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Abstract

Parameter-efficient tuning (PET) aims to transfer pre-
trained foundation models to downstream tasks by learn-
ing a small number of parameters. Compared to tradi-
tional fine-tuning, which updates the entire model, PET sig-
nificantly reduces storage and transfer costs for each task
regardless of exponentially increasing pre-trained model
capacity. However, most PET methods inherit the infer-
ence latency of their large backbone models and often in-
troduce additional computational overhead due to addi-
tional modules (e.g. adapters), limiting their practicality
for compute-intensive applications. In this paper, we pro-
pose Faster Parameter-Efficient Tuning (FPET), a novel
approach that enhances inference speed and training effi-
ciency while maintaining high storage efficiency. Specifi-
cally, we introduce a plug-and-play token redundancy re-
duction module delicately designed for PET. This module
refines tokens from the self-attention layer using an adapter
to learn the accurate similarity between tokens and cuts
off the tokens through a fully-differentiable token merging
strategy, which uses a straight-through estimator for opti-
mal token reduction. Experimental results prove that our
FPET achieves faster inference and higher memory effi-
ciency than the pre-trained backbone while keeping com-
petitive performance on par with state-of-the-art PET meth-
ods. The code is available at https://github.com/
kyk120/fpet.

1. Introduction

Pre-training on large-scale web-collected data followed by
fine-tuning on specific downstream tasks is a foundational
paradigm that leads to state-of-the-art performance across
various vision-related tasks. Nonetheless, modifying all
parameters for each distinct task is inefficient in terms of
storage, as it requires updating and storing the whole pa-
rameters for every individual task. To address this issue,
parameter-efficient tuning (PET) approaches [5, 7–9, 12–
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(a) Accuracy (%) vs Inference Time (ms)

(b) Accuracy (%) vs GPU Memory usage (GB)

Figure 1. Average accuracy vs. inference time and GPU memory
usage on VTAB-1K [38]. Our FPET significantly surpasses all
existing PET methods in terms of inference speed and computation
cost. Note that the dotted line in (a) represents the no inference
latency established in prior studies.

17, 21, 22, 29–31, 34, 37, 39, 40, 42] have proposed to
utilize a minimal number of parameters to transfer pre-
trained models to downstream tasks. They have demon-
strated significant storage efficiency while attaining compa-
rable or even surpassing performance to full-tuning. For ex-
ample, [16] outperforms full-tuning performance on VTAB-
1K [38] by 8% with only less than 2% trainable parameters.

PET methods have continually evolved with the funda-
mental objective of conserving resources by redundancy
reduction [16]. Specifically, they have accomplished re-
dundancy reduction through rank decomposition with ad-
ditional lightweight learnable modules (e.g. adapter) [5, 8,
9, 12, 13, 15–17, 29, 31, 40, 42], task-specific parameter
reduction with additional learnable tokens [14, 21, 34, 41],
or precision redundancy reduction with adapter quantiza-
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tion [16]. While these strategies have made significant ad-
vances in storage efficiency, they are still insufficient to ap-
ply to real-world applications (e.g. web platforms utilized
by millions of users or edge devices that are constrained by
resources) due to two main challenges: inference latency
and computing memory usage. Most existing works often
require higher inference latency and computation than full-
tuning models during inference due to additional modules
or parameters. Some works [13, 15, 22, 28, 37] have facil-
itated no inference latency compared to the backbone mod-
els, however, they inherit the original inference latency and
computation requirement from the backbone.

To address the above limitations, some approaches [7,
39] have proposed to truncate the network architecture [7]
or disentangle task-specific and pre-trained task-agnostic
knowledge [39]. However, they still suffer from an in-
creased number of learnable parameters and a slower in-
ference speed [39], and an additional pre-training step [7].
Furthermore, they often exhibit degraded performance com-
pared to state-of-the-art PET methods.

In this paper, we explore a straightforward approach to
achieve both a feasible inference latency and a training com-
putational efficiency. Motivated by the recent token reduc-
tion approaches [2, 3], which reduces model’s input space,
we present Faster Parameter-Efficient Tuning (FPET) that
formulates PET with token redundancy reduction. Instead
of directly utilizing the previous methods, which provides
a sub-optimal solution due to their non-differentiable na-
ture, we introduce a fully differentiable token redundancy
reduction module. Specifically, we incorporate a straight-
through estimator (STE) [1] into token reduction to make
the token selection process fully differentiable. In addi-
tion, our FPET performs token reduction once in the back-
bone model’s intermediate layer contrary to [2, 3], which
performs token merging based on token similarity in the
early layer where the impact of the adapter is not fully
manifest. Consequently, our FPET achieves faster infer-
ence speed, surpassing even the no inference latency ap-
proaches [13, 15, 22, 28, 37], while maintaining efficiency
gains during training. Experiments on VTAB-1K [38] and
extensive ablation study demonstrate the effectiveness and
high efficiency of our FPET, achieving a faster inference
speed and a lower computation requirement than existing
PET methods while attaining comparable performance to
state-of-the-art.

2. Related Work

2.1. Parameter-efficient tuning

Parameter-efficient tuning (PET) seeks to leverage large
pre-trained models by tuning and storing only the mini-
mal task-specific parameters, thereby minimizing storage
requirements across a multitude of downstream tasks.

Prompt-based methods [14, 19, 21, 26, 33, 34, 41, 43] in-
troduce a small number of learnable tokens that are concate-
nated with input tokens of transformer. Through the self-
attention layer, prompts modulate input tokens for adapta-
tion, but the additional token count (1 to 200) results in a
quadratic increase in computational complexity.

Adapter-based methods [5, 8, 9, 12, 13, 15–17, 25, 29–
31, 40], has made significant strides in decreasing rank
redundancy employing rank decomposition matrices into
transformer architecture. Especially, [9, 15, 17, 25] fur-
ther improved the decomposition utilizing Kronecker prod-
ucts or butterfly factorization. Furthermore, [16] employs
quantization on adapters, considerably diminishing the stor-
age demands for each task by reducing numerical precision
redundancy. However, their concern is limited to storage
memory efficiency.

There have been attempts to maintain inference speed
without incurring any increase from adapters [13, 15, 22,
37]. By employing low-rank adapters devoid of non-linear
functions [13, 15], or utilizing a scaling and shifting mod-
ule as an adapter [22], they enable the integration of learned
parameters into the pre-trained model in advance. Further-
more, [37] maintains inference speed by implementing par-
tial fine-tuning instead of additional adapters. Despite these
attempts, the improvements have been limited in maintain-
ing the original inference speed of pre-trained models.

Recent studies [7, 39] have proposed various approaches
to enhance the efficiency of PET. These approaches include
disentangled learning [39] and structural reduction meth-
ods [7]. While these strategies have shown potential for
improving efficiency, the gains are often conditional and
come with trade-offs. Specifically, they may enhance train-
ing or inference efficiency but at the expense of the need
for an additional pre-training step [7], a significant increase
in the number of learnable parameters [39], slower infer-
ence speed [39] or degraded accuracy [7, 39]. These limita-
tions can affect their applicability in practical scenarios. In
contrast, our approach is designed to enhance training, in-
ference, and parameter efficiency simultaneously, offering
a more practical and balanced solution for real-world PET
implementations.

2.2. Token reduction

Vision Transformer (ViT) [6] has significantly advanced
various vision tasks but faces challenges in resource-
constrained environments due to its high computational de-
mands. Token pruning methods methods [18, 23, 24, 32, 35,
36] have been developed to accelerate ViT by selectively re-
moving less critical tokens; however, these approaches can
result in permanent information loss. To address this limita-
tion, token merging [2] has been introduced as a technique
that merges similar tokens, demonstrating improved perfor-
mance over pruning methods. Unlike prior solutions such
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(a) Bipartite soft matching [2]
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(b) Bipartite differentiable matching

Figure 2. Comparison between the bipartite soft matching [2] and the proposed bipartite differentiable matching. Our proposal is fully
differentiable and refines the similarity between tokens, making token merging more optimal.

as k-means clustering [27] or graph cuts [4], token merg-
ing is a fast, non-iterative approach. However, it cannot be
optimized as it is a parameter-free heuristic method, and its
bipartite soft matching process is non-differentiable due to
the use of max and top-k operations. Besides, to avoid sud-
den changes that could negatively affect the network, this
method gradually merges tokens across all layers leading to
less efficiency gain in GPU memory usage.

Recent advancements using learned thresholds [3] to
merge tokens whose similarities exceed those learned
thresholds. Despite learning thresholds, they did not con-
sider refining the similarities between tokens. Additionally,
their matching process remains non-differentiable, and the
dynamic reduction strategy with thresholds does not guar-
antee efficiency gains unless the batch size is 1.

As these methods were designed for in-domain training-
free or full-tuning scenarios, we have carefully adapted to-
ken merging for PET, thereby achieving significant effi-
ciency improvements.

3. Preliminaries

3.1. Parameter-efficient tuning

In this section, we first lay out the framework for parameter-
efficient tuning. We start by concisely formulating the
adapters that are commonly utilized.
LoRA [13] utilizes low-rank decomposition to approxi-

mate the variation in pre-trained parameters in response to
changes in the input. Specifically, it learns the alterations
in Wq and Wv within the self-attention layer to respec-
tively modify the query and value projection weights. The
adapter consist of two FC layers, Wdown ∈ Rd×h and
Wup ∈ Rh×d where, d is token dimension and h << d.
Given an input X ∈ RN×d, query and value formulations
are

Q = XWq + s ·XWq
downW

q
up,

V = XWv + s ·XWv
downW

v
up,

(1)

where Wq and Wv are frozen and s is hyper-parameter.
AdaptFormer [5] employs low-rank decomposition as
LoRA [13] but it incorporates non-linear layer such as
ReLU activation between Wdown and Wup. Additionally,
AdaptFormer positions the adapter in parallel with the FFN
layer in transformer layer. Given an input X ∈ RN×d, the
formulation is

X = X+ FFN(X) + s · ReLU(XWdown)Wup, (2)

where, the FFN module is frozen and s is a hyper-parameter.

3.2. Bipartite soft matching
ToMe [2] introduced bipartite soft matching as a non-
iterative, gradual method for merging tokens. The overall
framework of bipartite soft matching is illustrated in Fig. 2a.
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Given tokens X = {xi} ∈ RN×d, where the total number
of tokens is N and d is the feature dimension, tokens are
assigned to two sets

XA = {xi | i mod 2 = 0}
XB = {xi | i mod 2 = 1}

(3)

To determine the optimal similarity and reduce complexity,
the keys (K) from the self-attention layer are utilized in-
stead of token features. Keys corresponding to each token
from self-attention layer, K = {ki} ∈ RN×d′

are assigned
to two sets

KA = {ki | i mod 2 = 0}
KB = {ki | i mod 2 = 1}

(4)

where d′ is the key dimension and ki corresponds to the
xi. The similarity matrix C ∈ RNA×NB between two sets,
KA ∈ RNA×d′

and KB ∈ RNB×d′
, where NA and NB are

the number of tokens in XA and XB respectively, is calcu-
lated as

C = KA ×K⊤
B (5)

For each token in set KA, to find the most similar connec-
tion within KB, max operation along the last dimension of
C is applied to generate max values Cmax ∈ RNA and in-
dices Imax ∈ RNA .

Cmax, Imax = max(C, dim = −1) (6)

Imax contains for each token in A, the most similar counter-
part in B and Cmax contains the corresponding maximum
similarity. To match most similar k pairs among those, the
top-k indices are extracted.

Itopk = top-k(argsort(Cmax)) (7)

Then, Imax and Itopk specify which tokens in A should be
merged with which token in B. The merged tokens Xmerged
can be expressed as

Xmerged = merge(XA,XB, Imax, Itopk) (8)

where the merge is a function that merges tokens by averag-
ing matched tokens according to the input indices. Finally,
the merged tokens are concatenated with the remaining un-
merged tokens and returned as the output of the token merg-
ing module. Note that due to the non-differentiable nature
of their max and top-k operations, the matching process can-
not be explicitly incorporated into the training objective.

4. Faster parameter-efficient tuning
We introduce token redundancy reduction into PET to sur-
pass the original speed of backbone models and lower com-
putational costs without compromising on accuracy. To
achieve this goal, we have investigated optimal configu-
ration of token redundancy reduction module suitable for
faster PET.

4.1. Token redundancy reduction module for FPET
The recently proposed token merging method, ToMe [2],
presents a straightforward token reduction strategy that mit-
igates concerns regarding information loss associated with
token pruning. Rather than discarding tokens, ToMe utilizes
a bipartite soft matching strategy to merge similar tokens,
thereby preserving more information. To minimize infor-
mation loss in our approach, we incorporate token merging
as our chosen token reduction strategy.

ToMe [2], originally designed for in-domain training-
free or full fine-tuning settings, measures similarities be-
tween tokens and gradually merges them across layers to
prevent abrupt changes and minimize risk. In contrast, our
approach implements the token merging module solely at
the middle layer, merging half of the tokens. This modifi-
cation addresses the potential for sub-optimal merging out-
comes in the original ToMe methodology in the context of
PET, where early-stage merging based on a similarity ma-
trix may not fully reflect the impact of adapters. Unlike
ToMe [2], which conducts layer-by-layer merging of 8 to-
kens per layer (totaling 96 tokens), our approach merges 98
tokens at the 6th layer of a 12-layer ViT-B/16. By imple-
menting the merging module only once at the middle layer,
where token redundancy is sufficiently high, we aim to en-
hance accuracy while also conserving computation memory
by avoiding the repeated computation of the similarity ma-
trix across layers.

4.2. Bipartite differentiable matching
To further enhance our method, we reformulate the match-
ing process to be differentiable for optimization, as depicted
in Fig. 2b. We begin by defining the token division sets, XA
and XB, based on observations in Fig. 2 which indicate that
a naı̈ve bipartite soft matching split results in vertical stripe
patterns when tokens are reorganized in their original image
format. In this arrangement, tokens in XB can only merge
with adjacent side tokens, not with those above or below.
To address this, we divide the keys (K) of the tokens into
two sets using a checkerboard pattern:

KA = {kij | (i+ j) mod 2 = 0}
KB = {kij | (i+ j) mod 2 = 1}

(9)

Here, kij denotes the two-dimensional index when tokens
are reorganized into their original image format. This con-
figuration allows each token in XB to merge with adjacent
tokens, supporting a more comprehensive merging strategy.

The bipartite soft matching [2] uses the keys (K) from
the self-attention layer, which encapsulates the information
within each token, to measure similarity. However, these
keys may not be the most optimal feature for similarity. To
ensure a more optimal similarity matrix C, we implement a
differentiable matching process and refine the keys (K) us-
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ing learnable adapters to achieve a more optimized match-
ing result. The refined keys (K′) are represented as:

K′ = K+ s · ReLU(KWdown)Wup (10)

Using these refined keys (K′), we compute the similarity
matrix C ′ ∈ RNA×NB :

C′ = K′
A ×K′⊤

B (11)

Instead of using the non-differentiable max and top-k oper-
ations, we leverage the matching matrix CAB ∈ RNA×NB

where each row is a one-hot vector indicating the closest
key in KB for each key in KA. To construct CAB, we com-
pute the soft matching matrix ĈAB ∈ RNA×NB as:

ĈAB = σ(C− C̄) (12)

where C̄ ∈ RNA×1 represents the average of the top-1 and
top-2 values along the last dimension of C and σ is a sig-
moid function. Notably, the top-k operation serves only
to shift values, without compromising differentiability. For
each row of ĈAB, only the top-1 value exceeds 0.5 since the
sigmoid function outputs values greater than 0.5 for posi-
tive inputs. Thresholding ĈAB at 0.5, we derive the hard
matching matrix CAB. The Xmerged is then expressed as:

Xmerged = average(C⊤
AB ×XA +XB) (13)

Here, average is a function that adaptively averages tokens
based on the number of matched tokens. Each token in XA
is combined with its closest token in XB and each summed
token is averaged by the number of its matched tokens.
Since all tokens in XA are matched to those in XB, no un-
merged tokens remain. Therefore, Xmerged is returned as the
output of our token merging module.

While we reformulate the merging process as a differen-
tiable matrix calculation, the hard matching matrix CAB is
non-differentiable. To approximate gradients for CAB, we
use a straight-through estimator[1]. Specifically, we rede-
fine the matching matrix as:

C̃AB = ĈAB + const(CAB − ĈAB) (14)

where const is a function that extracts value as a constant
from the tensor. Although CAB and C̃AB hold identical
values, C̃AB is differentiable since gradients are propagated
through ĈAB.

Since the matching process is differentiable, gradients
are propagated to the learnable adapter that refines the
key(K). This allows for the explicit learning and the op-
timization of the similarity matrix. However, allowing fur-
ther backward propagation of these gradients can negatively
impact accuracy due to the resulting unnecessary push-and-
pull effect among tokens, similar to what is observed in con-
trastive loss. While the push-and-pull effect is very benefi-
cial in self-supervised learning for distinguishing features

among different samples, however, such an effect among
tokens is undesirable for our task. Therefore, we halt the
further propagation of these gradients to the backbone. For
more detailed understanding, our code implementation is
included in the supplementary materials.

5. Experiments

In this section, we demonstrate the superiority of our pro-
posed method in terms of both efficiency gain and accuracy.
For our implementation, we integrate our token merging
module at the 6th layer along with a quantized adapter [42]
for key (K) refinement. The training epoch is 100 using
AdamW optimizer. Since our proposed method can be ap-
plied to off-the-shelf PET methods in plug-and-play man-
ner, we evaluate our method on 5 state-of-the-art PET meth-
ods, RepAdapter [28], LoRA [13], AdaptFormer [5], Bi-
LoRA [16] and Bi-AdaptFormer [16].

5.1. Datasets
To demonstrate the efficacy of our method, we conducted
evaluations across a range of downstream tasks using
VTAB-1K [38], which encompasses 19 diverse image clas-
sification tasks spanning different domains. VTAB-1K is
divided into three categories: Natural, Specialized, and
Structured. The Natural category includes classic vision
tasks with images captured by standard cameras. In con-
trast, the Specialized category comprises images from nat-
ural scenes captured with specialized equipment, such as
those used in satellite or medical imaging. The Struc-
tured category is centered on understanding scene structure,
involving tasks like object counting or 3D depth predic-
tion, often with images from simulated environments. Each
dataset contains 1000 samples for training and validation.
Following prior works [14–16, 22, 40], we train models us-
ing training and validation samples, and report the top-1 ac-
curacy on test set.

5.2. Metrics
We assess the performance of our approach using several
metrics: accuracy, inference time, FLOPs and GPU mem-
ory usage. Accuracy evaluations are conducted on the
VTAB-1K dataset, with ’Average’ referring to the mean
accuracy across the three groups. GPU memory usage
is recorded during the training phase with batch size 64,
whereas inference time and FLOPs are measured during
testing with batch size 256. The inference time metric rep-
resents the time taken to process a single image. All exper-
iments are implemented on single NVIDIA A6000 GPUs.

5.3. Comparison to the state-of-the-art methods
We evaluate our method against various state-of-the-art ap-
proaches on VTAB-1K, which encompasses a diverse range
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Method Acc (%) Time (ms) FLOPs (G) Mem (GB)

Traditional Fine-Tuning

Full 68.9 2.62 17.6 11.9
Linear 57.6 2.62 (+0.0%) 17.6 (+0.0%) 2.7 (-77.3%)

Parameter-Efficient Tuning

VPT-Deep [14] 72.0 2.79 (+6.5%) 18.5 (+5.1%) 9.8 (-26.5%)
BitFit [37] 65.2 2.62 (+0.0%) 17.6 (+0.0%) 8.0 (-33.0%)
SSF [22] 75.7 2.62 (+0.0%) 17.6 (+0.0%) 10.9 (-8.2%)
FacT-TT [15] 75.2 2.62 (+0.0%) 17.8 (+1.1%) 11.9 (-0.0%)
RepAdapter [28] 76.1 2.62 (+0.0%) 17.6 (+0.0%) 8.9 (-25.6%)
LoRA [13] 75.7 2.62 (+0.0%) 17.6 (+0.0%) 8.4 (-29.6%)
AdaptFormer [5] 76.2 2.68 (+1.5%) 17.6 (+0.0%) 7.6 (-36.0%)
Bi-LoRA [16] 76.7 2.62 (+0.0%) 17.6 (+0.0%) 8.4 (-29.4%)
Bi-AdaptFormer [16] 77.0 2.77 (+5.7%) 17.7 (+0.6%) 7.6 (-35.9%)

Efficiency-gained Parameter-Efficient Tuning

SynQT [39] 72.9 2.83 (+8.0%) 16.84 (-4.3%) 3.6 (-69.9%)
Pruned RepAdapter [7] 74.8 [1.06, 2.62] [7.1, 17.6] [5.9, 8.9]

Faster Parameter-Efficient Tuning (Ours)

RepAdapter 76.1 2.10 (-19.8%) 13.3 (-24.4%) 7.4 (-38.0%)
LoRA 75.6 2.10 (-19.8%) 13.3 (-24.4%) 7.1 (-40.3%)
AdaptFormer 76.2 2.12 (-19.1%) 13.5 (-23.3%) 6.2 (-47.9%)
Bi-LoRA 76.4 2.10 (-19.8%) 13.3 (-24.4%) 7.1 (-40.3%)
Bi-AdaptFormer 77.0 2.17 (-17.2%) 13.5 (-23.3%) 6.2 (-47.8%)

Table 1. Comparison with state-of-the-art methods in terms of ac-
curacy, inference time per image, FLOPs, and GPU memory us-
age during training. In terms of efficiency, we present both the
absolute values and the relative gap in comparison to the full fine-
tuning method. For Pruned RepAdapter [7], the values are shown
as ranges to indicate its inconsistent efficiency across datasets.

of downstream datasets. In this subsection, we provide de-
tailed comparisons of PET methods and efficiency-gained
PET methods, respectively.

5.3.1. PET methods.
In this section, we compare our method with full fine-
tuning, linear probing which trains classification head only,
VPT [14], NOAH [40], LoRA [13], SSF [22], Adapt-
Former [5], BitFit [37], FacT-TT [15], Bi-LoRA and Bi-
Adaptformer [16]. All baseline models utilize the ViT-B/16,
pre-trained on ImageNet-21K in a supervised fashion, as
their backbone. For LoRA [13] and AdaptFormer [5], we
set the hidden dimension to 8. The settings for other base-
line models follow the configurations reported in their re-
spective original papers.

As shown in Tab. 1 and Fig. 1, our method demonstrates
constant efficiency gain for both training and inference. Re-
markably, we achieve faster inference speeds compared to
PET methods, including traditional fine-tuning approaches
that do not necessitate additional computation during infer-
ence. While certain PET methods [13, 15, 22, 37] have
been developed with the goal of achieving no-latency in-
ference, they have only succeeded in matching the speed
of traditional fine-tuning methods, leaving inherent limita-
tions. Our method, however, overcomes these constraints
with a 19.8% increase in speed over the original pre-trained
models, demonstrating the superiority of our approach. In

terms of GPU memory consumption, we achieve a 40% re-
duction compared to full fine-tuning. While linear probing
exhibits greater memory efficiency owing to its simplicity,
it significantly underperforms in accuracy, inference speed,
and FLOPs compared to our method.

The higher FLOPs observed in VPT-Deep [14] compared
to other methods suggest that an increase in the number of
tokens leads to a quadratic rise in computational complex-
ity. In contrast, our method succeed in achieving an average
reduction of 24% in FLOPs by reducing token redundancy,
compared to each original implementation. Our method at-
tains efficiency gains with minimal impact on accuracy. No-
tably, when applied to Bi-AdaptFormer [16], compared to
the original implementation, it results in negligible accu-
racy loss while achieving improvements of 21.7%, 23.7%
and 18.4% in inference time, FLOPs and GPU memory us-
age respectively.

Tab. 2 presents the comprehensive results of our compar-
ison with state-of-the-art models. Through our framework,
while realizing efficiency gains, models still retain their su-
periority in both accuracy and parameter efficiency. As we
employ only a very lightweight adapter to refine the simi-
larity matrix, less than 0.005M, the increase in the number
of trainable parameters is minimal.

5.3.2. Efficiency-gained PET methods.

We further compare our method with efficiency-gained PET
methods including SynQT [39] and Pruned RepAdapter [7].
As shown in Tab. 1, while SynQT significantly reduces
GPU memory usage during training, it introduces a much
slower inference speed compared to the backbone model,
and its FLOPs reduction is much smaller than ours. Addi-
tionally, as detailed in Tab. 2, SynQT employs 2.3× to 16×
more learnable parameters than our approach, resulting in
lower accuracy.

Pruned RepAdapter [7] exhibits varying levels of effi-
ciency gains depending on the dataset, as it adaptively deter-
mines the number of layers to prune during the pre-training
stage for each dataset. In Tab. 1, the maximum and min-
imum efficiency gain is presented. For the EuroSAT [10]
dataset, only 5 layers are used leading to a 59%, 57%, and
50% reduction in inference time, FLOPs, and GPU mem-
ory usage respectively. However, for datasets such as dspr-
Ori [11] and sNORB-Ele [20], all 12 layers are utilized, re-
sulting in efficiency metrics nearly identical to those of the
original RepAdapter [28]. Although Pruned RepAdapter [7]
achieves average efficiency gains, its full-layer implementa-
tion is not suitable for resource-constrained environments
making real-world applications challenging. In contrast,
our method consistently achieves efficiency gains across
different datasets, offering a more practical and feasible so-
lution for real-world scenarios.
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Linear 0 57.6 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2

Parameter-Efficient Tuning

VPT-Shallow [14] 0.06 67.8 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1
VPT-DEEP [14] 0.53 72.0 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8
NOAH [40] 0.36 75.5 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2
BitFit [37] 0.10 65.2 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1
SSF [22] 0.24 75.7 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9
FacT-TT [15] 0.04 75.3 71.3 89.6 70.7 98.9 91.0 87.8 54.6 85.2 95.5 83.4 75.7 82.0 69.0 49.8 80.0 79.2 48.4 34.2 41.4
RepAdapter [28] 0.22 76.1 72.4 91.6 71.0 99.2 91.4 90.7 55.1 85.3 95.9 84.6 75.9 82.3 68.0 50.4 79.9 80.4 49.2 38.6 41.0
LoRA [13] 0.29 75.7 70.9 93.0 70.0 99.1 91.2 86.0 55.8 87.1 94.6 82.4 74.7 83.5 63.1 51.7 79.3 85.2 51.8 33.5 43.6
AdaptFormer [5] 0.16 76.2 72.0 92.7 70.2 99.3 91.0 87.5 54.8 87.4 95.2 85.2 75.2 83.6 62.6 52.1 81.0 86.2 53.1 34.5 40.3
Bi-LoRA [16] 1.17 76.7 72.1 91.7 71.2 99.1 91.4 90.2 55.8 87.0 95.4 85.5 75.5 83.1 64.1 52.2 81.3 86.4 53.5 36.7 44.4
Bi-AdaptFormer [16] 0.64 77.0 74.1 92.4 72.1 99.3 91.6 89.0 56.3 88.2 95.2 86.0 76.2 83.9 63.6 53.0 81.4 86.2 54.8 35.2 41.3

Efficiency-gained Parameter-Efficient Tuning

SynQT [39] 2.72 72.9 70.9 89.7 68.8 98.5 89.6 77.8 50.6 82.3 96.7 83.5 75.2 71.8 62.7 48.5 75.4 74.1 49.0 31.7 36.1
Pruned RepAdapter [7] 0.18 74.8 71.4 87.3 68.1 96.0 89.9 89.3 53.4 85.0 95.3 81.9 75.2 80.9 69.8 50.5 80.7 80.5 47.1 35.7 41.0

Faster Parameter-Efficient Tuning (Ours)

RepAdapter 0.23 76.1 72.1 91.5 71.8 99.3 90.7 90.3 55.0 85.2 96.2 84.5 75.6 82.2 67.7 49.7 79.9 82.2 48.7 36.9 41.7
LoRA 0.30 75.6 70.1 92.7 69.4 99.1 90.8 85.4 55.6 87.2 94.6 82.5 74.1 83.0 63.4 50.6 81.6 84.7 51.5 34.3 43.3
AdaptFormer 0.17 76.2 71.3 93.5 69.9 99.3 90.7 87.0 54.7 87.5 95.1 84.5 76.2 83.6 63.1 52.2 81.3 87.1 54.1 33.5 40.2
Bi-LoRA 1.18 76.4 71.9 91.1 70.9 99.1 90.5 89.4 55.9 87.4 94.7 84.4 74.9 83.5 65.1 52.1 79.7 85.8 54.2 36.7 44.4
Bi-Adaptformer 0.64 77.0 74.1 92.8 72.5 99.4 91.1 89.6 56.2 88.3 94.9 86.3 75.3 83.8 63.0 52.8 81.4 85.7 54.4 35.9 42.2

Table 2. Comparison with state-of-the-art methods on VTAB-1K [38] benchmark. Average indicates average accuracy over three groups.
# param denotes the number of learnable parameters.

5.4. Ablation study

In this section, we present ablation studies to further inves-
tigate specific efficacy of our proposed methodology.

5.4.1. Comparison to other token reduction method.
As shown in Tab. 3, our proposed method achieves supe-
rior efficiency gains compared to existing token reduction
techniques. Unlike ToMe [2], which merges a fixed num-
ber of tokens at every layer, LTMP [3] dynamically de-
termines the number of tokens to prune using a learnable
threshold. To enable gradient flow, LTMP masks rather than
reduces the number of tokens, requiring a modified atten-
tion module with masked softmax, which incurs memory
overhead as outlined in Tab. 3. Moreover, LTMP does not
yield inference-time efficiency gains when the batch size
exceeds one. While ToMe improves inference speed, it fails
to reduce GPU memory usage due to bipartite soft match-
ing across all layers. Both ToMe and LTMP incur larger
accuracy drops than our method, highlighting the effective-
ness of our design in balancing performance and efficiency
within the PET framework.

5.4.2. Effectiveness of each component.
In Tab. 3, we further evaluate the effectiveness of each com-
ponent through progressive integration. Applying bipartite
soft matching (BSM)[2] at a middle layer improves both

accuracy and efficiency over the original ToMe[2] imple-
mentation. Incorporating the checkerboard pattern yields
a slight accuracy gain, demonstrating the benefit of spatial
priors. Adding the key refinement adapter without gradient
stopping, however, significantly degrades accuracy due to
interference in token representations, inducing unnecessary
push and pull effect among tokens. Lastly, applying gradi-
ent stopping leads to our best overall performance, achiev-
ing strong accuracy while maintaining efficiency.

5.4.3. Trade-offs between efficiency and accuracy.
In Fig. 3, we present the trade-off between efficiency and
accuracy when applying our token reduction module at dif-
ferent transformer layers. The module can be flexibly ap-
plied at various layers to balance computational cost and
model performance. When applied at layer 6, our method
achieves the upper-bound accuracy of 76.22%, equivalent to
the original PET method without token merging, while re-
ducing FLOPs by 23.3%. At layer 4, a slight accuracy drop
of 0.57% yields a 31.82% FLOPs reduction, and at layer 2,
a 1.93% drop corresponds to a 40.34% reduction. Despite
these trade-offs, our method remains competitive with both
the original and efficiency-gained PET methods.

We also compare our method with other token merging
strategies, including bipartite soft matching (BSM) [2], av-
erage pooling, and max pooling. All methods except max
pooling merge tokens by averaging matched pairs. Aver-
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Method ∆Acc (%) ∆Time (ms) ∆Mem (GB)

w/o merging 0 0 0
LTMP [3] -0.38 +0.01 +5.84
ToMe [2] -0.27 -0.56 -0.21

BSM [2] at 6th layer -0.18 -0.61 -1.38
+ checkerboard -0.17 -0.61 -1.38
+ key refinement
(w/o gradient stopping) -1.70 -0.61 -1.41

Ours -0.05 -0.62 -1.41

Table 3. Performance on other token reduction strategies. All
models are ViT-B/16 consist of 12 transformer layers with Bi-
AdaptFormer [16]. Each model starts with 197 tokens. LTMP
reduces a variable number of tokens, while ToMe merges 8 tokens
at each of the 12 layers. For BSM at 6th layer and the methods
below, 98 tokens are merged at the 6th layer only. All methods are
applied during both training and inference time.

Method AdaptFormer [5] FPET-AdaptFormer LoRA [13] FPET-LoRA

Training time (s/it) 5.62 4.52 (-19.57%) 6.24 5.03 (-19.39%)

Table 4. Average training time across VTAB-1K [38] datasets.

age pooling relies on deterministic matching, BSM uses a
heuristic and non-differentiable approach, while our method
employs a learnable bipartite matching technique. Com-
pared to others, our method achieves higher accuracy with
negligible FLOPs overhead. At layer 0, where tokens are
minimally processed and adapters are not yet applied, the
regional prior is competitive to similarity-based methods.
From layer 1 onward, our method consistently outperforms
naive pooling, demonstrating more optimal token reduc-
tion. Notably, BSM shows degraded accuracy particularly
in early layers, underscoring robustness and practicality of
our method. Detailed numerical results corresponding to
Fig. 3 are provided in the supplementary materials.

5.5. Further analysis

In this section, we further highlight the superiority of FPET.
As shown in Tab. 4, FPET significantly improves train-
ing efficiency, reducing training time by 19% compared
to the original implementation. The latency introduced by
our module is also negligible, accounting for only 0.56%
of the total pipeline latency. We evaluate FPET on other
backbones, including DeiT-S and ViT-L, as reported in
Tab. 5. Further results covering additional backbones, few-
shot learning on the FGVC dataset, cross-modal retrieval
and other analysis are provided in the supplementary mate-
rials, further demonstrating the robustness and versatility of
our approach. Visualizations of the merged tokens are also
included for qualitative analysis.

No merging
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Figure 3. Trade-off between FLOPs (right y-axis, bar plot) and
accuracy (left y-axis, line plot). All models are ViT-B/16 consist-
ing of 12 transformer layers with AdaptFormer [5]. BSM refers to
bipartite soft matching [2]. All methods reduce 196 tokens to 98
tokens at different layers.

Model Method Acc (%) Time (ms) FLOPs (G) Mem (GB)

ViT-L LoRA [13] 76.0 8.67 61.8 19.6
FPET-LoRA 76.0 6.60 (-23.9%) 46.7 (-24.4%) 15.5 (-21.0%)

DeiT-S AdaptFormer[5] 70.3 1.13 4.8 4.4
FPET-AdaptFormer 70.3 0.94(-20.7%) 3.7(-23.6%) 3.8(-12.5%)

Table 5. Model performance on other backbones.

6. Conclusion

In this paper, we extend the concept of parameter effi-
ciency in parameter-efficient tuning (PET) by exploring
both inference latency and training computational efficien-
cyto enhance the applicability of PET. We propose Faster
Parameter-Efficient Tuning (FPET), a novel framework that
formulates PET as a token redundancy reduction problem.
Our approach formulates token reduction in a parameter-
efficient and fully differentiable manner, enabling optimal
token reduction for PET. Our FPET significantly improves
inference speed and training efficiency while attaining com-
parable performance to the previous PET methods, demon-
strating the effectiveness of the proposed token redundancy
reduction module. As our FPET can be seamlessly inte-
grated with existing PET techniques, we hope our study will
foster research and provide a foundation of practical PET
for real-world applications.
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Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 2, 5

[2] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao
Zhang, Christoph Feichtenhofer, and Judy Hoffman. Token
merging: Your vit but faster. In ICLR, 2023. 2, 3, 4, 7, 8

[3] Maxim Bonnaerens and Joni Dambre. Learned thresholds to-
ken merging and pruning for vision transformers. In TMLR,
2023. 2, 3, 7, 8

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 23(11):1222–1239,
2001. 3

[5] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang,
Yibing Song, Jue Wang, and Ping Luo. Adaptformer: Adapt-
ing vision transformers for scalable visual recognition. In
NeurIPS, pages 16664–16678, 2022. 1, 2, 3, 5, 6, 7, 8

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 2

[7] Ruizi Han and Jinglei Tang. Straightforward layer-wise
pruning for more efficient visual adaptation. In ECCV, 2024.
1, 2, 6, 7

[8] Shwai He, Liang Ding, Daize Dong, Miao Zhang, and
Dacheng Tao. Sparseadapter: An easy approach for improv-
ing the parameter-efficiency of adapters. In EMNLP, 2023.
1, 2

[9] Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang,
and Xin Eric Wang. Parameter-efficient model adaptation for
vision transformers. In AAAI, pages 817–825, 2023. 1, 2

[10] Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, pages 2217–2226, 2019. 6

[11] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,
Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and
Alexander Lerchner. beta-vae: Learning basic visual con-
cepts with a constrained variational framework. In ICLR,
2017. 6

[12] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In ICML, pages 2790–2799, 2019. 1, 2

[13] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. In
ICLR, 2022. 1, 2, 3, 5, 6, 7, 8

[14] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In ECCV, pages 709–727, 2022. 1, 2, 5,
6, 7

[15] Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for
lightweight adaptation on vision transformer. In AAAI, pages
1060–1068, 2023. 1, 2, 6, 7

[16] Shibo Jie, Haoqing Wang, and Zhi-Hong Deng. Revisiting
the parameter efficiency of adapters from the perspective of
precision redundancy. In ICCV, pages 17217–17226, 2023.
1, 2, 5, 6, 7, 8

[17] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian
Ruder. Compacter: Efficient low-rank hypercomplex adapter
layers. In NeurIPS, pages 1022–1035, 2021. 1, 2

[18] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei
Niu, Mengshu Sun, Xuan Shen, Geng Yuan, Bin Ren, Hao
Tang, et al. Spvit: Enabling faster vision transformers via
latency-aware soft token pruning. In ECCV, pages 620–640,
2022. 2

[19] Hyeongjun Kwon, Taeyong Song, Somi Jeong, Jin Kim,
Jinhyun Jang, and Kwanghoon Sohn. Probabilistic prompt
learning for dense prediction. In CVPR, pages 6768–6777,
2023. 2

[20] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning
methods for generic object recognition with invariance to
pose and lighting. In CVPR, pages II–104, 2004. 6

[21] Jonathan Li, Will Aitken, Rohan Bhambhoria, and Xiaodan
Zhu. Prefix propagation: Parameter-efficient tuning for long
sequences. In ACL, 2023. 1, 2

[22] Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao
Wang. Scaling & shifting your features: A new baseline for
efficient model tuning. In NeurIPS, pages 109–123, 2022. 1,
2, 5, 6, 7

[23] Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue
Wang, and Pengtao Xie. Not all patches are what you need:
Expediting vision transformers via token reorganizations. In
ICLR, 2022. 2

[24] Dongyang Liu, Meina Kan, Shiguang Shan, and Xilin
CHEN. A simple romance between multi-exit vision trans-
former and token reduction. In ICLR, 2024. 2

[25] Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan
Xue, Longhui Yu, Haiwen Feng, Zhen Liu, Juyeon Heo,
Songyou Peng, Yandong Wen, Michael J. Black, Adrian
Weller, and Bernhard Schölkopf. Parameter-efficient orthog-
onal finetuning via butterfly factorization. In ICLR, 2024.
2

[26] Yajing Liu, Yuning Lu, Hao Liu, Yaozu An, Zhuoran Xu,
Zhuokun Yao, Baofeng Zhang, Zhiwei Xiong, and Chen-
guang Gui. Hierarchical prompt learning for multi-task
learning. In CVPR, pages 10888–10898, 2023. 2

[27] S. Lloyd. Least squares quantization in pcm. IEEE Transac-
tions on Information Theory, 28(2):129–137, 1982. 3

[28] Gen Luo, Minglang Huang, Yiyi Zhou, Xiaoshuai Sun,
Guangnan Jiang, Zhiyu Wang, and Rongrong Ji. Towards
efficient visual adaption via structural re-parameterization.
arXiv preprint arXiv:2302.08106, 2023. 2, 5, 6, 7

[29] Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hong-
sheng Li. St-adapter: Parameter-efficient image-to-video
transfer learning. In NeurIPS, pages 26462–26477, 2022.
1, 2

30197



[30] Jungin Park, Jiyoung Lee, and Kwanghoon Sohn. Dual-
path adaptation from image to video transformers. In CVPR,
pages 2203–2213, 2023.

[31] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
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