right half (or top/bottom). The context image encodes
information about the lighting and scene because we use a
capture function C with the same white balance as (m, t, r).
See Sec. 3.1, Func. 1, and Sec. C for details.

4. Reflection removal
Our system removes reflections from RAW images, m, in
linear RGB color (ACR Step 6) with an optional context
image c that is white balanced like m (see Func. 1). Both
m and c share a scene-referred color space, which aids re-
moval; RGB supports pre-trained perceptual losses. We
predict t and r in linear RGB, and store inference outputs
by inverting ACR steps 3–6 to produce new RAW images.

Base ModelUpsampler

Base ModelUpsampler

Base Model

Pyramid Op.

Base Model

RAW Reader

.........

...

RAW Writer

Pr
ev

ie
w

Resize Op.

mix. ctx.
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Figure 2. System

Our system uses two models,
Fig. 2. A base model uses m, c at
2562 pixels to predict t, r (rectangular
images are tiled); t, r are then upsam-
pled using a Gaussian pyramid.

4.1. Base model
The base model is in Fig. S4 due to
space limits. A multi-scale backbone
projects m into a high dimensional
space and computes semantic features
(labeled P-Net). These features are
fused (labeled F-Net) with a feature pyramid network (FPN)
at the input resolution. The backbone is EfficientNet [43] at
2562 pixels, and fusion uses a BiFPN pyramid [44, 54].

The context image c, is processed identically to m. Its
low-resolution FPN features are used to predict affines that
modify the FPN features of m using conv-mod-deconv op-
erations ala StyleGAN [23]. Modulation is per-channel be-
cause c does not share identical content with m. Concep-
tually, modulation gives the model additional capacity to
identify r within the features of m. A finishing module fur-
ther identifies and renders t, r (it’s the head in [59]). We pre-
dict (t, r) independently, rather than enforcing t+r = m, to
decouple failures. Training uses the losses of [59] with im-
provements to the adversary and gradient terms. Crucially,
training is end-to-end from random weights. See Sec. E.1.

4.2. Upsampler
The upsampler is shown in Fig. S5 due to space limits. Up-
sampling is performed iteratively over a Gaussian pyramid
(see Fig. 2), as summarized below. Details are in Sec. E.2.

Briefly, the upsampler first projects the low- and high-
resolution images (m, r, t), and M into a high dimensional
space ϕ using a convolutional backbone. The upsampler
then matches low resolution features ϕt, ϕr to ϕm to cre-
ate masks that identify the features of t, r within m. This
matching process uses products of features: when features
match, their product can be large regardless of sign, whereas
summation yields large activations if either input is large.
We generalize this idea by predicting affine transforms that
are applied to the features of t and r, followed by a sigmoid;
see Fig. S5 (bottom). Two per-pixel, per-channel masks are
thus predicted, It, Ir. Errors are corrected by a joint mask
predictor that inspects both It, Ir (see Sec. E.2). Masks It
and Ir are resampled 2× and multiplied with ϕM to project
its features into subspaces for T , R. This key step assumes
that the identity It, Ir of the component to which each fea-
ture belongs is low in spatial frequency. By resampling
masks, not features, sharp features are preserved. Errors are
corrected with finishing convolutions, which render T,R.

Training uses a cycle-consistency loss, losses similar
to [35], and begins from scratch. See Sec. E.2 for details.
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5. Results
We evaluate the simulation, base model, and upsampler; ex-
tensive results are added in the supplement. We make four
contributions. First, we show that dereflection models that
are trained solely on simulated reflections can generalize
to real images without fine-tuning on real images, provided
that the simulation uses RAW images in a photometrically
accurate way. Second, training and testing on RAW images
improves results significantly, and more than prior model
variations. Third, a context image can disambiguate the re-
flection content if it is captured in another direction (e.g.,
the selfie). Fourth, upsampling low-res results, which is im-
perative but largely neglected in the literature, works better
if one explicitly matches features in the low-res outputs t, r
to the low-res mixture, and masks them from the high-res
mixture to recover the high-res transmission and reflection.

5.1. Reflection simulation
Source images were drawn from MIT5K [8], RAISE [10],
and Laval Indoors [14], totaling 12,803 RAWs and 2,233
scene-referred Image-Based Lighting (IBL) panoramas.
The 360◦ IBLs are equivalent to about 12,367 indoor RAW
images because we simulate random cameras with an av-
erage FOV of 65◦, Sec. B.2, B.4. Images are grouped
into 10,547 outdoor and 14,623 indoor to create pairs (i, j),
Sec. D.2. The groups are split into train, validation, and test
sets (80%, 15%, 5%) before simulation.

The number of examples (m, t, r) is amplified by ran-
domization in the geometric simulation (Sec. B, D). We
search 108 examples for useful m. After culling, about
107 mixtures remain, and we rendered 10% at 2562 and
20482 pixels to train the models. The 2562 pixel dataset has
1,241,091 for training, 46,121 for test, and 8,991 for valida-
tion; the 20482 dataset has 1,079,631; 39,916; and 7,448.

Fig. 3 shows results of mixing scene-referred images: (a)
correct illuminant colors and (b) correct reflection visibility.
We linearly blended 8-bit tone-mapped images for compar-
ison, and compare to prior works (see caption). Fig. S2
shows an overview of the dataset, and is discussed below.

In Tab. 1 we ablate each simulation component. We
(gamma) compressed t, r before compositing; separately
exposed them (exposure); did not constrain their inclina-
tion or field-of-view (pose); removed spatially varying at-
tenuation by making all camera rays normal to the glass
(fresnel); separately white balanced (WB); removed depth-
of-field blur and double reflection (blur); and removed all.
We trained our base model on each dataset, and evaluated
on the full-simulation test set. Each feature affects perfor-
mance (all differences are significant), and omitting them
all (All ± G) decreases performance dramatically compared
to the average degradation to t, r (control).

Discussion. Prior works mix 8-bit tone-mapped images,
and the results are qualitatively unrealistic. Their simulated

reflections overpower the highlights, and are not powerful
enough in the shadows, which are boosted by tone map-
ping. In our accurate simulations, light from two scenes is
mixed linearly and equally without tone-mapping. This ac-
curate mixing allows our models to generalize better to new
scenes, and yields SOTA performance without training on
real images (Sec. 5.2). Furthermore, by synthesizing physi-
cally accurate reflections and searching for visible ones, we
introduce natural priors on their appearance. Indoor light is
weak, so reflections of the indoors are typically of regions
near light sources or windows; see Fig. S2, examples 1, 2, 5,
11, 14, 19, 24, 25. Indoor lights create small reflections that
often look yellow atop outdoor scenes, due to typical illu-
minant colors, whereas outdoor light can bounce off diffuse
objects with enough strength to create colorful reflections
of whole scenes that can be blue in white balance due to
the outdoor illuminant color; see Fig. S2, examples 4, 8, 10,
12, 15, 16, 17, 18, 21. At dusk, whole indoor scenes can
reflect over cityscapes, etc. (examples 3, 13). Such priors
are apparent in consumer photos (see Figs. 1, 7, 8, S6, S7,
S8). Lastly, like prior works we pair indoor/outdoor pho-
tos, which permits pairings such as bathrooms and beaches.
Such pairs can be removed if they prove unhelpful.

5.2. Base reflection removal
Base models were trained end-to-end from random weights
at 2562 pixels using an Adam optimizer with lr = 1e-4,
discriminator lr = 5e-5, and batch size 32 over 16 GPUs
for 20 epochs. Adversarial training begins after one epoch.

We trained three base models, one with and two without
context c. To omit c, we removed the modulated merges
(Fig. S4), which decreases model capacity. As a second op-
tion, we left the model unchanged, and trained/tested with
random c. We used this second approach for ablation.

Our system uses RAW images end-to-end, but public
datasets do not provide RAW images: Real20, Real45, Na-
ture, SIR2, SIR2+, CDR,2 and RRW all use JPG/PNG for-
mats [11, 28, 29, 46, 48, 59, 60]. We tabulate results using
our simulation test sets, and show visual results using RAW
photos that were captured in-the-wild. See also Sec. F.2.

In Tab. 2 we compare to Zhang et al. [59], DSRNet [20],
Zhu et al. [60], and CoRRN [47] by retraining their models
on our RAW dataset.3 Recall that our model uses the same
losses and network head as Zhang et al. This simplifies
comparison to prior work. Tab. 2 (RAW Train) shows that,
when training with RAW, all methods improve images rela-
tive to the average degradation to t, r (control). Our models
however outperform prior works (ours+ctx, ours).

To show the benefit of RAW simulation and inference,
we ran the previously published 8-bit models on an 8-bit

2The authors of CDR [28] have not released the RAW data.
3We use 2.5M parameters; DSRNet uses 125M. Inference at 256×341

takes 0.96s/1.04s on a 2021 M1 MacBook Pro (32Gb) and iPhone 14 Pro.
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Figure 3. The importance of synthesizing training data (top row) from linear images (mid-
dle row), compared to prior work. (a) Photometrically accurate illuminant colors are sim-
ulated by mixing before white balancing; mixing 8-bit white balanced images is much
different. (b) Mixing in scene-referred linear units produces reflections that are strong
in the shadows, but transparent in the highlights. (prior work) Such effects are visibly
incorrect in prior work, which blend 8-bit tone mapped images [11, 52]. (bottom) Real
and simulated examples are shuffled together. For each real image, a similar synthetic
reflection was manually found in the dataset. Real images were not captured to match
known examples; these qualitative matches exist because the dataset size exceeds 106
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DSRNet (RT) + UpsampleZhang (RT) + Upsample
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Figure 4. Results at 2048p; base outputs inset.
Captured Photo Ground Truth (GT)

Our Result V-DESIRR

Figure 5. Upsampling GT images 256p to
2048p. V-DESIRR [35] adds artifacts.

Method SSIMt %↑ SSIMr %↑

Control 85.8 49.0
Full Sim. 95.7 70 88.2 77

A
bl

at
e

(G)amma 88.8 21 77.0 55
Exposure 94.2 59 86.1 73
Pose 95.0 65 85.4 71
Fresnel 95.3 67 87.3 75
WB 95.5 68 87.6 76
Blur 95.5 68 87.9 76

All − G 90.2 31 71.3 44
All + G 89.2 24 58.5 19

Table 1. Ablated datasets were
created, 1.2M examples each.
Model ours+ctx was trained on
these, and tested on the full-
simulation test set. %↑ is w.r.t.
control (see Tab. 2). SSIM values
are shown as percentages.

Method PSNRtSSIMt %↑ PSNRr SSIMr %↑

Control 21.74 85.8 12.48 49.0

R
A

W
Tr

ai
n Ours+ctx 33.23 95.7 +70 30.17 88.2 +77

Ours 32.15 95.2 +66 29.18 86.7 +74
Zhu [60] 29.84 92.8 +49
DSRNet [20] 28.98 92.6 +48 23.99 75.5 +52
Zhang [59] 26.23 89.9 +28 22.78 61.5 +25
CoRRN [47] 22.75 86.7 +6 18.31 60.4 +22

8
-b

it
Pu

b. Control 18.62 78.4 9.79 37.4
DSRNet [20] 19.99 80.0 +8 16.98 49.3 +19
Zhu [60] 19.84 79.7 +6
Zhang [59] 18.65 75.9 −11 17.37 51.0 +22
CoRRN [47] 18.95 74.7 −17 15.99 23.8 −22

A
bl

. Ours+rac 33.20 95.7 +70 30.20 88.3 +77
Ours+rnd 32.42 95.1 +66 29.29 86.7 +74

Table 2. Base models: (control) compares m to t, r. 8-bit
models use published weights. %↑ is w.r.t. SSIM control.
Ablations: (rac) GT r is used as context; (rnd) random c.
Ours+ctx beats Ours+rnd (p < 1.7e-11).

Method PSNRt SSIMt PSNRr SSIMr

Control 19.50 86.3 13.13 64.5

G
T

Ours 47.77 98.8 45.93 98.2
Ours-NM 43.29 98.1 43.99 96.9
VDSR+C [35] 42.24 97.9 38.32 93.8
VDSR [35] 40.74 97.4 38.30 93.9

Bicubic 31.98 85.1 41.58 96.0
SUPIR [58] 28.09 64.6 28.29 56.8
RESRGan [50] 23.72 65.6 23.11 53.6

E
2E Ours 30.62 95.2 28.53 90.7

VDSR+C [35] 30.27 94.5 27.74 88.7

Table 3. Upsampling ground truth (GT),
and using the base model for end-to-end
results (E2E). Usampling is from 256p to
2048p using our method and V-DESIRR
with and without cycle consistency (+C),
which improves VDSR for T (p< 1e-12).

version of our test set,4 and compared the percent improve-
ment to that of using RAW (Tab. 2, 8-bit Pub.). DSRNet
and Zhu improve images modestly; Zhang and CoRRN dis-
tort the color (e.g. Fig. 1). Retraining DSRNet, Zhu, and
Zhang on RAW improves their performance by ≈40 pct.
points (pp) SSIMt, whereas the performance differences
among them are only ≈20pp. Training on RAW simu-
lation data therefore improved performance more than
the architectural variations among prior works. Fur-

4Our test images were converted to 8-bit using Adobe Camera RAW.

thermore, ablating the simulation (Tab. 1, All+G) de-
grades performance -46pp, which conversely matches
the +40pp benefit of RAW retraining, and exceeds even
the benefit of the contextual photo (+4pp).

In Tab. 2 (Abl.) we ablate our contextual model by train-
ing/testing with random c (ours+rnd), which degrades per-
formance compared to (ours+ctx)—this is statistically sig-
nificant. Removing operations that use c (ours) did not de-
grade performance compared to ours+rnd (p < 1.7e-11),
which suggests that ours+rnd does not learn dataset priors
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with its additional capacity, and conversely that ours+ctx
leverages the content of c. Ablating further, using the re-
flection as the context (c = r) at test time only does not im-
prove the contextual model results (ours+rac), which sug-
gests that c and r need not match; the model is robust to
their differences since it is trained with disjoint crops (c, r).

For visual comparison, in Fig. 7 and Fig. S6 we cap-
tured5 ground truth reflections in common cases: looking
outdoors, into a display case, and at artwork. We dereflected
with Zhang, DSRNet (retrained, RT), and our models at
256×384 (inset images) and upsampled to 2048×2731 (next
section). The empirical SSIM values (lowercase t, r) are
commensurate with test performance (Tab. 2). In Fig. 7 our
contextual model separates the reflection, but without con-
text our model attributes the colors in the umbrella with a
reflected object. Prior works perform quantitatively worse.

In Figs. 1, 4, 8, S7, S8, and S9 we show results on photos
in-the-wild from cameras that were not used to construct the
training data. We also compare the 8-bit models of Zhang
and DSRNet. The bottom two rows of Figs. 8, S7, S8 show
that these prior 8-bit models perform qualitatively worse
than when they are re-trained/evaluated on RAW (the top
rows). They do not however recover r well, which is needed
for aesthetics and error correction (Sec. 5.4, Sec. F.4).

Discussion. Our models recover t, r in diverse real-
world cases including museums, nature, shopping, a mid-
day city, artwork, etc. (Figs. 1, 4, 7, 8, S6, S7, S8, S9).
In Fig. 1, using the context photo yields more correct and
uniform color on the Egyptian tablet because there is less
ambiguity about the color of the reflection scene (compare
to inset w/o context). Failures occur when t or r is bright,
and pushes the other into the noise floor, saturating it to
black—the problem becomes hole filling. When a single
color channel saturates, the content can sometimes be re-
covered. But, systems must address hole filling because
users typically cannot control the strength of reflections.

Errors can occur when textured regions of t and r over-
lap, as in Fig. 1 where a stone wall overlaps the subject’s
dress. Color differences help: in Fig. 7 the reflected paint-
ing is separated from the tree. Without such differences,
models must repair or hallucinate content in the corrupted
t. Saturated reflections pose a similar challenge. See Sec. F
for more discussion of errors and additional results.

5.3. Upsampling
Our upsampler is trained using Adam with lr = 4e-4, batch
size 64 over 32 A100 GPUs, and converges after about 40
epochs. For end-to-end operation (E2E), we tune with the
base model outputs for 19K examples at lr = 2e-4.

We compare to V-DESIRR [35] in Tab. 3 by upsampling
the ground truth (GT) and using the base model (E2E).6 For

5We thank Florian Kainz for his help capturing these photos.
6Inference of our E2E upsampler, up to preview size 1024 × 1364,

best E2E performance, we fine tuned our upsampler and V-
DESIRR with the base model. Our method performs best
(ours). Cycle consistency loss improves V-DESIRR (+C),
so we used this for E2E. We ablated the upsampler mask-
ing operations by using only the finisher head (Ours-NM);
performance degraded almost to match V-DESIRR.

Comparing on GT images, Fig. 5 and Fig. S11, V-
DESIRR produces strong artifacts, even after fine tuning
(adding cycle-consistency losses did not help).

Discussion. V-DESIRR amplifies errors at low resolu-
tions by repeatedly upsampling its previous output images.
Instead, our model masks and copies the high-res mixture
features ϕM to the output T,R. This direct copy reduces
error propagation. Errors can still occur when features that
are not present in the low resolution inputs become visible at
the next level upward (e.g. Fig. S14) because the low resolu-
tion t, r cannot guide upsampling of such features, and the

Edited Reflection Our Result (Reflection)

Our Result

Context

Figure 6. Reflection editing.

upsampler must infer the
high resolution image to
which the features belong.

5.4. Reflection editing
In Fig. 6 and Fig. S15 we
show that the predicted re-
flection facilitates aesthetic
editing and error correction.
In Fig. 6, the reflection color
and spatial arrangement is
modified. Error correction is
shown in Fig. S15, Sec. F.4.
Edits were made in Photo-
shop using the tone-mapped t and r images, and “Linear
Dodge” blend mode (but linear blending would be ideal).

6. Conclusion
We have described a de-reflection system that is trained
solely on images from a photometrically and geometri-
cally accurate simulation. Moreover, we have imbued these
images with natural priors by searching among millions
of them for well-exposed and visually interpretable cases.
This RAW simulation dramatically improves results, more
than prior model variations, and enables our models to per-
form well on real images without training on them.

Since Farid and Adelson [12], many cues have been used
for de-reflection. We add illuminant color and context pho-
tos, and use RAW images end-to-end. Our models are thus
sensitive and can uncover hidden reflections, Fig. S9; pri-
vacy should be protected. Our system can also remove lens
flares, though they are not in the dataset, Fig. S10. Flare
removal systems might therefore be pre-trained to remove
reflections, since it is difficult to capture real lens flares.

takes 4.52s and 6.53s on our 2021 MacBook Prop and iPhone 14 Pro.
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[21] Meiguang Jin, Sabine Süsstrunk, and Paolo Favaro. Learning
to see through reflections. In 2018 IEEE International Con-
ference on Computational Photography, ICCP 2018, Pitts-
burgh, PA, USA, May 4-6, 2018, pages 1–12. IEEE Computer
Society, 2018. 2

[22] Hakki Can Karaimer and Michael S. Brown. A software plat-
form for manipulating the camera imaging pipeline. In Com-
puter Vision - ECCV 2016 - 14th European Conference, Am-
sterdam, The Netherlands, October 11-14, 2016, Proceed-
ings, Part I, pages 429–444. Springer, 2016. 3

[23] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative ad-
versarial networks with limited data. In Advances in Neu-
ral Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020. 4, 7, 8

169



[24] Soomin Kim, Yuchi Huo, and Sung-Eui Yoon. Single image
reflection removal with physically-based training images. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle, WA, USA, June 13-
19, 2020, pages 5163–5172. Computer Vision Foundation /
IEEE, 2020. 2, 4

[25] Naejin Kong, Yu-Wing Tai, and Joseph S. Shin. A
physically-based approach to reflection separation: From
physical modeling to constrained optimization. IEEE Trans.
Pattern Anal. Mach. Intell., 36(2):209–221, 2014. 2

[26] Chenyang Lei and Qifeng Chen. Robust reflection removal
with reflection-free flash-only cues. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2021, vir-
tual, June 19-25, 2021, pages 14811–14820. Computer Vi-
sion Foundation / IEEE, 2021. 2

[27] Chenyang Lei, Xuhua Huang, Mengdi Zhang, Qiong Yan,
Wenxiu Sun, and Qifeng Chen. Polarized reflection removal
with perfect alignment in the wild. In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020, pages 1747–
1755. Computer Vision Foundation / IEEE, 2020. 2

[28] Chenyang Lei, Xuhua Huang, Chenyang Qi, Yankun Zhao,
Wenxiu Sun, Qiong Yan, and Qifeng Chen. A categorized
reflection removal dataset with diverse real-world scenes.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, CVPR Workshops 2022, New Or-
leans, LA, USA, June 19-20, 2022, pages 3039–3047. IEEE,
2022. 2, 4, 5

[29] Chao Li, Yixiao Yang, Kun He, Stephen Lin, and John E.
Hopcroft. Single image reflection removal through cascaded
refinement. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, pages 3562–3571. Computer Vision
Foundation / IEEE, 2020. 2, 3, 5

[30] Yu Li and Michael S. Brown. Exploiting reflection change
for automatic reflection removal. In IEEE International Con-
ference on Computer Vision, ICCV 2013, Sydney, Australia,
December 1-8, 2013, pages 2432–2439. IEEE Computer So-
ciety, 2013. 2

[31] Yu Li and Michael S. Brown. Single image layer separa-
tion using relative smoothness. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2014,
Columbus, OH, USA, June 23-28, 2014, pages 2752–2759.
IEEE Computer Society, 2014. 2

[32] Yu Li, Ming Liu, Yaling Yi, Qince Li, Dongwei Ren, and
Wangmeng Zuo. Two-stage single image reflection removal
with reflection-aware guidance. Appl. Intell., 53(16):19433–
19448, 2023. 2

[33] Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu
Chuang, and Jia-Bin Huang. Learning to see through ob-
structions. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA,
USA, June 13-19, 2020, pages 14203–14212. Computer Vi-
sion Foundation / IEEE, 2020. 2

[34] Youwei Lyu, Zhaopeng Cui, Si Li, Marc Pollefeys, and
Boxin Shi. Reflection separation using a pair of unpolarized
and polarized images. In Advances in Neural Information

Processing Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 14532–14542,
2019. 2

[35] B. H. Pawan Prasad, Green Rosh K. S, R. B. Lokesh,
Kaushik Mitra, and Sanjoy Chowdhury. V-DESIRR: very
fast deep embedded single image reflection removal. In 2021
IEEE/CVF International Conference on Computer Vision,
ICCV 2021, Montreal, QC, Canada, October 10-17, 2021,
pages 2370–2379. IEEE, 2021. 2, 4, 6, 7, 8, 13, 15

[36] Abhijith Punnappurath and Michael S. Brown. Reflection
removal using a dual-pixel sensor. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019, pages 1556–1565.
Computer Vision Foundation / IEEE, 2019. 2

[37] Bernard Sarel and Michal Irani. Separating transparent lay-
ers through layer information exchange. In Computer Vision
- ECCV 2004, 8th European Conference on Computer Vi-
sion, Prague, Czech Republic, May 11-14, 2004. Proceed-
ings, Part IV, pages 328–341. Springer, 2004. 2

[38] Bernard Sarel and Michal Irani. Separating transparent lay-
ers of repetitive dynamic behaviors. In 10th IEEE Interna-
tional Conference on Computer Vision (ICCV 2005), 17-20
October 2005, Beijing, China, pages 26–32. IEEE Computer
Society, 2005. 2

[39] Yichang Shih, Dilip Krishnan, Frédo Durand, and William T.
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