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Abstract

Learning robust models under distribution shifts between
training and test datasets is a fundamental challenge in ma-
chine learning. While learning invariant features across
environments is a popular approach, it often assumes that
these features are fully observed in both training and test
sets—a condition frequently violated in practice. When
models rely on invariant features absent in the test set, their
robustness in new environments can deteriorate. To tackle
this problem, we introduce a novel learning principle called
the Sufficient Invariant Learning (SIL) framework, which fo-
cuses on learning a sufficient subset of invariant features
rather than relying on a single feature. After demonstrat-
ing the limitation of existing invariant learning methods, we
propose a new algorithm, Adaptive Sharpness-aware Group
Distributionally Robust Optimization (ASGDRO), to learn
diverse invariant features by seeking common flat minima
across the environments. We theoretically demonstrate that
finding a common flat minima enables robust predictions
based on diverse invariant features. Empirical evaluations
on multiple datasets, including our new benchmark, confirm
ASGDRO’s robustness against distribution shifts, highlight-
ing the limitations of existing methods. Code: https:
//github.com/MLAI-Yonsei/SIL-ASGDRO.

1. Introduction
Machine learning models typically assume that training and
test data are drawn from the same distribution. However,
in real-world scenarios, this assumption is often violated
whenever the training and test distribution differ, known as
distribution shifts. In these cases, model performance tends
to degrade, highlighting the need to develop models that are
robust to distribution shifts for reliable outcomes.

To train models robust to distribution shift, invariant
learning focuses on identifying latent features that remain
constant across environments, referred to as invariant fea-
tures. These features enable consistent predictions across
environments by discouraging models from relying on spu-

Figure 1. Left visualizes the images that contain a spurious fea-
ture, ZNI, and multiple invariant features, ZTail, ZBeak, and ZFeet in
training environment Etr. If the model focuses on the ZNI (green
background), then it fails to predict correctly in the test environ-
ment E\Etr (Right). Even if the model captures the invariant fea-
tures in Etr, e.g., ZFeet, it still fails to predict correctly when the
invariant features are not present (Gray). However, it is possible to
predict correctly if we learn diverse invariant features sufficiently,
ZFeet, ZTail, and ZBeak. With SIL (Red), the model predicts the la-
bel using remaining invariant features, ZTail and ZBeak even though
ZFeet is not present in the test environment E\Etr.

rious features [3] – features that are not preserved across
changes in environments or groups1. For example, in do-
main generalization tasks [14, 20], the goal is to learn in-
variant features that consistently predict labels across mul-
tiple environments. Assuming that the learned invariant fea-
tures persist in all unseen environments, they guarantee the
model’s generalization performance on new environments
[23, 26]. Similarly, learning models robust to subpopula-
tion shifts is essential in cases of severe imbalances be-
tween groups. In this scenario, invariant features play a
crucial role in addressing the challenges faced by underrep-
resented groups, which are disproportionately impacted by
strong spurious correlations [17, 35, 41].

However, learning all possible invariant features is chal-
lenging in practice because most existing invariant learn-
ing approaches focus on eliminating spurious correlations,
which can be achieved by leveraging only a subset of the in-
variant features present in the training environments. More-
over, invariant features identified by the model may not be
observable in unseen environments [15, 38]. This under-

1In this paper, the terms environment and domain are used interchange-
ably. A group refers to a subpopulation corresponding to a particular label
within a specific environment.
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scores the importance of learning a sufficient number of in-
variant features, rather than relying on a single invariant fea-
ture. To address this, we introduce a novel approach called
Sufficient Invariant Learning (SIL), which focuses on learn-
ing a sufficient set of invariant features for improved gener-
alization. For example, consider the scenario depicted in
Fig. 1. Training environments for an image of a bird may
include multiple invariant features, such as ZTail, ZBeak and
ZFeet. If a model relies on a single invariant feature, say
ZFeet, it may fail to classify an image of the bird if the fea-
ture is unobservable (e.g., the bird’s feet are hidden under-
water). In contrast, if the model uses a sufficiently diverse
set of invariant features (e.g., all of ZTail, ZBeak and ZFeet), it
can still classify the image correctly as long as one or more
of the other invariant features are present. This highlights
the robustness and generalization benefits of learning a suf-
ficient number of invariant features.

In this study, we develop the SIL framework and demon-
strate that leveraging sufficiently diverse invariant features
through SIL enhances model robustness. As a method for
SIL, we propose Adaptive Sharpness-aware Group Distri-
butionally Robust Optimization (ASGDRO). We show that
ASGDRO attains SIL by effectively learning diverse invari-
ant features while successfully eliminating spurious correla-
tions. Furthermore, we show that the ability of ASGDRO to
perform SIL is due to its convergence to a common flat min-
ima [13] across diverse environments. Through empirical
evaluations on a toy example and our newly introduced SIL
benchmark dataset, we show that existing invariant learning
algorithms fall short in capturing diverse invariant features,
whereas ASGDRO successfully achieves SIL. By learning a
wide range of invariant features sufficiently, ASGDRO ex-
hibits robust generalization performance under various dis-
tribution shift scenarios, as evidenced by extensive experi-
ments involving subpopulation and domain shifts.

2. Related Works

2.1. Invariant Learning for Distribution Shift

The standard approach to modern deep learning is Empir-
ical Risk Minimization (ERM) [39], which minimizes the
average training loss. However, ERM may not guarantee
robustness in distribution shifts. To improve the general-
ization performance in distribution shift, Group Distribu-
tionally Robust Optimization (GDRO) minimizes the worst
group loss for each iteration to alleviate spurious correla-
tions [35]. Meanwhile, various studies utilize loss gradi-
ent for invariant learning. For example, Arjovsky et al. [3]
minimizes the gradient norm of the fixed classifier across
environments. Other research matches the loss gradient for
each environment to find invariant features [31, 36]. Fur-
thermore, balancing the representation using selective sam-
pling with mix-up samples [41] or re-training the classifier

on a small balanced set [19] show the effectiveness of learn-
ing a robust model. Some studies enhance generalization
by combining invariant learning algorithms with feature ex-
tractors with rich representations [8, 43, 44] or resolving the
conflict between ERM and invariant learning objectives [7].

Under the assumption that invariant features in the train-
ing environment also exist in the test environment, invari-
ant learning theoretically guarantees an optimal predictor
[34]. However, we argue that existing invariant learning
algorithms do not learn sufficiently diverse invariant fea-
tures, and they still suffer significant performance drops in
test environments where some invariant features are unob-
served [15, 38]. Lin et al. [24] consider settings with mul-
tiple features; however, they solely address scenarios where
only spurious features are multiple in nature. To remedy this
problem, we introduce the novel framework, SIL, and guar-
antee the generalization ability for diverse invariant fea-
tures. Through experiments on the newly proposed bench-
mark in this paper, as well as on existing benchmarks for
distribution shifts [14, 20], we demonstrate that our novel
algorithm designed for SIL leads to more robust predictions.

2.2. Flatness and Generalization

Various studies argue that finding flat minima improves gen-
eralization performance [18, 27]. As a result, many algo-
rithms emerge to find flat minima. Sharpness-aware Mini-
mization (SAM) [13] finds flat minima by minimizing the
maximum training loss of neighborhoods for the current pa-
rameter within ρ radius ball on the parameter space. More-
over, Adaptive SAM (ASAM) introduces the normalization
operator to get a better correlation between flatness and the
model’s generalization ability by avoiding the scale symme-
tries between the layers [22]. Stochastic Weight Averaging
(SWA) also reaches the flat minima by averaging the weight
[17]. Under the IID setting, these approaches [13, 17, 22]
successfully decrease the generalization gap.

Cha et al. [5] shows that optimizing the model towards
flatter minima through weight averaging improves domain
generalization ability. However, it is still necessary to verify
whether the models operate robustly through weight averag-
ing when strong spurious correlations exist. Indeed, some
studies demonstrate that weight averaging may still not be
robust in certain subpopulation shift tasks [32]. Zhang et al.
[46] also shows that flat minima make the models more ro-
bust to the noise. However, our study focuses on the effec-
tiveness of flatness in more extreme distribution shift set-
tings, such as subpopulation shift and domain generaliza-
tion. Springer et al. [37] presents that when easy-to-learn
and hard-to-learn features coexist, models trained by SAM
learn balanced representations. This aligns with our obser-
vations, and we aim to achieve SIL by removing spurious
correlations and learning sufficiently diverse invariant fea-
tures by introducing the constraints related to flatness.
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3. Methodology

3.1. Problem Setting
Let X , Y , Z , and Θ denote the input, label, feature, and
parameter spaces, respectively. Consider a set of environ-
ments E , where each environment e ∈ E is associated with
a dataset De = {(Xe

i , Y
e
i )}

ne
i=1, with Xe

i ∈ X , Y e
i ∈ Y ,

and ne indicating the number of data points in e. We as-
sume a feature set Z = (Z I, ZNI) ⊂ Z , where Z I denotes
invariant features that satisfy the following invariance con-
dition, and ZNI denotes spurious features whose correlation
with Y e varies across environments e [3, 10, 21].

Definition 1 (Invariance Condition). ZI is a set of invariant
features satisfying

E[Y e|ZI] = E[Y e′ |ZI] for all e, e′ ∈ Etr,

Etr ⊂ E denotes the set of training environments.

We denote an invariant feature Z I
i as the singleton set con-

taining ith element of Z I, where i ∈ {1, . . . , p} and p is the
number of invariant features. In Fig. 1, the invariant features
are Z I = {ZBeak, ZTail, ZFeet} with p = 3, the spurious fea-
ture is ZNI = {ZBackground} and one example of an invariant
feature is Z I

1 = {ZFeet}, corresponding to the feet.
Suppose a model f = h ◦ g parametrized by θ =

(θg, θh) ∈ Θ, where g : X → Z is an encoder with pa-
rameters θg and h : Z → Y is a classifier with parameters
θh. Let Re(θ) = E[ℓ(f(Xe; θ), Y e)] denote the risk of
a model f in environment e, where ℓ denotes a loss func-
tion. Invariant learning seeks to minimize the maximum
risk across environments,

min
θ

max
e∈E

Re(θ), (1)

and to train models that have robust performance and gen-
eralization ability for unseen environments by learning in-
variant features Z I [3, 10, 21, 35]. In particular, given Z I,
Rojas-Carulla et al. [34] demonstrate that learning optimal
classifier θ∗h, which is based on all invariant features in Z I,
leads to robust model predictions, i.e.,

θ∗h ∈ min
θh

max
e∈E

Re(θh), (2)

where Re(θh) = [ℓ(h(Z I; θh), Y
e)], assuming that the in-

variance condition holds for all e ∈ E .

3.2. Sufficient Invariant Learning
While models trained via invariant learning have shown ef-
fectiveness under various distribution shifts, this does not
imply that the optimal classifier satisfying Eq. (2) is unique.
For Etr, Definition 1 holds for any subset Ẑ I ⊆ Z I and any

classifier relying on Ẑ I can be optimal. In Fig. 1, the classi-
fier may utilize only ZFeet, or it may employ all Z I

i simulta-
neously in Etr, to distinguish between waterbirds from land-
birds. Therefore, the optimal encoder minimizing Eq. (1)
is also not unique, as it depends on the non-unique optimal
classifier [3]. To distinguish predictive mechanisms using
different Ẑ I, we define the invariant mechanism.

Definition 2 (Invariant Mechanism). For an encoder gθI
g

parameterized by θIg and a classifier hθI
h

parameterized by
θIh, the invariant mechanism θI = (θIg, θ

I
h) ∈ Θ is a tuple

for a subset ẐI ⊆ ZI satisfying the followings:

Condition 1: hθI
h
: ẐI 7→ Y e, ∀e ∈ Etr.

Condition 2: θI ∈ argmin
θ

max
e∈Etr

Re(θ).

Specifically, we denote the invariant mechanism that uti-
lizes only Z I

i as θI
i, for i = {1, . . . p}. Invariant mechanisms

that rely solely on a specific invariant feature θI
i may strug-

gle to make robust predictions when the part of the input
corresponding to that feature is corrupted by noise, missing
due to cropping, or occluded by environmental factors. This
non-uniqueness suggests that training encoders via classi-
fier invariance [1, 3] or enhancing them to capture richer
information [8, 44] can benefit from additional regulariza-
tion to leverage other invariant features. This observation
also implies that robust optimization methods designed to
minimize Eq. (1) over Etr [12, 30, 35] have an avenue for
achieving enhanced generalization performance.

We argue that training more robust models requires en-
suring generalization across sufficiently diverse sets of in-
variant features. To this end, we introduce a novel invariant
learning framework, termed Sufficient Invariant Learning
(SIL), which encourages learning diverse invariant features:

Definition 3 (Sufficient Invariant Learning). Sufficient In-
variant Learning refers to identify θSI such that

θSI ∈ argmin
θ

max
e∈E

Re(θ),

s.t. θSIh ∈ argmin
θh

max
e∈E

max
ẐI⊆ZI

E[ℓ(hθh(Ẑ
I), Y e)].

SIL aims to train a classifier that performs robustly not only
across all environments but also with respect to any subset
Ẑ I. It encourages the model to leverage sufficiently diverse
invariant features, assuming that representations of these
features have already been learned from the target task [19].
The main challenge in achieving SIL lies in the cost of ob-
taining individually intervened data for each Ẑ I. To achieve
this, we propose ASGDRO, a novel method inspired by the
geometry of the loss surface, which promotes SIL by iden-
tifying common flat minima.
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3.3. ASGDRO: Adaptive Sharpness-aware Group
Distributionally Robust Optimization

In the literature on model merging and multi-task learning
[2, 16, 33, 40], it is often assumed that a robust model across
all tasks lies within the linear interpolation of models that
perform well on each individual task. Inspired by this ob-
servation, we consider θI

i as a model that performs well on a
single task, and we hypothesize that θSI exists within the lin-
ear interpolation of these mechanisms. Without loss of gen-
erality, subsets that are not singletons can be equivalently
represented as an interpolation of singleton invariant fea-
tures Z I

i. Hence, for the remainder of this work, we restrict
our consideration to Z I

i and Z I (Appendix A.2.). The key
difference from previous studies is that we evaluate each
task solely on the same dataset. Therefore, as discussed
in Sec. 3.2, different invariant mechanisms are expected to
have similar risks,

Re(θSI)−Re(θI
i) ≈ 0 for all e ∈ Etr.

A challenge for SIL is that we do not have access to in-
formation about θI

i. However, based on the observation in
Neyshabur et al. [28] that different models trained from the
same pre-trained model lie in the same loss basin, we as-
sume that models located on the linear path between θSI and
θI
i also exhibit similar risk. Therefore, θSI should guarantee

low risks within a ball of radius at least maxi ||θI
i − θSI||,

denoted as ρ, in Euclidean space. Introducing a perturba-
tion ϵe := θI

i − θSI, we obtain the following condition for
the risk of θI

i:

max
i∈{1,...,p}

Re(θI
i) = max

||ϵe||≤ρ
Re(θSI + ϵe).

From our motivation, ρ is a hyper-parameter adjusting the
model class of θI

i deviated from θSI. Moreover, according
to Definition 1, all θI

i should exhibit robust performance
across environments e ∈ Etr. Finally, we propose a novel
objective function named Adaptive Sharpness-aware Group
Distributionally Robust Optimization (ASGDRO), which is
formulated as follows:

max
e∈Etr

max
||ϵe||≤ρ

Re(θ + ϵe). (3)

In the following sections, we theoretically show that ASG-
DRO not only learns invariant features but also balances the
learning of invariant mechanisms, thereby achieving SIL.
Also, we demonstrate that ASGDRO finds the common flat
minima across environments, leading to SIL.

3.4. SIL and Common Flat Minima
We demonstrate that ASGDRO trains the model to achieve
SIL by showing that ASGDRO balances the use of diverse
invariant mechanisms.

Algorithm 1 ASGDRO
Input: Training dataset De

tr = {(Xe, Y e)} for e ∈ Etr, Radius
ρ > 0, Learning rate η > 0, Robust step size γ > 0, The
number of environments |Etr|, Normalization Matrix Tθ .

1: Initialization: θ0; λ(0)
e = 1/|Etr|;

2: for t = 1, 2, 3, . . . do
3: for e = 1, . . . , |Etr| do
4: Compute training loss Re(θt);

5: Compute ϵ∗e = ρ
T2
θ ∇Re(θt)

∥Tθ∇Re(θt)∥ ;
6: Gradient ascent: θ∗t = θt + ϵ∗e ;
7: Find loss for each environment Re(θ∗t );
8: Compute λ̃

(t)
e = λ

(t−1)
e exp(γRe(θ∗t ));

9: Return to θt;
10: end for
11: Update λ

(t)
e = λ̃

(t)
e /

∑
e λ̃

(t)
e ;

12: Compute RASGDRO(θt) =
∑

e λ
(t)
e Re(θ∗t );

13: Compute ∇RASGDRO(θt) =
∑

e λ
(t)
e ∇Re(θ∗t );

14: Return to θt;
15: Update the parameters: θt+1 = θt − η∇RASGDRO(θt);
16: end for

Theorem 1. Let θIλ be a convex combination of θIi , where
λ is a p-dimensional vector. Consider mean-squared er-
ror as the loss function. Assume a linear model with
Z ∈ Rp, where the p features are orthogonal, and suppose
Z = ZI = (1, . . . , 1). Then,

λ∗ =argmin
λ

max
e∈Etr

max
||ϵ||≤ρ

Re(θIλ + ϵ)

≈ argmin
λ

max
e∈Etr

[
Re(θIλ) + ρ||λ|| · ||∇Re(θIλ)||

]
(4)

=argmin
λ

||λ|| = (
1

p
, . . . ,

1

p
)

where || · || denotes L2 norm.

Refer to Appendix A.4. for the proof. Theorem 1 states that
ASGDRO ensures that even when invariant features con-
tribute equally to the output, the model does not favor a
simple solution focusing on a single invariant feature. In-
stead, it learns a diverse range of invariant mechanisms. As
shown in Eq. (4), this regularization effect arises through
the gradient norm ||∇Re(θ)||.

Proposition 1. By the Taylor expansion,

max
e∈E

max
||ϵe||≤ρ

Re(θ + ϵe) ≈ max
e∈E

[Re(θ) + ρ||∇Re(θ)||].

ASGDRO leads to a regularization of the gradient norm,
Re, ||∇Re(θ)||, across environments, which drives the
model to converge to common flat minima.

Refer to Appendix A.3. for proof. As demonstrated in [47],
small ||∇Re(θ)|| indicates flat minima. We also demon-
strate this property empirically in Fig. 5 and Appendix
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Figure 2. Sufficient Invariant Learning and Common Flat Minima In (a-1) and (a-2), two axes, θI
1 and θI

2, represent the invariant
directions of parameters corresponding to each invariant mechanism respectively. The red circle indicates the area bound by ρ for measuring
flatness in ASGDRO. (b-1) and (b-2) show that when Env 2 has sharp minima in the direction of θI

1, GDRO still converges, but ASGDRO
does not have any optimal point due to the sharpness of θI

1. However, in (c-1) and (c-2) when both invariant directions of Env 2 as well as
Env 1 are flat, ASGDRO has an optimal point and prefers to converge. That is, ASGDRO learns diverse invariant features sufficiently.

A.11. Finally, we argue that finding common flat minima
encourages the model to learn sufficiently diverse invariant
mechanisms. Moreover, this aligns with existing studies in
IID settings, which suggest that flatter minima improve the
generalization performance of models [13, 18, 22]. Addi-
tionally, we demonstrate in Appendix A.5. that ASGDRO
successfully eliminates the spurious feature Ze while effec-
tively learning the invariant feature.

3.5. Implementation of ASGDRO
From Foret et al. [13], maximum value of inner term in
Eq. (3) is approximated when ϵe = ρ ∇Re(θ)

∥∇Re(θ)∥ . However,
Kwon et al. [22] show that by introducing the normaliza-
tion matrix Tθ, which removes the scale symmetry present
on the loss surface, the correlation between flatness and
generalization performance is strengthened. ASGDRO also
adopts the same Tθ, and modified objective function is as
follows:

RASGDRO(θ) = max
e∈Etr

Re(θ + ϵ∗e),

where ϵ∗e = ρ
T 2
θ ∇Re(θ)

∥Tθ∇Re(θ)∥ is an adversarial perturbation
for each environment e, Tθ = diag(concat(∥k1∥1n(k1),
. . . , ∥km∥1n(km), |ω1|, . . . , |ωq|)), where km denotes a
convolution kernel, ωq represents other parameters and n(·)
indicates the number of parameters.

To address the instability in training that arises from the
optimization approach of selecting only the worst environ-
ment at each step, we adopt an alternative gradient-based
optimization algorithm inspired by GDRO [35]. We modify
ASGDRO into the form of linear interpolation across envi-
ronments and update their coefficients:

max
e∈Etr

Re(θ + ϵ∗e) = max∑
e λe=1,λe≥0

∑
e∈Etr

λeRe(θ + ϵ∗e),

where λe is the weight imposed on adversarial perturbed
loss for each environment. Finally, we update our model

parameter from the current parameter θt as follows:

θt − η∇RASGDRO(θ) = θt − η
∑
e∈Etr

λ(t)
e ∇Re(θt + ϵ∗e),

where η denotes the learning rate and λ
(t)
e denotes

the weight imposed on each loss of environment at
time step t. Refer to Algorithm 1 for the details.
In practice, for computational efficiency, in all experi-
ments except for the toy example, instead of calculating
ϵ∗e = ρ

T 2
θ ∇Re(θ)

|Tθ∇Re(θ)| for each environment, we use a com-
mon adversarial perturbation utilizing the empirical risk
RS(θ) = 1

|De||Etr|
∑

e∈Etr

∑
ne

ℓ(f(Xe; θ), Y e), i.e. ϵ∗ =

ρ
T 2
θ ∇RS(θ)

|Tθ∇RS(θ)| . As a result, the gradient ascending through ϵ∗

is performed only once regardless of the number of environ-
ments, and the loss for each environment is evaluated using
the same perturbed parameters, θ + ϵ∗.

4. Experiments
4.1. Toy Exmaple
We demonstrate through a toy example that the representa-
tive invariant learning algorithm GDRO [35] fails to learn
diverse invariant mechanisms, whereas ASGDRO success-
fully achieves SIL by encouraging the model to converge to
the common flat minima (Fig. 2). First, we assume that we
know two different directions corresponding to the differ-
ent invariant mechanism θI

1 and θI
2, which learns different

invariant features, Z I
1 and Z I

2, respectively. We define the
loss surface of each environment e following a Gaussian
function with respect to θI

1 and θI
2:

G(θ) =
1

2π
√

|Σ|
exp

(
−1

2
(θ − µ)TΣ−1(θ − µ)

)
,

where θ =

[
θI
1

θI
2

]
, µ(e) =

[
µ1

µ2

]
,Σ(e) =

[
σ11σ12

σ21σ22

]
.

4962



Figure 3. Overview of H-CMNIST. There are three features, color and shape (invariant features, Z I = {Zcolor, Zshape}) and box position
(spurious feature, ZNI = {ZBP}). The ratio of ZBP is flipped between the train and test set. The test set consists of two testbeds, one for
evaluating whether learning invariant features and the other for evaluating whether learning sufficiently diverse invariant features.

TestBed 1 TestBed 2

Spu & Inv Inv Spu & Shape Shape

ERM 97.11 ± 3.44 98.75 ± 1.19 34.64 ± 9.90 57.41 ± 2.58
ASAM 98.57 ± 1.21 98.12 ± 1.74 34.78 ± 8.41 57.07 ± 1.91
GDRO 99.95 ± 0.07 99.92 ± 0.08 57.53 ± 2.11 61.44 ± 1.03

ASGDRO 99.88 ± 0.11 99.83 ± 0.12 66.62 ± 5.61 69.17 ± 6.19

Table 1. H-CMNIST Results. TestBed 1 evaluates whether the
model learns easy invariant feature Zcolor, and TestBed 2 evaluates
the ability to learn additional invariant feature Zshape.

To make losses greater than 0, we subtracted G(θ) from its
maximum value. As a result, we define the loss surface cor-
responding to the two environments, each with a minimum
value of 0, as follows:

Re=1(θ) = max
θ

[
G(θ;µ(1),Σ(1))

]
−G(θ;µ(1),Σ(1))

Re=2(θ) = max
θ

[
G(θ;µ(2),Σ(2))

]
−G(θ;µ(2),Σ(2))

Now we create sharp or flat minima in a specific direc-
tion by adjusting the covariance matrix Σ(e). In this exam-
ple, we consider a fixed situation where both e = 1 and
e = 2 have flat minima with respect to θI

2. When Re=1(θ)
always has flat minima in the direction of θI

1, we aim to
observe how the loss Robj corresponding to each objective
function changes depending on whether θI

2 has sharp or flat
minima (a-1 and a-2 in Fig. 2). The parameters that we use
to generate the toy examples are as follows:

Env 1 (e = 1) : µ =

[
−2.0
0.0

]
, Env 2 (e = 2) : µ =

[
2.0
0.0

]
Flat : Σ =

[
1.5 0.0
0.0 2.0

]
, Sharp : Σ =

[
1.5 0.0
0.0 0.05

]
We evaluate each algorithm through the loss surface in

each direction (second and third columns of Fig. 2). When
Env 2 exhibits sharpness for θI

1 (first row of Fig. 2), it in-
dicates that learning the invariant feature corresponding to
θI
1 may result in a large generalization gap [18]. However,

GDRO does not incorporate regularization on flatness and
only considers the loss at the current parameter, allowing

convergence to a sharp solution. From Theorem 1, it implies
the large gradient norm, and this situation does not consti-
tute successful SIL. In contrast, ASGDRO, which takes into
account the loss in neighboring parameters, avoids sharp re-
gions for θI

1 (b-1 and c-1 in Fig. 2).
When Env 2 is flat for θI

1 (second row in Fig. 2), we say
that the model performs SIL if it converges into the common
flat minima between Env 1 and Env 2. However, GDRO has
the same loss at the optimal point in this situation as in the
previous case, indicating that GDRO does not specifically
regularize the model to perform SIL. On the other hand,
ASGDRO, by accounting for common flat minima, identi-
fies an optimal parameter that promotes learning of diverse
invariant mechanisms (b-2 and c-2 in Fig. 2). As a result,
by considering flatness, the model performs SIL and is ex-
pected to make robust predictions in unseen environments
by leveraging multiple invariant features.

4.2. Heterogenous ColoredMNIST

By finding the common flat minima, ASGDRO learns di-
verse invariant features. To demonstrate this, we pro-
pose Heterogeneous ColoredMNIST (H-CMNIST), a new
dataset designed to evaluate whether the model learns
diverse invariant mechanisms sufficiently (Fig. 3). H-
CMNIST evaluate whether the remaining invariant feature
is additionally learned by the algorithm, assuming that the
model has already learned one invariant feature.

H-CMNIST includes two invariant features, the color
Z I
1 = {Zcolor} and shape of digits Z I

2 = {Zshape}, and one
spurious feature, the position of the box (BP) ZNI = {ZBP}.
That is, each class has its own colors and shapes. Using BP,
we construct two environments, Top Left (Env 0) and Bot-
tom Right (Env 1). We design a scenario where spurious
correlations occur [11, 35]. Specifically, in the training set,
95% of Left Top BP belongs to class 0, and only 5% belongs
to class 1. In contrast, we collect 95% of Right Bottom BP
in class 1, and assigned only 5% to class 0.In the test sets,
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CMNIST Waterbirds CelebA CivilComments

Avg. Worst Avg. Worst Avg. Worst Avg. Worst

ERM‡ 27.8% 0.0% 97.0% 63.7% 94.9% 47.8% 92.2% 56.0%
ASAM 40.5% 34.1% 97.4% 72.4% 93.7% 46.5% 92.3% 58.9%
IRM‡ 72.1% 70.3% 87.5% 75.6% 94.0% 77.8% 88.8% 66.3%
IB-IRM‡ 72.2% 70.7% 88.5% 76.5% 93.6% 85.0% 89.1% 65.3%
V-REx‡ 71.7% 70.2% 88.0% 73.6% 92.2% 86.7% 90.2% 64.9%
CORAL‡ 71.8% 69.5% 90.3% 79.8% 93.8% 76.9% 88.7% 65.6%
GDRO‡ 72.3% 68.6% 91.8% 90.6% 92.1% 87.2% 89.9% 70.0%
DomainMix‡ 51.4% 48.0% 76.4% 53.0% 93.4% 65.6% 90.9% 63.6%
Fish‡ 46.9% 35.6% 85.6% 64.0% 93.1% 61.2% 89.8% 71.1%
LISA‡ 74.0% 73.3% 91.8% 89.2% 92.4% 89.3% 89.2% 72.6%

ASGDRO 74.8% 74.2% 92.3% 91.4% 92.1% 91.0% 90.2% 71.8%

Table 2. Subpopulation Shift. ‡ denotes the performance re-
ported from [41]. Avg. denotes average accuracy, and Worst de-
notes worst group accuracy. Refer to Appendix A.7 for details.

the composition of BP is flipped. That is, ZBP has a strong
correlation with each class in the training set, but it does not
hold in the test set. Refer to Appendix A.6 for details.

Tab. 1 shows the results of H-CMNIST. H-CMNIST as-
sumes an easily learnable invariant feature Zcolor to evalu-
ate whether the model, having already learned one invariant
feature, can learn additional invariant features Zshape. Con-
cretely, TestBed 1 serves as a preliminary step to verify that
an easily learnable invariant feature is indeed present. In
TestBed1, the performance of all algorithms is similar re-
gardless of the presence of the spurious feature ZBP, indi-
cating that all have learned at least one invariant feature.

However, in Testbed 2, without Zcolor, both ERM and
ASAM show significant performance discrepancies de-
pending on the presence of spurious feature ZBP. Compared
with the results of TestBed 1, ERM and ASAM only learn
Zcolor successfully, but they fail to capture the additional in-
variant feature, Zshape. It indicates that even when a rela-
tively easier invariant feature exists, the spurious feature in-
fluences the relatively more challenging invariant feature.
Although GDRO exhibits robustness to spurious correla-
tions compared to ERM and ASAM, it still fails to learn one
of the invariant features, Zshape. However, ASGDRO makes
robust predictions against spurious features and more suc-
cessful learning of shape features in TestBed2, compared
to other baselines. It implies that SIL is necessary for the
robust model and ASGDRO optimizes the model to learn
sufficiently diverse invariant features Z I = {Zcolor, Zshape}
considering the common flat minima across environments.

4.3. Experimental Results

In each result, boldface and underlined text denote the high-
est and second-highest accuracy for each dataset, respec-
tively. Additional experiments, including efficiency or sen-
sitivity analysis of ASGDRO can be found in the Appendix.

We conduct experiments for subpopulation shift, CM-
NIST [3], Waterbirds [35], CelebA [25], and CivilCom-
ments [4]. The goal of the subpopulation shift task is to ob-
tain the better worst group performance by learning invari-

PT–FT Camelyon17 CivilComments FMoW Amazon RxRx1
Avg. (%) Worst (%) Worst (%) 10th per. (%) Avg. (%)

×–ERM 70.3 ±6.4 56.0 ±3.6 32.3 ±1.3 53.8 ±0.8 29.9 ±0.4
×–GDRO 68.4 ±7.3 70.0 ±2.0 30.8 ±0.8 53.3 ±0.0 23.0 ±0.3
×–IRM 64.2 ±8.1 66.3 ±2.1 30.0 ±1.4 52.4 ±0.8 8.2 ±1.1

ERM–ERM 74.3 ±6.0 55.5 ±1.8 33.6 ±1.0 51.1 ±0.6 30.2 ±0.1
ERM–GDRO 76.1 ±6.5 69.5 ±0.2 33.0 ±0.5 52.0 ±0.0 30.0 ±0.1
ERM–IRM 75.7 ±7.4 68.8 ±1.0 33.5 ±1.1 52.0 ±0.0 30.1 ±0.1

Bonsai–ERM 74.0 ±5.3 63.3 ±3.5 31.9 ±0.5 48.6 ±0.6 24.2 ±0.4
Bonsai–GDRO 72.8 ±5.4 70.2 ±1.3 33.1 ±1.2 42.7 ±1.1 23.0 ±0.5
Bonsai–IRM 73.6 ±6.2 68.4 ±2.0 32.5 ±1.2 47.1 ±0.6 23.4 ±0.4

FeAT–ERM 77.8 ±2.5 68.1 ±2.3 33.1 ±0.8 52.9 ±0.6 30.7 ±0.4
FeAT–GDRO 80.4 ±3.3 71.3 ±0.5 33.6 ±1.7 52.6 ±0.6 30.0 ±0.1
FeAT–IRM 78.0 ±3.1 70.3 ±1.1 34.0 ±0.7 52.9 ±0.6 30.0 ±0.2

×–ASGDRO 81.0 ±3.8 71.8 ±0.4 35.0 ±0.3 54.5 ±0.5 32.2 ±0.2

Table 3. Wilds Benchmark. Out-of-distribution generalization
performances on wilds benchmark with rich representation. The
performances of the baseline models are the reported results from
[20] and [8]. × indicates the absence of a pre-training process on
the target dataset. Refer to Appendix A.8 for error bars.

Method PACS VLCS OH TI DN Avg

ERM† 85.5 77.5 66.5 46.1 40.9 63.3
IRM† 83.5 78.6 64.3 47.6 33.9 61.6
GDRO† 84.4 76.7 66.0 43.2 33.3 60.7
I-Mixup† 84.6 77.4 68.1 47.9 39.2 63.4
MMD† 84.7 77.5 66.4 42.2 23.4 58.8
SagNet† 86.3 77.8 68.1 48.6 40.3 64.2
ARM† 85.1 77.6 64.8 45.5 35.5 61.7
VREx† 84.9 78.3 66.4 46.4 33.6 61.9
RSC† 85.2 77.1 65.5 46.6 38.9 62.7
GSAM [48] 85.9 79.1 69.3 47.0 44.6 65.1
RDM [29] 87.2 78.4 67.3 47.5 43.4 64.8
RS-SCM [9] 85.8 77.6 68.8 47.6 42.5 64.4
LFME [6] 85.0 78.4 69.1 48.3 42.1 64.6
ASGDRO 86.7 80.0 69.2 48.8 44.9 65.9

DPLCLIP 96.6 79.0 82.7 45.4 59.1 72.6
DPLCLIP+GDRO 95.9 79.7 83.6 46.0 59.1 72.9
DPLCLIP+ASGDRO 96.8 80.7 83.7 48.9 59.8 74.0

Table 4. DomainBed. The symbol † indicates reported perfor-
mance in Gulrajani and Lopez-Paz [14]. Refer to Appendix A.9
for error bars and experimental details.

ant features. Different from H-CMNIST, the spurious cor-
relation acts as a stronger shortcut. As a result, the models
cannot learn any invariant feature easily. Tab. 2 shows the
results of subpopulation shift experiments. ASAM, which
considers flatness, fails to eliminate spurious correlations
and shows limited predictive accuracy on the worst group.
On the other hand, ASGDRO shows the best and worst
group performance for all data except CivilComments. For
CivilComments data, ASGDRO also shows comparable
performance with the best algorithms among the baselines.
Compared to GDRO, the primary distinction of ASGDRO
is its ability to find a common flat minima, which not only
enhances robustness for the worst group but also reduces
the gap between average accuracy and worst group accu-
racy. Therefore, Tab. 2 provides support for our claim that
sufficiently learning diverse invariant mechanisms leads to
robust generalization performance.
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Figure 4. Grad-CAM ASGDRO learns diverse invariant features.

One approach to training a robust model is to enrich the
representation learning of invariant features [8, 44] rather
than training by ERM. This process consists of a pre-
training (PT) stage dedicated to representation learning, fol-
lowed by a fine-tuning (FT) stage utilizing existing invariant
learning algorithms. In Tab. 3, we compare these algorithms
with ASGDRO, evaluated on the Wilds benchmark dataset,
which includes various types of distribution shifts collected
from real-world scenarios. Notably, the superior perfor-
mance of ASGDRO, even compared to invariant learning
algorithms trained with rich representations during the FT
stage, suggests that it is important not only to learn rich
representations of invariant features but also to ensure that
predictions are composed using diverse invariant features
by learning sufficiently diverse invariant mechanisms.

We also conduct DomainBed benchmark [14], which is
the most commonly used for evaluating domain generaliza-
tion performance under a fair setting. ASGDRO is a model-
agnostic method and is easily applied to various algorithms.
Thus, we apply ASGDRO with DPLCLIP [45], which per-
forms the prompt learning for domain generalization. Tab. 4
presents the performance of both the original ASGDRO and
DPLCLIP when ASGDRO is applied. ASGDRO achieves
the highest average performance compared to other algo-
rithms. Additionally, for DPLCLIP, training with ASGDRO
proves to be more effective across all datasets compared to
training with standard ERM or GDRO.

4.4. Visual Interpretation by Grad-CAM
We conduct Grad-CAM analysis to verify whether the effect
of learning SIL is being properly applied on the ground-
truth label (Fig. 4). The minority group, land birds on a
water background, is underrepresented by the spurious cor-
relation as it has only a few samples. ERM and ASAM use
several features to predict the majority group, land birds on
a land background, but fail to remove spurious correlation.
As a result, they also use the background feature. For the
minority groups, however, only a small part of the invari-
ant features is observed to be used for prediction. GDRO

Figure 5. Hessian Analysis on CelebA. ASGDRO finds the com-
mon flat minima for all groups.
successfully removes spurious correlation regardless of the
group but still uses only the part of invariant features for
prediction. On the other hand, ASGDRO focuses on vari-
ous invariant features for prediction regardless of the group;
that is, it sufficiently uses diverse invariant features of land
birds. Additionally, ASGDRO successfully excludes spuri-
ous features in their prediction. Appendix A.10. provides
additional results on Grad-CAM.

4.5. Hessian Analysis
In Fig. 5, we report the eigenvalues of the Hessian ma-
trix to measure and compare the flatness of the model [42].
A lower eigenvalue indicates a flatter minima. Compared
to GDRO, ASGDRO exhibits lower eigenvalues across all
groups. Furthermore, GDRO shows particularly sharper
minima in Group 2 and 3, which include minority groups.
In contrast, ASGDRO maintains relatively uniform eigen-
values regardless of the group. This suggests that ASGDRO
indeed finds a common flat minima, with the regularization
for such minima enabling the model to make robust predic-
tions by leveraging diverse invariant mechanisms. Refer to
Appendix A.11. for additional experimental analysis.

5. Conclusion
This study highlights the significance of SIL, which pro-
motes the learning of diverse invariant features. Unlike in-
variant learning, SIL enables models to leverage these di-
verse invariant mechanisms for prediction, ensuring robust-
ness even in environments where some invariant features
are unobserved. We also introduce ASGDRO, the first SIL
algorithm designed to identify common flat minima across
environments. Through both theoretical analysis and ex-
perimental validation, we demonstrate that ASGDRO ef-
fectively learns diverse invariant mechanisms and finds a
common flat minima, which in turn facilitates SIL. We fur-
ther validate the effectiveness of SIL by demonstrating the
generalization capabilities of ASGDRO on our newly de-
veloped synthetic SIL dataset, H-CMNIST, as well as on
various types of distribution shift benchmark datasets.
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