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Abstract

Recent methods for zero-shot Human-Object Interac-
tion (HOI) detection typically leverage the generalization
ability of large Vision-Language Model (VLM), i.e., CLIP,
on unseen categories, showing impressive results on vari-
ous zero-shot settings. However, existing methods struggle
to adapt CLIP representations for human-object pairs, as
CLIP tends to overlook fine-grained information necessary
for distinguishing interactions. To address this issue, we
devise, LAIN, a novel zero-shot HOI detection framework
designed to enhance the locality and interaction awareness
of CLIP representations. The locality awareness, which in-
volves capturing fine-grained details and the spatial struc-
ture of individual objects, is achieved by aggregating the
information and spatial priors of adjacent neighborhood
patches. The interaction awareness, which involves iden-
tifying whether and how a human is interacting with an
object, is achieved by capturing the interaction pattern be-
tween the human and the object. By infusing locality and in-
teraction awareness into CLIP representations, LAIN cap-
tures detailed information about the human-object pairs.
Our extensive experiments on existing benchmarks show
that LAIN outperforms previous methods in various zero-
shot settings, demonstrating the importance of locality and
interaction awareness for effective zero-shot HOI detection.

1. Introduction

The task of Human-Object Interaction (HOI) detection aims
to localize human-object pairs and recognize the interac-
tions between them in a given image, i.e., identifying a set
of HOI instances (human, object, interaction). HOI detec-
tion is useful for a wide range of computer vision applica-
tions, including image retrieval [11, 50, 55] and image cap-
tioning [16, 51, 54], where a comprehensive understanding
of human-object relationships is essential. Although signif-
icant advances have been made recently, conventional HOI
methods [22, 23, 26] have primarily been relying on fully
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Figure 1. (a)-(b): Since CLIP primarily encodes global informa-
tion, it struggles to capture the fine-grained details required to
accurately identify interactions within human-object pairs. (c):
When existing methods adapt CLIP representations to zero-shot
HOI detection, this limitation hinders CLIP’s generalization, and
results in degraded performance which is even lower than CLIP’s
original zero-shot performance in UC-RF and UV settings.

supervised learning, limited to identifying predefined HOI
categories. Given that humans interact with objects in a
compositional way, it is costly and impractical to collect
annotations for all possible HOI categories, limiting their
ability to identify novel HOI categories not present in the
training set. Recently, strong generalization ability of CLIP
on unseen categories, which stems from contrastive image-
level pre-training on large-scale data, has inspired the de-
velopment of a zero-shot HOI model that leverages this ca-
pability to recognize unseen HOI categories.

While existing methods [36, 37, 52] for zero-shot HOI
detection have achieved strong performance by leveraging
CLIP representations, the domain gap between the image-
level pre-training task and the region-level task poses the
challenges in adapting CLIP representations to zero-shot
HOI detection. Since CLIP predominantly encodes global
information [61, 63], it often fails to extract fine-grained in-
formation about individual objects. This hinders the HOI
model from capturing whether and how the person inter-
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acts with the object. As shown in Figure 1 (a), CLIP as-
signs a high confidence score to the interaction ‘ride-bike’
even though the human-object pair (1,2) does not focus on
the bike region, indicating that CLIP has limited capacity to
capture fine-grained object details. As a result, the human-
object pair (1,4) has a similar confidence score for the un-
seen HOI category ‘hold-frisbee’ compared to others, i.e.,
(2,3) and (3,4), struggling to distinguish the interactive pair
in Figure 1 (b). These issues weaken the generalization abil-
ity of CLIP when existing methods attempt to adapt its rep-
resentations for zero-shot HOI detection, resulting in lower
zero-shot performance compared to CLIP’s original results
as shown in Figure 1 (c).

To address the challenges mentioned above, we intro-
duce a novel zero-shot HOI detection framework, dubbed
Locality-Aware Interaction Network (LAIN), that learns
locality-aware interaction via Locality Adapter (LA) and In-
teraction Adapter (IA). The LA extracts locality-aware fea-
tures from image patch tokens by considering visual context
of neighboring regions and spatial priors, and then infuses
them back into the image patch tokens. The IA leverages
the locality-aware patch tokens to update human-object to-
kens by performing interaction reasoning between human
and object regions, resulting in interaction-aware human-
object tokens. In this manner, the LA provides fine-grained
details and spatial structure for individual objects, enabling
the IA to perform effective contextual reasoning. The IA
complements CLIP representations by incorporating fine-
grained details, providing a relational context that cannot
be captured by locality awareness alone. By incorporating
locality and interaction awareness, which play complemen-
tary roles, each layer of LAIN effectively captures detailed
information for the human-object pair, facilitating the adap-
tation of CLIP representations to zero-shot HOI detection.

To demonstrate the effectiveness of our proposed
method, we conducted extensive evaluations on two pub-
lic benchmarks, HICO-DET [2] and V-COCO [12]. The
experimental results show that LAIN outperforms the pre-
vious methods for zero-shot detection across all zero-shot
settings, demonstrating the robust generalization ability of
our approach in zero-shot scenarios. Our ablation stud-
ies demonstrate the importance of locality and interaction
awareness for zero-shot HOI detection.

Our contribution can be summarized as follows:
• We propose the Locality-Aware Interaction Network

(LAIN), which incorporates a Locality Adapter (LA) and
an Interaction Adapter (IA).

• By enriching CLIP representations with locality and in-
teraction awareness, LAIN effectively captures the fine-
grained details about human-object pairs.

• Extensive experiments demonstrate that LAIN achieves
outstanding zero-shot performance, achieving a new
state-of-the-art.

2. Related work
2.1. Human-Object Interaction (HOI) Detection

Conventional HOI detection methods can be roughly di-
vided into two categories: two-stage and one-stage meth-
ods. Two-stage methods [9, 10, 17, 28, 38, 44, 47, 58–60]
first detect humans and objects using a pre-trained detec-
tor [1, 41]. After constructing all possible human-object
pairs based on the detection results, these pairs are fed into
an interaction classifier. To generate discriminative features
for classifying the interaction of a human-object pair, they
incorporate additional information [13, 27, 33] and perform
relational reasoning on a graph structure [44, 47, 58]. In
contrast to two-stage methods that follow a sequential cas-
cade to determine the interaction between the human-object
pairs, one-stage methods [8, 20, 29] concurrently detect
individual instances, pair the human-object instances, and
classify interactions. Inspired by the transformer-based de-
tector, i.e., DETR [1], where each query learns to detect
an object, recent one-stage methods [22, 26, 42, 62] have
adopted transformer-based structures, where each query
predicts a (human, object, interaction) triplet. Despite their
promising results, these approaches heavily rely on full
annotations with predefined HOI categories, which makes
them impractical for handling unseen HOI categories.

2.2. Vision tasks with CLIP

CLIP [39] is a multimodal framework that adopts con-
trastive learning to jointly train image and text encoders on
large-scale image-text pairs found from the web. By lever-
aging vision and language knowledge pre-trained on large-
scale data, CLIP has significantly improved the zero-shot
capabilities of models across various downstream tasks, in-
cluding out-of-distribution detection [7, 48] and segmenta-
tion [5, 63]. However, CLIP struggles to align local im-
age regions with text descriptions since CLIP was trained
by aligning whole images with their corresponding text de-
scriptions in a common embedding space, thus producing
suboptimal results on region-level tasks [5, 35, 53, 61, 63].
To mitigate the issue, recent work [4, 5, 34, 53, 61] learns a
locality in the CLIP or ViT structure by training on large
scale of the region-text pairs [4, 5, 61], and introduces
attention mechanism to capture the information of local
regions [14, 34]. However, they require additional pre-
training stages to adapt the downstream task, and require
modifications to the network structure which limits the uti-
lization of CLIP’s pre-trained knowledge.

2.3. Zero-shot HOI detection

Zero-shot HOI detection aims to detect both seen HOI cate-
gories available during training and unseen HOI categories
that do not appear during training. Previous work [17–
19, 33] mainly adopts compositional learning, which disen-
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Figure 2. The overall architecture of LAIN. All valid human-object pairs are constructed and embedded into HO tokens based on detection
results from a pre-trained DETR [1]. Image patch tokens are passed through the Locality Adapter (LA), which infuses locality awareness
into each patch token. The updated patch tokens and HO tokens are then passed through the Interaction Adapter (IA), which enhances each
HO token with interaction awareness. The HO, CLS, patch tokens are subsequently refined by the frozen l-th ViT layer of the CLIP [39]
visual encoder. After repeating this process for L layers, HOI scores are computed by measuring the cosine similarity between the HO
tokens and text embeddings extracted from CLIP text encoder.

tangles HOI representation into object and interaction fea-
tures. Although the disentangled features enable the model
to recognize unseen combinations, these methods are lim-
ited to combinations where either the object or the verb is
not shown in training, since it is infeasible to learn the dis-
entangled features of unseen objects or verbs. In light of the
success of CLIP [39] on various zero-shot settings, recent
work [30, 45, 52] focuses on transferring CLIP knowledge
via the teacher-student architecture. However, since they
transfer knowledge only about seen classes, they tend to be
biased toward seen category samples. Furthermore, since
this knowledge, i.e., CLIP scores, only conveys which inter-
action occurs, the model struggles to learn fine-grained lo-
cal details such as human attire. To enhance transferability,
prior work [23, 24, 36, 37] directly leverages CLIP repre-
sentations. ADA-CM [23] uses object queries from DETR
as global object priors to inform all objects in the image,
primarily providing global context to CLIP rather than local
details of individual objects. CMMP [24] uses spatial pri-
ors to model plausible spatial configurations, focusing only
on spatial relationships rather than the relational context of
an HO pair. BCOM [46] incorporates additional knowledge
extracted from the detector backbone along with CLIP rep-
resentations to better capture the small-scale interaction. In
contrast, our method enhances CLIP representations by in-
tegrating locality awareness for fine-grained object details
and interaction awareness for the relational context of the
HO pair, enabling better adaptation of CLIP representations
to zero-shot HOI detection.

3. Method

3.1. Overview

Given an input image I , the goal of zero-shot HOI detection
is to predict all HOI instances, including those belonging
to HOI categories that are unseen during training. For-
mally, i-th HOI instance is defined 4-tuple (bhi , b

o
i , ci, ai),

where bh, bo ∈ R4 represent the bounding box coordi-
nates of the human and object, respectively. ci ∈ O
and ai ∈ V represent the object class and the interac-
tion class that occurs between a human and an object, i.e.
verb, where O = {o1, · · · , oNo

} is a set of objects and
V = {v1, · · · , vNv

} is a set of interactions. No and Nv are
the number of object and interaction classes, respectively.
Under the zero-shot settings, the model is trained only on
the samples from seen HOI categories Cseen = C\Cunseen,
where C = {(oi, vj)|oi ∈ O, vj ∈ V} is the set of all possi-
ble HOI categories.

The overall architecture of LAIN is illustrated in Fig-
ure 2. To detect all possible HOI instances, we first detect
the objects in the input image I using a pre-trained detec-
tor, i.e., DETR [1]. Based on the detection results, we ex-
haustively construct all valid human-object pairs and gen-
erate HO tokens which are used to classify the interaction
for each corresponding human-object pair. The HO tokens,
along with the [CLS] token and the image patch tokens, are
then passed through the CLIP visual encoder to aggregate
visual information for each human-object pair. We attach
the Locality Adapter (LA) and Interaction Adapter (IA) to
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the front of each CLIP visual encoder layer, to inject local-
ity and interaction awareness into the CLIP representations,
respectively. After repeating this process for L layers, the
HOI score for each HO token is computed by measuring the
similarity to text embeddings of HOI categories.

3.2. HO Token Construction

In this section, we introduce HO tokens for HOI detection,
which aggregate and convey contextual information from an
input image similar to the [CLS] token in CLIP. Each HO
token is constructed based on detection results to determine
the interaction of the corresponding human-object pair.

Specifically, following the two-stage methods [36,
59], given an image I , we use an off-the-shelf ob-
ject detector, i.e., DETR [1], to obtain detection results
{(bi, ci, si, gi)}Ndet

i=1 , where bi ∈ R4, ci ∈ O, si ∈ R1

and gi ∈ RDdet represent the bounding box, object class,
confidence score, and object feature, respectively. Ndet and
Ddet denote the number of detected objects and dimension
of the object feature, respectively. Based on the detected
results, HO tokens T ∈ RNpair×Dclip for all valid human-
object pairs are constructed as follows:

idx = {(u, v) | u ̸= v, cu = ‘human’}, (1)
Ti = FFN([gu; gv]),where (u, v) = idxi, (2)

where Npair is the number of all valid human-object pairs
and Dclip is the feature dimension of the CLIP. The HO to-
kens T are concatenated with the [CLS] token and image
patch tokens F , and then passed through the CLIP visual
encoder composed of L layers to aggregate the visual infor-
mation:

[T(l), cls(l), F(l)] = V(l)([T(l−1); cls(l−1);F(l−1)), (3)

where cls ∈ R1×Dclip and F ∈ RHW×Dclip denote [CLS]
token and image patch tokens, respectively, and V(l) indi-
cates the l-th layer of the CLIP visual encoder. H and W
are the height and width of the feature map before flatten-
ing. For simplicity, we omit the layer index l in the follow-
ing sections.

3.3. Locality Adapter

To determine the interaction between an HO pair, it is cru-
cial to recognize fine-grained details of the individual ob-
ject. For example, if the model learns during training that
a human is wearing a helmet in the seen HOI category
‘ride-bike’, this fine-grained information can help to iden-
tify the unseen HOI category ‘ride-snowboard’. However,
while CLIP representation effectively captures global in-
formation, it lacks the ability to capture fine-grained local
details in specific regions of the image [5, 53, 63], i.e.,
locality awareness. To mitigate this, a Locality Adapter
(LA) enhances locality awareness of CLIP by updating each

patch token with aggregated information from neighbor-
ing tokens. Specifically, we first reshape the flattened
patch tokens F to their original shape, and then project
them through a Feed-Forward Network (FFN) to obtain the
F̃ ∈ RH×W×Da , where Da << Dclip. Then, we con-
struct the spatial layout embedding Li,j = FFN([bt; ct; et])
according to the detection results, where t denotes the in-
dex of detected object corresponding to the position (i, j),
and [·; ·] indicates the concatenation operation. Here, bt,
ct, and et represent the box coordinates, confidence score,
and object text embedding extracted from the CLIP text en-
coder, respectively. Subsequently, the layout embedding
L ∈ RH×W×Da is embedded into F̃ to provide spatial prior
of entire objects in I as follows:

F̂ = LN(FFN(F̃ + L)), (4)

where LN denotes Layer Normalization [25]. From the
F̂ , the LA aggregates neighborhood information of each
patch token for locality awareness. We utilize multiple con-
volutional layers {Convkn}Nc

n=1 with different kernel size
kn × kn, where kn ∈ K = {k1, k2, ..., kNc

} to aggregate
the neighborhood information. The locality-aware feature
P is extracted as:

Lkn = Convkn(F̂ ), (5)

P = FFN(Lk1 + ...+ LkNc ). (6)

Then, P is projected back to Dclip and fused with the orig-
inal F as follows:

F ′ = F + γLA · FFN(P ), (7)

where γLA ∈ RDclip is a learnable parameter to balance
between P and F .

3.4. Interaction Adapter

Although the locality-aware feature helps the model cap-
ture fine-grained details of individual objects, it is insuffi-
cient to determine interactions, as interactions depend on
the specific patterns between human and object contexts
–specifically, how human cues are associated with object
cues. For example, the ‘riding a bike’ interaction is identi-
fied by recognizing the association between the human cues
and the object cues such as the hands in contact with the
handle. This association distinguishes the interaction from
other possible interactions, such as ‘repairing a bike.’ To en-
hance such interaction awareness, our Interaction Adapter
(IA) updates each HO token based on its interaction pattern.
We first extract region features for the human and object us-
ing ROIAlign [15]. These features are then refined by the
Interaction Pattern Reasoning Module (IPRM) by captur-
ing the interaction pattern. The refined region features are
subsequently used to inject interaction awareness into the
corresponding HO token.
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Specifically, the region features for the human and object
in the i-th human-object pair are extracted as:

Rτ
i = FFN(ROIAlign(F ′, bτi )), (8)

where τ ∈ {h, o} is an indicator for human/object, and
bτi represents the corresponding bounding box of the i-th
human-object pair. Then, the IPRM captures human and ob-
ject region contexts using learnable queries Q ∈ RNp×Da

through a cross-attention mechanism:

R̃τ
i = CrossAttn(Q,Rτ

i , R
τ
i ). (9)

We utilize the Np queries to capture the interaction-relevant
contexts while filtering out irrelevant details. Next, IPRM
reasons about interaction patterns by computing how each
region context is associated with its counterpart through
cross-attention:

R̂h
i = CrossAttn(R̃h

i , R̃
o
i , R̃

o
i ), (10)

R̂o
i = CrossAttn(R̃o

i , R̃
h
i , R̃

h
i ). (11)

Subsequently, the HO token Ti is projected into Da dimen-
sion through an FFN: T̃i = FFN(Ti). T̃i is used as a query
to extract interaction-aware features R̄τ

i , which are utilized
to update the HO token:

R̄τ
i = CrossAttn(T̃i, R̂

τ
i , R̂

τ
i ), (12)

T ′
i = Ti + γIA · FFN([R̄h

i ; R̄
o
i ]), (13)

where γIA is a learnable parameter. The updated HO tokens
then are passed through the l-th layer of the CLIP visual
encoder, replacing Eq. 3:

[T(l), cls(l), F(l)] = V(l)([T
′
(l−1); cls(l−1);F

′
(l−1)]). (14)

3.5. Training and Inference

Similar to the previous work [36, 49], we convert each
HOI category into a text description using the template:
“A photo of a person [verb-ing] a [object].” We then in-
sert several learnable tokens in front of the text description.
The text descriptions are fed into the CLIP text encoder to
obtain the text embeddings E ∈ RN|C|×Dclip for all HOI
categories, where N|C| denotes the number of HOI cate-
gories. After obtaining the text embeddings, the HOI scores
S ∈ RNpair×N|C| can be calculated as:

S = Sigmoid(T(L)E
⊤/τ), (15)

where τ is the learnable parameter for rescaling the logits.
Since a human can engage in multiple interactions with an
object, we utilize the sigmoid function instead of softmax
to compute the HOI scores.
Training. To train our proposed method, we assign pos-
itive labels to samples whose human and object bounding

boxes both have an Intersection-over-Union (IoU) exceed-
ing a threshold with the ground truth. Following the pre-
vious work [23, 36], we adopt the binary focal loss [32]:

L = FocalBCE(S, Y ), (16)

where Y ∈ {0, 1}Npair×N|C| represents the binary target la-
bels.

Inference. During inference, we incorporate the confidence
scores of the human and object boxes from DETR into the
HOI scores as:

Sinfer = S · Sλ
H · Sλ

O, (17)

where λ is a hyper-parameter for suppressing overconfident
detections [58, 59]. SH , SO ∈ [0, 1]Npair×1 denotes the
confidence scores of human and object for corresponding
human-object pairs, respectively.

4. Experiments

4.1. Experiment Settings

To show the effectiveness of the proposed method, we
evaluate our model on the two public benchmark datasets:
HICO-DET [2] and V-COCO [12].

HICO-DET has 38,118 images for training and 9,658
images for testing. It contains 80 object classes, 117 in-
teraction classes, and 600 HOI categories. Following con-
ventional evaluation protocol [23, 36, 37], we report the
mean average precision (mAP) to examine the model per-
formance on five zero-shot settings: Unseen Combina-
tion(UC), Rare First Unseen Combination (RF-UC), Non-
rare First Unseen Combination (NF-UC), Unseen Verb
(UV), Unseen Object (UO). In the UC setting, all object and
verb categories appear during the training; however, some
HOI categories do not appear during the training, and they
are used as CUC

unseen. Especially the least frequent 120 HOI
categories are used as CRF−UC

unseen while the most frequent 120
HOI categories are used as CNF−UC

unseen . In the UV setting, 20
verb categories (Vunseen) are not used during the training,
and corresponding HOI categories are used as unseen HOI
categories, i.e., CUV

unseen = {(oi, vj)|oi ∈ O, vj ∈ Vunseen}.
Similarly, in the UO setting, 12 object categories (Ounseen)
are not used during the training, and corresponding HOI cat-
egories are used as unseen HOI categories, i.e., CUO

unseen =
{(oi, vj)|oi ∈ Ounseen, vj ∈ V}.

V-COCO is a subset of the MS-COCO [31] dataset. It
consists of 5,400 and 4,946 images for training and testing.
V-COCO consists of 80 object classes and 29 action classes.
Following evaluation settings in [21], we evaluate LAIN on
scenario 2, and report role average precision AP#2

role.
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Method RF-UC NF-UC UO UV UC

Unseen Seen Full Unseen Seen Full Unseen Seen Full Unseen Seen Full Unseen Seen Full

FCL [19] 13.16 24.23 22.01 18.66 19.55 19.37 15.54 20.74 19.87 - - - - - -
ATL [18] 9.18 24.67 21.57 18.25 18.78 18.67 15.11 21.54 20.47 - - - - - -
RLIP [56] 19.19 33.35 30.52 20.27 27.67 26.19 - - - - - - - - -

GEN-VLKT [30] 21.36 32.91 30.56 25.05 23.38 23.71 10.51 28.92 25.63 20.96 30.23 28.74 - - -
LOGICHOI [26] 25.97 34.93 33.17 26.84 27.86 27.95 15.67 30.42 28.23 - - - - - -
ADA-CM [23] 27.63 34.35 33.01 32.41 31.13 31.39 - - - - - - - - -

EoID [52] 22.04 31.39 29.52 26.77 26.66 26.69 - - - 22.71 30.73 29.61 23.01 30.39 28.91
HOICLIP [37] 25.53 34.85 32.99 26.39 28.10 27.75 16.20 30.99 28.53 24.30 32.19 31.09 23.15 31.65 29.93

CLIP [39] 28.79 22.00 23.36 28.52 22.06 23.36 28.66 22.29 23.36 26.16 22.90 23.36 24.28 23.12 23.36
CLIP4HOI [36] 28.47 35.48 34.08 31.44 28.26 28.90 31.79 32.73 32.58 26.02 31.14 30.42 27.71 33.25 32.11

BCOM† [46] 28.52 35.04 33.74 33.12 31.76 32.03 - - - - - - - - -
CMMP [24] 29.45 32.87 32.18 32.09 29.71 30.18 33.76 31.15 31.59 26.23 32.75 31.84 29.60 32.39 31.84

LAIN 31.83 35.06 34.41 36.41 32.44 33.23 37.88 33.55 34.27 28.96 33.80 33.12 31.64 35.04 34.36
LAIN† 36.57 38.54 38.13 37.52 35.90 36.22 40.78 36.96 37.60 32.05 38.04 37.20 32.25 37.95 36.81

Table 1. Performance comparison on the HICO-DET dataset under various zero-shot settings. RF-UC, NF-UC, UO, UV, and UC denote
rare first unseen composition, non-rare first unseen composition, unseen object, unseen verb, and unseen composition settings, respectively.
Our method outperforms existing methods, demonstrating the effectiveness of the proposed methods. The highest result in each section is
highlighted in bold. † indicates CLIP with ViT-L backbone.

4.2. Comparison with State-of-the-Art Methods

Zero-shot settings. We evaluate the performance of
LAIN and compare it with existing HOI detection meth-
ods under various zero-shot settings. As shown in Table 1,
LAIN demonstrates effectiveness by outperforming all pre-
vious methods by a significant margin under all zero-shot
settings. In particular, existing methods [23, 24, 36, 37,
46, 52] that leverage CLIP representation show lower or
comparable performance on unseen classes than CLIP it-
self under the RF-UC and UV settings. These results in-
dicate that adapting CLIP representation for zero-shot HOI
detection weakens its generalization ability due to the do-
main gap between the image-level pre-training task and
HOI detection. In contrast, our model consistently outper-
forms CLIP and other existing methods on unseen classes,
demonstrating its effectiveness. Furthermore, when we in-
crease the model size to ViT-L, i.e., LAIN†, the perfor-
mance further improves, demonstrating the scalability of
the proposed method with a larger backbone. Notably, de-
spite BCOM† [46] using the larger ViT-L backbone, LAIN
still surpasses it by a significant margin using only ViT-B.
These results indicate that it is crucial for CLIP represen-
tation to consider fine-grained details of individual objects
and interaction patterns between humans and objects.

Fully-supervised settings. To further validate the effec-
tiveness of our proposed method, we conducted experi-
ments under conventional fully-supervised settings on the
HICO-DET and V-COCO datasets. As shown in Table 2,
on the HICO-DET dataset, LAIN not only surpasses both
fully-supervised models and zero-shot methods but also
shows a marked improvement on rare HOI classes, which
present significant challenges due to their scarcity and dif-
ficulty in generalizing, similar to unseen classes. Despite
having fewer parameters and FLOPS, as shown in Ta-

Method HICO-DET V-COCO
Full Rare Non-rare AP#2

role

Fully-supervised methods
HOTR [21] 25.10 17.34 27.42 64.4
ATL [18] 28.53 21.63 30.59 -

As-Net [3] 28.87 24.25 30.25 -
QPIC [42] 29.07 21.85 31.23 61.0
UPT [59] 31.66 25.94 33.36 64.5
CDN [57] 31.78 27.55 33.05 64.4
Iwin [43] 32.03 27.62 34.14 60.5

GEN-VLKT [30] 33.75 29.25 35.10 64.5
ADA-CM [23] 33.80 31.72 34.42 61.2
LogicHOI [26] 35.47 32.03 36.22 65.6

Zero-shot methods
HOICLIP [37] 34.69 31.12 35.74 64.8

CLIP4HOI [36] 35.33 33.95 35.74 66.3
CMMP [24] 32.26 33.53 33.24 61.2

LAIN 36.02 35.70 36.11 65.1

Table 2. Performance comparison on the HICO-DET [2] and V-
COCO [12] datasets under fully-supervised setting. The highest
result in each section is highlighted in bold.

ble 7, LAIN demonstrates competitive performance on the
V-COCO dataset, achieving the second-best results among
zero-shot methods.

4.3. Ablation Study

We conduct various ablation studies on the UV setting to
validate the effectiveness of LAIN.
The impact of each adapter. In Table 3, we gradually
add each adapter to the baseline, which utilizes the origi-
nal CLIP representation without LA and IA, to investigate
the impact of each adapter. We observed performance im-
provements in both seen and unseen classes by injecting lo-
cality awareness into CLIP representations through the LA.
This result indicates that capturing the fine-grained infor-
mation of individual objects is crucial for zero-shot HOI
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LA IA Unseen Seen Full

- - 24.88 31.06 30.19
✓ - 27.71 32.55 31.95
- ✓ 27.37 33.57 32.70
✓ ✓ 30.50 34.80 33.95

Table 3. Ablations studies on each adapter under UV setting. LA
and IA denote locality and interaction adapter, respectively.

detection. Furthermore, applying IA to enhance interaction
awareness in CLIP representations leads to performance im-
provements, emphasizing the importance of understanding
interaction patterns between humans and objects. More-
over, since fine-grained information about individual ob-
jects aids in reasoning about interaction patterns, we ob-
served that using both adapters together yielded the best
performance. This demonstrates the effectiveness of both
adapters, i.e., LA and IA, and highlights the importance of
incorporating locality and interaction awareness for adapt-
ing CLIP representations to zero-shot HOI detection.
The impact of each component in LA. To investigate the
impact of each component in the LA, we conduct compar-
isons between the full LA model and various LA variants
in Table 4 (a) to (d). Removing either the visual context
or the spatial layout component, i.e., (a) or (b), results in
a significant decline in performance. This demonstrates
that integrating both surrounding visual context and spa-
tial layout is essential for capturing fine-grained details of
individual objects. Furthermore, we replace our convolu-
tional layers with existing attention mechanisms [34, 40],
which are designed to capture local information, i.e., fine-
grained details, instead of global information, as shown in
(c) and (d). We observe that the existing mechanisms im-
prove performance on both unseen and seen classes com-
pared to baseline, i.e., without LA and IA, by capturing lo-
cal information. These results demonstrate the importance
of fine-grained details about individual objects in adapting
CLIP’s representations for zero-shot HOI detection. How-
ever, their performances are degraded compared to our LA.
This highlights the effectiveness of LA in capturing fine-
grained details.
The impact of each component in IA. We also investigate
the impact of each component in IA on achieving interac-
tion awareness. In Table 4, we compare the full IA model
with various IA variants. When we remove the IPRM, the
model’s performance on unseen classes significantly de-
grades, indicating that incorporating the interaction pattern
is crucial for interaction awareness as shown in (e). Sim-
ilarly, removing human/object context extraction (i.e., ex-
tracting the interaction pattern using only ROI-aligned fea-
tures) results in decreased model performance, suggesting
that capturing interaction-relevant contexts while filtering
out irrelevant details through context extraction is effective
for reasoning about the interaction pattern as shown in (f).

Method Unseen Seen Full

Baseline 24.88 31.06 30.19

Locality Adapter 27.71 32.55 31.95
(a) w.o visual information 26.77 32.18 31.40
(b) w.o spatial layout 26.52 32.07 31.31
(c) Local Attention [40] 26.46 32.39 31.56
(d) Window Attention [34] 26.35 32.31 31.47

Interaction Adapter 27.37 33.57 32.70
(e) w.o IPRM 24.32 32.76 31.57
(f) w.o human/object context 25.64 32.41 31.40

Table 4. Ablation study on the design choices of each adapter
under UV setting.

Method Unseen Seen

APL APM APS APL APM APS

H
um

an CMMP [24] 45.77 34.54 52.89 64.80 54.60 25.05
ADA-CM [23] 50.63 36.85 26.88 60.80 39.13 17.57

LAIN 48.11 38.66 62.32 66.51 59.92 30.44

O
bj

ec
t CMMP [24] 59.64 46.19 18.64 62.73 51.38 29.82

ADA-CM [23] 62.16 46.60 14.02 57.20 37.99 18.66
LAIN 61.41 49.45 20.82 63.82 56.93 35.91

Table 5. Comparison of AP across different box sizes under the
RF-UC setting.1

position Unseen Seen Full

∅ 24.88 31.06 30.19
1-6 27.29 32.11 31.46

7-12 27.83 32.72 32.04
1-12 28.96 33.80 33.12

Table 6. Ablation study evaluating the impact of different adapter
positions in the UV setting.

The impact of locality-aware adaptation. To validate that
our IA and LA modules enhance CLIP’s ability to focus on
local details, we conduct experiments varying human and
object box sizes, as local details become more critical with
smaller boxes. As shown in Table 5, as the box size de-
creases from large (APL) to small (APS), LAIN demon-
strates a larger performance gap for medium and small
boxes compared to large ones. Specifically, LAIN outper-
forms ADA-CM [23] by 4.91% (human) and 6.12% (object)
in APM , and notably by 131.85% (human) and 48.50% (ob-
ject) in APS under the unseen setting. The performance
gain becomes increasingly prominent as box sizes decrease
(M→S), and similar results are also observed in the seen
classes. These results validate the effectiveness of our IA
and LA in capturing fine-grained local details for zero-shot
HOI detection.
The impact of adapter positioning. In Table 6, we con-
duct experiments that explore the impact of adapter posi-
tioning. We divide the model layers into lower and up-
per halves, inserting adapters into each section separately.
We observe that adding adapters to either the lower layers

1Since the authors of ADA-CM [23] provide pretrained weight under
UC-RF instead of UV, we conduct our experiments under the UC-RF.
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Figure 3. Qualitative results on HICO-DET under UV settings.
We represent a human with a red box and an object with a blue
box, along with HOI score.

(i.e., 1-6) or the upper layers (i.e., 7-12) consistently im-
proves the model’s performance. In particular, we observe
that incorporating adapters into the upper layers results in
a more substantial performance gain since the upper lay-
ers in the ViT structure encode global information, unlike
the lower layer which encodes local information [6]. These
results suggest that injecting interaction and locality aware-
ness into features lacking local information is essential and
that our proposed method effectively incorporates interac-
tion and locality awareness into CLIP representations.
Parameter analysis. In Table 7, we provide a compara-
tive analysis of model parameters and computational cost
between our proposed method and state-of-the-art methods
for zero-shot HOI detection to show the efficiency of LAIN.
Compared to HOICLIP [37] and CLIP4HOI [36], which in-
troduce a large number of trainable parameters and FLOPs
as they utilize a heavy decoder for interaction classification,
LAIN introduces only 3.0M trainable parameters, alongside
reduced FLOPs of 110G. Although LAIN has more train-
able parameters than CMMP [24], it has fewer total param-
eters and FLOPs. This highlights the efficiency of our ap-
proach in incorporating locality and interaction awareness
with minimal added overhead.

4.4. Qualitative Results

We present qualitative results on the HICO-DET under the
UV setting in Figure 3 and 4. In Figure 3, we observe that
LAIN successfully distinguishes interactive pairs, assign-
ing high similarity scores, and non-interactive pairs, assign-
ing low similarity scores, even for unseen verbs, i.e., ‘in-
specting’, ‘feeding’, and ‘riding’. Moreover, as shown in
Figure 4, LAIN assigns significantly lower scores to non-
interactive pairs compared to the baseline, which does not
incorporate LA and IA. The results demonstrate that incor-
porating LA and IA leads to more discriminative HOI repre-
sentations, enabling the model to better distinguish interac-
tive and non-interactive pairs for zero-shot HOI detection.

Sitting on bicycle catching frisbee watch elephant

O
ur

s
Ba
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lin

e

Figure 4. Qualitative comparison of non-interactive pairs between
LAIN and the baseline, i.e., without LA and IA, on the HICO-DET
under the UV setting. We represent a human with a red box and
an object with a blue box, along with HOI scores.

Method Tr. Params Tot. Params FLOPs

HOICLIP [37] 193.3M 193.3M 179G
CLIP4HOI [36] 71.2M 262.4M 186G

CMMP [24] 2.3M 193.4M 114G
LAIN 3.0M 145.4M 110G

Table 7. Comparison of parameters across state-of-the-art models
under UV setting. Tr. and Tot. Params represent the number of
trainable and total parameters of the model, respectively.

5. Conclusion

In this paper, we have proposed LAIN, designed to address
the lack of local details in CLIP’s representation, which hin-
ders CLIP’s generalization ability when adapting to zero-
shot HOI detection. Our locality adapter introduces lo-
cality awareness into CLIP by considering surrounding vi-
sual information and spatial layout. For interaction aware-
ness, which is difficult to determine solely through local-
ity awareness, our interaction adapter infers the interaction
pattern by leveraging contextual reasoning between human
and object contexts. By enhancing the locality and interac-
tion awareness, LAIN effectively captures fine-grained in-
formation about HO pairs, facilitating adaptation of CLIP’s
representation to zero-shot HOI detection. Extensive ex-
periments on two public benchmarks, HICO-DET and V-
COCO, demonstrate the importance of capturing local de-
tails and the effectiveness of LAIN. Notably, LAIN is par-
ticularly effective in scenarios where local details are cru-
cial, i.e., small instances, while introducing minimal com-
putational cost.
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