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Figure 1. Overview of ORIDa. ORIDa contains 200 unique objects and over 30,000 real-captured images, including factual-counterfactual

(F-CF) sets and factual-only (F-Only) images. F-CF sets consist of five images: one background-only and four with the object in different

positions. F-Only images capture objects in diverse scenes, enhancing the diversity of the dataset for object reposition tasks.

Abstract

Object compositing, the task of placing and harmonizing

objects in images of diverse visual scenes, has become an

important task in computer vision with the rise of genera-

tive models. However, existing datasets lack the diversity

and scale required to comprehensively explore real-world

scenarios. We introduce ORIDa (Object-centric Real-

world Image Composition Dataset), a large-scale, real-

captured dataset containing over 30,000 images featuring

200 unique objects, each of which is presented across varied

positions and scenes. ORIDa has two types of data: factual-

counterfactual sets and factual-only scenes. The factual-

counterfactual sets consist of four factual images showing

an object in different positions within a scene and a single

counterfactual (or background) image of the scene without

the object, resulting in five images per scene. The factual-

only scenes include a single image containing an object in a

specific context, expanding the variety of environments. To

our knowledge, ORIDa is the first publicly available dataset

with its scale and complexity for real-world image composi-

tion. Extensive analysis and experiments highlight the value

of ORIDa as a resource for advancing further research in

object compositing.

1. Introduction

Object compositing, or image composition, refers to the

task of placing objects into visual scenes in a manner that

preserves realism and contextual consistency. This task is

critical in many computer vision applications, including im-

age editing, augmented reality, and scene understanding,

where objects must seamlessly blend into complex envi-

ronments. The difficulty lies in ensuring that objects not

only fit naturally into a wide range of scenes but also retain

their identity and appearance. Successfully addressing ob-
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Table 1. Comparison of datasets for compositional image editing tasks. obj. and b.g. stand for object and background, respectively.

Dataset Target task # of data
# of

objects

# of scenes

per an obj.

# of pos.

per a scene
Real

Factual

(including obj.)

Counterfact.

(b.g. only)

Train

set

Test

set
Public DNG

COCOEE [42]
Examplar-based

Image Editing
2.5K triplets 2.5K 1 1 O O X X O O X

DreamEdit [18]
Subject-driven

Image Editing

440 images

(source-only)
22 20 1 - X O X O O X

DreamBooth [29]
Subject-driven

Image Generation
157 images 30 4∼6 1 O O X X O O X

FOS-Com [44]
Object

Compositing
640 triplets 640 1 1 X O X X O O X

ObjectDrop [39]
Object

Compositing

5K images

(2.5K pairs)
2.5K 1 1 O O O O X X X

ORIDa (Ours)
Object

Compositing

30K images

(5K sets + 5K images)
200 ≈50 1∼4 O O O O O O O

ject compositing involves overcoming key challenges, such

as maintaining the objects identity, harmonizing its appear-

ance with the scene, and managing complex factors like

lighting, shadows, and geometric alignment.

Recent advancements in object compositing can be

broadly categorized into two groups: training-free meth-

ods and training-based approaches. Training-free methods

[3, 23] have delivered impressive results, generating object

placements without the need for task-specific datasets. De-

spite their success, these methods often struggle with fine

details, such as scene harmonization and preserving object

identity. Training-based approaches [34, 39], in contrast,

benefit from data-driven training and can be further divided

into those using synthetic data and those using real-world

data. While training with synthetic data [34, 42] has signif-

icantly advanced object compositing, the lack of real-world

complexity limits the realism of the generated images. Ob-

jectDrop [39] has successfully enhanced object composit-

ing using real-captured data; however, its limited scale and

scene variability per object necessitate the incorporation of

large-scale synthetic datasets. Additionally, the ObjectDrop

dataset is not publicly available.

To this end, we present ORIDa (Object-centric Real-

world Image Composition Dataset), the first large-scale

real-captured public dataset specifically designed for the ob-

ject compositing. ORIDa contains over 30,000 images of

200 unique objects, each placed in an average of 50 diverse

scenes, providing an extensive and varied dataset for study-

ing object placement in real-world contexts. ORIDa offers

both factual-counterfactual sets [17, 39] in which each ob-

ject is captured in four different positions per scene, along-

side a corresponding scene without the object, and factual-

only images, enriching the dataset with a wide range of con-

textual possibilities. To ensure the dataset quality, particular

attention was given during data collection process in order

to minimize external factors beyond the objects presence.

Compared to existing datasets, ORIDA offers several key

advantages as shown in Table 1. Datasets like COCOEE

[42] and FOS-Com [44] are designed solely for benchmark-

ing and consist of object compositing sets derived from ex-

isting datasets, not captured specifically for the task. While

DreamEditBench [18] and DreamBooth Dataset [29] offer

more variation with multiple image composition scenarios

per object, they are also intended only for testing, making

it less suited for advancing models. ObjectDrop [39] con-

sists of real-captured data suitable for training, however, it

includes only one image pair per object and is not publicly

available. In contrast, ORIDA is a large-scale, real-captured

and publicly available dataset that offers multiple images

per object across varied scenes, making it a more versatile

resource for both training and evaluation.

We provide a detailed analysis on ORIDa, demonstrat-

ing the wide range of object categories, visual attributes,

and contextual variations captured in the dataset. In addi-

tion, we show experimental results on object removal and

object insertion tasks using a fine-tuned model, trained on

ORIDa without incorporating any synthetic datasets. The

results validate the potential of our dataset to support realis-

tic object compositing in diverse scenarios, enabling future

exploration in compositional image generation and editing.

2. Related Work

2.1. Object Compositing

Key challenges in object compositing include identity

preservation [1, 29, 35, 40], color harmonization [4, 5, 9, 13,

14, 41], shadow generation/removal [11, 12, 16, 20, 21, 37],

and geometric correction [15, 30, 38, 43]. In contrast to

earlier approaches that tend to address these challenges in-

dividually, recent methods [2, 18, 22, 23, 31, 34, 39, 42, 44]

aim to handle them within unified frameworks with the ad-
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Figure 2. Examples of Factual-Counterfactual (F-CF) Sets and Factual-Only (F-Only) Images. The left side shows F-CF sets,

consisting of one background-only image and four object-inserted images captured with the object in different positions. The right side

displays F-Only images, which feature objects in diverse scenes without corresponding background-only images.

vent of diffusion models [10, 25, 27, 32, 33]. For exam-

ple, models like ObjectStitch [34] and Paint-by-Example

[42] attempt to integrate geometric alignment, harmoniza-

tion, and identity preservation, although issues such as ob-

ject fidelity and accurate shadow modeling remain.

Existing approaches to object compositing can be

classified into training-free and training-based methods.

Training-free methods [3, 23] leverage pre-trained mod-

els and do not require task-specific datasets. For example,

FreeCompose [3] employs a mask-guided loss function dur-

ing inference, which harmonizes the inserted object with the

given background scene. However, they often struggle in

maintaining realism and preserving object identity in com-

plex environments. On the other hand, training-based meth-

ods [34, 35, 39, 42, 44], which depend on large datasets,

have demonstrated considerable potential for enhancing ob-

ject compositing performance. Due to the lack of real-world

image composition datasets, many of these methods resort

to generating synthetic data. This process involves mask-

ing an objects area and refilling the masked part with an

augmented version of the target object to train their models.

While synthetic data helps to overcome data scarcity, it of-

ten lacks the complexity and diversity of real-world scenes,

which can restrict the models performance.

2.2. Datasets for Image Composition

Various datasets support the object compositing task. CO-

COEE [42] and FOS-Com [44] are designed as benchmark-

ing datasets. While useful for testing models, these datasets

are not specifically captured for object compositing, which

limits their effectiveness for model training and exploration

of object placement variations. Furthermore, they offer only

one compositing set per object.

DreamEditBench [18] provides around 20 compositing

sets per object. Nevertheless, like COCOEE and FOS-Com,

it is designed solely for benchmarking and includes only

source objects and background images, lacking ground truth

object-included images. Similarly, DreamBooth Dataset

[29] includes 30 subjects, comprising both objects and live

subjects/pets. Despite offering some variation, Dream-

Booth Dataset is also intended solely for evaluation, and

its relatively small scale, along with the absence of coun-

terfactual (or background) images, limits its usefulness for

training object compositing models.

The dataset most similar to ORIDa is ObjectDrop [39]

which consists of 2,500 real-captured factual-counterfactual

pairs, enabling the training of object compositing models.

However, ObjectDrop also relies on synthetic datasets to

train object insertion models. Furthermore, since the dataset

is not publicly available, it is impossible to use it for devel-

oping broader models.
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Factual Image Naïve Object Removal Counterfactual Image

Figure 3. Visualization of factual-counterfactual concept. The

first column shows factual images with objects present in the

scene. The second column displays naïve object removal results,

where background is synthetically stitched into the object region

of the factual image. The third column presents the correspond-

ing ground-truth counterfactual images, which consist solely of

the background without the object. These examples demonstrate

the object-to-scene effects, including shadows and reflections.

3. Dataset Collection

3.1. Objects

Our dataset includes a total of 200 unique objects. To ensure

consistency and maintain the focus on the objects placement

within and across scenes, we limit the variation in object

poses during data capture. This allows for more controlled

analysis and model training, centering on the objects in-

teraction with its environment rather than pose dynamics.

More detailed information about the objects and their char-

acteristics will be elaborated in Section 4.

3.2. Image Capture

We used five different cameras to capture images: Galaxy

S10, Galaxy S20, Galaxy S22, Galaxy S24, and Galaxy

Note10+, all in PRO mode to obtain raw DNG files. Sam-

ples are provided in Figure 2.

Factual-Counterfactual (F-CF) Sets. The concept of F-

CF sets is inspired by ObjectDrop [39]: “if the object did

not exist, this reflection would not occur" (Figure 3). How-

ever, our dataset differs in two key aspects: (1) our dataset

includes multiple scenes for each object, whereas Object-

Drop provides only a single scene, and (2) covers multiple

positions of an object within a given background, while Ob-

jectDrop offers only one object position. As a result, each F-

CF set in ORIDa consists of five images: one background-

only image and four images with the object in different posi-

tions while fixing the background. To collect F-CF sets, we

carefully selected shooting locations by considering con-

sistent lighting conditions, stable backgrounds, and diverse

Wrong

(a) Undesired background changes

(b) Out of focus (c) Wrong pose of objects

Wrong

Correct Correct

Figure 4. Filtering criteria. Common issues include: (a) unde-

sired background changes such as lighting shifts or pedestrians,

(b) out-of-focus images, and (c) incorrect object poses.

Obj.#2: “White duck figurine with a yellow
   beak, legs, and a flower on its head.”

Obj.#86: “Light grey handheld mini fan with a
    circular fan head and built-in handle.”

Original Image Annotations AnnotationsOriginal Image

Figure 5. Annotation examples. Each object includes detailed

annotations such as captions, object points, bounding boxes, and

segmentation masks.

scenes. To ensure consistency within each set, we fixed key

camera settings such as shutter speed, ISO, WB, and focus,

during a single capture process, preserving the natural light-

ing and scene conditions across images in each set. Cam-

eras were fixed on tripods and we captured a series of five

consecutive images with remote controllers to maintain sta-

bility of the camera position.

Factual-Only (F-Only) Images. We also collected F-Only

images to increase scene diversity. These images are com-

paratively easier to capture since they do not require sep-

arate background shots, allowing us to efficiently gather

object-included images across a variety of backgrounds.

3.3. Data Filtering

To ensure that any variations in the scenes are solely due

to the presence of objects and to uphold the overall image

quality, we meticulously inspected all captured images. We

identified several undesired cases, as illustrated in Figure 4:

(1) unintended background changes, (2) out-of-focus im-

ages, and (3) incorrect object poses. In addition to these
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N. of Colors Transparency Reflectivity Roughness Semantic Class

1~2 3~4 5~6 7~ Low Medium High Low Medium High Low Medium High

Daily/Office Suplies

Human-related

Animal-related

Figures

e.t.c.

Images per Object

Figure 6. Dataset statistics per object and attribute. The top chart displays the number of images per object, sorted by y-value, for

both factual-only and factual-counterfactual sets. The bottom charts present the percentage distribution of objects based on key attributes:

number of colors, transparency, reflectivity, roughness, and semantic class, illustrating the variety and diversity within the dataset.

cases, we performed inspections to identify and filter out

other inconsistencies or defects. We selected 5,699 F-CF

sets from the initial 7,000 F-CF sets and retained 5,035 F-

Only images from the original 5,500 F-Only images.

3.4. Annotations

In addition to the filtered images, we provide comprehen-

sive annotations for the dataset, including captions for 200

individual objects, object points, bounding boxes, and seg-

mentation masks as shown in Figure 5.

For generating object captions, we captured object-

centric images with simple backgrounds where the objects

are dominant. These images are then used as inputs for

GPT-4o [24] and Gemini 1.5 Pro [6] to create object de-

scriptions. For localization-related annotations, such as

bounding boxes and segmentation masks, we manually an-

notated points for each target object in the images. These

annotated points are subsequently fed into SAM2 [26] to

generate precise segmentation masks and bounding boxes.

All images in our dataset, excluding background-only im-

ages, include localization-related annotations.

Moreover,raw DNG files in ORIDa provide flexibility

for additional ISP (Image Signal Processing) augmenta-

tions. This feature is crucial for effective harmonization in

object compositing, allowing for exploration with different

color and lighting conditions on the original raw files.

Indoor Outdoor

F-CF

71% 29%

F-Only

48% 52%

Total

59% 41%

Figure 7. Indoor/Outdoor ratio. Distribution of indoor and out-

door scenes for factual-counterfactual sets (F-CF), factual-only

images (F-Only), and the entire dataset.

4. Dataset Statistics

We present several statistics and analyses of our dataset.

Figure 6 (top) illustrates the distribution of image counts per

object both for the F-CF and F-Only. Note that the y-axis

represents the number of images, with F-CF counts calcu-

lated by multiplying the number of sets by five. Addition-

ally, as shown in Figure 6 (bottom), we categorize objects

based on five attributes: number of colors, transparency, re-

flectivity, roughness, and semantic classes. These attributes

help to understand the variety of visual properties and tex-

tures in the dataset. The majority of objects have between

one and four main colors, while attributes like transparency

and reflectivity are distributed across low to medium levels,

indicating a range of visual complexity. Objects are also

classified into various semantic classes, such as daily/office

supplies, human-related items, and animal-related objects.
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X-axis : Red Channel Intensity           Y-axis: Green Channel Intensity

Figure 8. Visualization of color variations across objects. Example objects are shown with their respective color distributions plotted

based on red and green channel intensities. Each plot highlights how the appearance of objects varies under different lighting conditions

and backgrounds, illustrating the datasets ability to capture diverse visual contexts.

Furthermore, our dataset includes scenes captured both

indoors and outdoors, providing a mix of environments for

object compositing. We calculated the ratio of indoor to out-

door scenes separately for F-CF sets, F-Only images, and

the entire dataset. As shown in Figure 7, the dataset main-

tains a balanced distribution between indoor and outdoor

settings, with 41% of images captured outdoors.

A unique characteristic of ORIDa is that it captures both

the object-to-scene effects and scene-to-object effects. The

former refers to how an object impacts its environment such

as shadows and reflections as shown in Figure 3, while the

latter considers how varying contexts affect an objects ap-

pearance. To explore the diversity in object appearances,

we analyze the mean color values of some objects across

varied scenes. Figure 8 plots the mean color distributions,

showing how the appearance of objects shifts under vary-

ing lighting conditions and backgrounds. The plots demon-

strate that while objects generally maintain their defining

characteristics, there are noticeable changes in color inten-

sities based on the context, illustrating the datasets ability to

represent a wide range of appearances for the same object.

5. Experiments

5.1. Experimental Settings

Train datasets. To enhance the diversity of the training

data, we utilize the raw files in ORIDa and apply ISP aug-

mentations using Adobe Lightroom. Five different ISP set-

tings are applied: (1) as-shot, (2) higher temperature, (3)

lower temperature, (4) higher vibrance, and (5) lower vi-

brance. For the object insertion task, we use additional

60,000 images from the COCO dataset [19], paired with

250,000 object masks, to train the model to maintain the

Table 2. Object removal - user studies. Participants rated ob-

ject removal results on a scale of 1 to 5 across five criteria: con-

text preservation, effectiveness of object removal, elimination of

object-related effects (e.g., shadows, reflections), minimization of

artifacts, and overall image quality.

SD-Inpaint LaMa MGIE SD-Oursr
Rating (Max: 5) ↑ 2.78 2.63 1.96 4.23

Table 3. Object removal automatic metrics. Comparison with

the inpainting baseline (SD-Inpaint) on ORIDa held-out test set.

PSNR ↑ DINO ↑ CLIP ↑ LPIPS ↓

SD-Inpaint 21.76 0.845 0.903 0.108

SD-Oursr 25.60 0.902 0.938 0.088

identity of source objects. Please note that we only utilize

the original images from the COCO dataset without any

synthetic data, freeing us from the hyper-parameters and

complex recipes required for data synthesis [34, 39, 42, 44].

Model. We fine-tuned a public pretrained StableDiffusion

(SD)-Inpaint [7, 27], for both object removal and insertion

task without major modification of its architecture. The

U-Net [28] in SD-Inpaint receives a 9-channel input: four

channels for the input latent, four channels for the condition

latent, and one channel for the target object mask.

5.2. Object Removal

We compare our model (SD-Oursr) with SD-Inpaint [7, 27],

LaMa [36], and MGIE [8]. We use images from COCO

dataset for qualitative results (Figure 9) and user studies

(Table 2), while an out-held test set from ORIDa is used

to evaluate automatic quantitative metrics (Table 3).
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Input Image Target Object SD-Inpaint LaMa MGIE SD-Ours
r

Figure 9. Object removal - qualitative results across different methods. SD-Inpaint [27], LaMa [36], MGIE [8], and SD-Ours. For

MGIE, a text prompt such as remove the hot sauce from the photo (for the first row) is used to instruct the model.

As shown in Figure 9, our approach demonstrates better

object removal performance. While SD-Inpaint and LaMa

perform reasonably well, they often struggle with erasing

shadows and reflections. MGIE, which uses text prompts,

offers flexibility but can introduce artifacts. In contrast,

SD-Oursr effectively preserves the visual context by ac-

curately erasing shadows, lighting, and object itself. This

improved performance can be attributed to training exclu-

sively on ORIDa, which provides diverse and high-quality

real-world data to handle complex visual scenarios. Please

note that some softness observed in both the inpainted re-

gions and surrounding background likely results from the

limitations inherent in the pretrained model.

In addition, we also provide quantitative results using

both user study ratings from 76 randomly selected partic-

ipants (Table 2) and automatic metrics (Table 3). These

evaluations further validate the effectiveness of our dataset

in training a model to achieve realistic object removal.

5.3. Object Insertion

For object insertion task, we compare our model (SD-Oursi)

with Copy & Paste, Paint-by-Example [42], AnyDoor [2],

and ObjectStitch [34]. As shown in Figure 10, SD-Oursi
consistently demonstrates effective integration of objects

into diverse scenes, showing strengths in identity preserva-

tion, shadow generation, and color harmonization.

The Copy & Paste method, while straightforward, en-

counters challenges with blending the object naturally into

the scene and lacks the capability to generate object-to-

scene effects, such as realistic shadows. Paint-by-Example

offers an enhanced level of generating natural images, how-

ever, struggles with maintaining object identity, which can

be a critical limitation in object-centric image editing.

AnyDoor and ObjectStitch provide more coherent results

overall. Nevertheless, they sometimes encounter difficulties

in fully preserving the objects identity, adapting its colors

seamlessly to the scene and and generating natural shad-

ows. In contrast, SD-Oursi achieves high visual consis-

tency, producing realistic shadows, and context-aware col-

ors that align naturally with the lighting conditions in the

target scenes, all without major model modifications.

User study results from 62 participants (Figure 11) fur-

ther support our claim. SD-Oursi received the highest

ratings across all four evaluation criteria: object identity
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Source Obejct Target Image Paint-by-Example AnyDoor ObjectStitch SD-OursiCopy & Paste

Figure 10. Object insertion - qualitative results. For each row, the Source Object is inserted into the Target Image. Results illustrate

differences in identity preservation, shadow generation, color harmonization, and overall realism.

“Which one is the best regarding [X]?”

[X] = Object Identity

[X] = Shadow Generation

[X] = Color Harmonization

[X] = Overall Quality

SD-OursiAnyDoorPaint-by-Example  Copy&Paste  

15 53 10

4113

2410

11

9204

ObjectStitch

66

5 79

71

67

Figure 11. Object insertion - user study. Participants evaluated

different methods on four criteria: object identity preservation,

shadow generation (object-to-scene effects), color harmonization

(scene-to-object effects), and overall quality based on participants’

preference. Copy & Paste method is excluded for the object iden-

tity preservation test. Numbers are reported in %.

preservation, shadow generation (object-to-scene effects),

color harmonization (scene-to-object effects), and overall

quality. It achieved preference scores of 66% for object

identity, 79% for shadow/reflection generation, 71% for

color harmonization, and 67% for overall quality, signifi-

cantly outperforming other methods. These results high-

light our dataset as a valid training resource for achieving

realistic and contextually integrated object insertions.

6. Conclusion

We introduce ORIDa, the first large-scale, real-captured

public dataset for object compositing, with over 30,000 im-

ages featuring 200 unique objects. ORIDa is both exten-

sive and carefully curated, with high-quality, richly anno-

tated images that have undergone thorough data filtering. A

unique feature of ORIDa is its capture of both object-to-

scene and scene-to-object effects, providing diverse object

placements in real-world scenes.

Our analysis suggests that ORIDa can support advance-

ments in object compositing by providing a valuable re-

source for developing more realistic, context-aware image

editing techniques. Limitations, future research directions,

broader impact, and details of our dataset and experiments

are provided in the supplementary materials. We hope ORI-

Das accessibility will inspire further exploration and con-

structive discussions on compositional image editing within

the research community.
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