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Figure 1. Open-Vocabulary Relationship Understanding. We propose RelationField, the first framework to extract open-vocabulary

inter-object relationships directly from neural radiance fields. RelationField can answer a wide variety of relationship queries, such as

“composition”, “compare”, “spatial”, “affordance” and “support” relationships.

Abstract

Neural radiance fields are an emerging 3D scene rep-

resentation and recently even been extended to learn fea-

tures for scene understanding by distilling open-vocabulary

features from vision-language models. However, current

method primarily focus on object-centric representations,

supporting object segmentation or detection, while under-

standing semantic relationships between objects remains

largely unexplored. To address this gap, we propose Re-

lationField, the first method to extract inter-object relation-

ships directly from neural radiance fields. RelationField rep-

resents relationships between objects as pairs of rays within

a neural radiance field, effectively extending its formulation

to include implicit relationship queries. To teach Relation-

Field complex, open-vocabulary relationships, relationship

knowledge is distilled from multi-modal LLMs. To evaluate

RelationField, we solve open-vocabulary 3D scene graph

generation tasks and relationship-guided instance segmen-

tation, achieving state-of-the-art performance in both tasks.

See the project website at relationfield.github.io.

1. Introduction

3D scene understanding bridges the gap between the physi-

cal and the digital world, by enabling machines to perceive

environments in a way similar to humans. In robotics, 3D

scene understanding is required to navigate complex en-

vironments, interact with objects, and perform tasks au-

tonomously. In AR/VR it enables realistic and immersive

experiences, e.g., by allowing accurate placing of and inter-

acting with virtual content in the real world. Notably, many

applications require a level of understanding that goes be-

yond just localizing and segmenting a known list of objects

categories [8, 34, 37, 44] but are also able to segment novel

entities beyond the closed-set class assumption [16, 36, 48].

True holistic and adaptable scene understanding needs to

go a step further and not only reconstruct and identify indi-

vidual objects within a scene but also understand complex

inter-object relationships, functionalities, and the overall

context of the environment. This aspect of scene understand-

ing, particularly the ability to recognize and reason about

relationships between objects, is often overlooked. Yet, it is

essential to interact with the surroundings in a sophisticated,

adaptive and natural manner. Significant progress has been

made in understanding relationships in 2D images, mainly

driven by the exploration of foundation models [4, 24, 39]

and in particular by multi-modal LLMs [1, 12]. These mod-
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els are extremely powerful, although they primarily operate

on 2D representations and do not fully leverage the richness

of 3D data.

3D scenes provide more complete captures of the envi-

ronment and are able to represent a high level of complexity,

with overlapping objects and occlusions that make it diffi-

cult to consistently infer relationships with 2D models alone.

3D approaches have been shown to reduce per-frame noise

and resolve occlusions. Despite this advantage, 3D founda-

tion models have yet to emerge, as the data available in 3D

remains limited compared to 2D.

3D scene graphs on the other hand, are a promising and

compact representation for scene understanding and capture

not only scene objects but also inter-object relationships.

However, several scene graph approaches either rely on a

closed set of relationships [25, 50, 51, 53], depend on class-

agnostic instance segmentation [27], and/or require an ex-

plicit 3D representation such as point clouds.

A recent work, Open3DSG [27], distills relationship

knowledge from foundation models [9, 39] into a 3D graph

neural network, which can then predict open-vocabulary

graphs. Capturing both objects and relationships with open-

vocabulary features allows capturing a wide range of ob-

jects, functions, and relationships without prior training on

specific object or relationship classes. This flexibility is cru-

cial for handling the diversity and complexity of real-world

scenes. However, Open3DSG still relies on given class-

agnostic instance segmentation [27] and is bound by the

quality of the explicit 3D mesh representation of the un-

derlying dataset. These approaches furthermore require the

availability of depth sensors. In contrast to 3D scene graphs,

radiance fields are 3D representations that do not require

3D sensor data, but instead represent 3D scenes solely based

on a set of posed 2D images [21, 33]. While they were first

introduced for novel view synthesis and 3D reconstruction,

they have since then been extended in several works to also

capture semantic information [13, 22, 38, 45].

LERF [22], as well as a few follow-up works [13, 23, 38]

present alternative approaches to distill features from 2D

foundation models, such as CLIP [39], DINO [4] or SAM

[24], into 3D by means of radiance fields. Yet, these ap-

proaches predominantly focus on object-centric semantic

features, limiting their application in high-level scene rea-

soning tasks.

To enable holistic and high-level scene reasoning

tasks based on neural radiance fields, we propose Rela-

tionField, a rich radiance field representation that learns

open-vocabulary features for objects and their relationships.

This allows us to reason about complex scenes and object

interactions such as compositional, spatial, support, or

affordances, see Fig. 1. In summary, this work has the

following contributions:

• We present the first method for open-vocabulary scene

segmentation enabling interactive and textual relationship

queries by extending the semantic neural radiance for-

mulation with inter-object relationships distilled from a

foundation model into a dense and multi-view consistent

3D representation.

• This novel representation not only facilitates relationship-

based queries but also allows us to obtain state-of-the-art

3D scene graphs – making it the first time scene graphs

have been inferred from neural radiance fields.

• Furthermore, we introduce a new task – relationship-

guided instance segmentation – on ScanNet++ [59]. This

task involves segmenting an instance based on an object-

relationship search query, e.g., “picture standing on the

shelf”, providing a benchmarking for future research in

this direction.

2. Related Work

Open-Vocabulary 3D Scene Understanding. Recent 3D

scene understanding approaches for detection, semantic

segmentation, or instance segmentation have moved from

closed-set categories [8, 34, 37, 44] to open-vocabulary, re-

moving the limitation to a pre-defined vocabulary. To do so,

2D features from vision-language models (VLMs) are lifted

into 3D by either using feature distillation and feature lift-

ing. The latter extract vision-language features directly on

2D images and then project these to 3D by utilizing depth or

by separately training 2D and 3D feature encoders that are

combined at inference time [10, 16, 18, 35, 48]. Feature dis-

tillation on the other hand, trains a 3D model using semantic

features extracted from a VLM from posed 2D images [13,

27, 36] and does not assume the availability of 2D frames

at test time. Both feature lifting and distillation methods re-

quire 2D and 3D data either for training or for inference.

While open-vocabulary 3D scene understanding ap-

proaches have shown impressive progress in semantic object

segmentation, they do not holistically capture the scene lack-

ing knowledge about high-level compositions and/or inter-

object relationships.

Relationships in 3D Scenes. Understanding the full 3D

scene involves extracting compositional knowledge and re-

lationships between objects and has been shown to improve

object-centric predictions [28, 53]. 3D scene graphs [3, 50]

have emerged as the predominant representation for mod-

eling these relationships with applications in several dif-

ferent tasks such as place recognition [50], registration [43],

change detection [30, 50], task planning [2, 29, 40], and nav-

igation [52]. By representing objects as nodes into graphs

and explicitly encoding their connections (spatial, semantic,

etc.) as edges, 3D scene graphs offer an efficient representa-

tion of the environment. [3] proposes to represent buildings,

rooms, objects, and cameras as 3D scene graphs and later

works extended this idea by learning hierarchical 3D scene

graphs directly from sensor data [19, 41, 42]. On the other
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Figure 2. RelationField Training. Left: RelationField learns a 3D feature field (a) that can be queried with a relationship query location

(b) which changes the relationship field of the 3D volume depending on what position is selected. The relationship feature is sampled and

rendered along a ray according to NeRF’s rendering weights. The language loss maximizes the cosine similarity between the extracted sparse

features from the 2D views and the rendered 3D relationship features. Right: We estimate 2D relationship proposals from a multi-model

LLM prompted with SoM (e) for each training view and encode extracted textual relationship description into the image plane (d). A pair

pixel sampler samples subject and object pixels (c) for which the relationship feature is distilled into the 3D volume.

hand, [50] introduced semantic 3D scene graphs, focusing

more on the semantic components of a scene including inter-

object relationships. Subsequent works have advanced this

research area by refining semantic 3D scene graphs from

point clouds using scene priors [61], pre-training [25, 26]

and improved message passing in graphs [53, 54].

While all these works have a close-set assumption,

only a few very recent works have investigated the use of

VLMs and large language models (LLMs) to obtain open-

vocabulary scene graphs which capture a more flexible rep-

resentation of the environment [5, 6, 15, 27, 32]. However,

these approaches often require depth data and a complete

and explicit 3D representation of the scene e.g. in the form

of a 3D mesh or point cloud [25, 27, 50] which often is not

available or of poor quality.

Radiance and Feature Fields. Radiance Fields [21, 33]

were first introduced for novel view synthesis and have

the benefit that they do not require explicit 3D supervi-

sion. Recently, radiance fields have been adapted for sev-

eral different 3D scene understanding tasks such as segmen-

tation [45, 62] or detection [17, 55]. Notably, some meth-

ods propose to extend radiance fields to predict features

obtained from 2D foundation models in 3D. For instance,

LERF [22] and OpenNeRF [13] learn vision-language fea-

tures using a separate MLP-head in the NeRF model to pro-

duce CLIP [39] embeddings for open-vocabulary 3D seg-

mentation. Similarly, GARField [23] learns instance embed-

dings using a contrastive formulation provided by SAM [24]

using a separate MLP-head in their NeRF. Among others,

LangSplat [38] and ClickGaussians [7] extend these ideas to

Gaussian Splatting for faster training and rendering. While

these works show impressive results, they mainly investi-

gate object-centric semantics and also do not explore the

composition of a scene or object relationships.

Inspired by these works, our method learns open-vocabu-

lary vision-language features directly from multiple posed

2D views. Therefore, we similarly do not require any explicit

3D scene representation in the form of depth or point cloud

data. Instead, our approach aims to obtain open-vocabulary

scene understanding beyond objects by also encoding object

relationships, creating a consistent and rich representation.

This way, our approach – as the first of its kind – supports

interactive relationship queries and allows to extract 3D se-

mantic scene graphs directly from the radiance field.

3. Method

Given a set of posed RGB images, our goal is to build a

queryable 3D representation of the scene that supports un-

derstanding object instances using open-vocabulary object

and relationship descriptions. To achieve this, we introduce

a novel approach, RelationField, as illustrated in Fig. 2. Our

proposed approach is independent of the underlying radi-

ance field, and can be adapted to NeRFs [33] as well as

Gaussian Splatting [21], in the following section we demon-

strate how our method incorporates implicit open-set rela-

tionship feature prediction into NeRFs1 [33], enabling the

querying of arbitrary object and relationship concepts within

a continuous volumetric 3D scene representation. To en-

hance NeRF with object-centric semantics, we distill CLIP-

feature [39] prediction and SAM [24] supervision for in-

stance grouping of each ray. Our method is the first to in-

troduce an implicit open-set relationship feature prediction

head as explained in Sec. 3.1. It is supervised by the em-

bedded features of a multi-modal LLM using set-of-mark

prompting (SoM) [57] (see Sec. 3.2). The learned Relation-

Field then can be queried to retrieve relationships such as

“the light switch turns on the lamp” by defining the predi-

cate “turns on” as a pair of input rays within the feature field

for all rays that hit the light switch and lamp (see Sec. 3.3).

1An adaption to Gaussian Splatting is detailed in the supplementary

material.
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3.1. RelationField

Radiance Field. A radiance field describes a function that

models the color c ∈ [0, 1]3 and density σ ∈ [0,∞) for a

given 3D point x ∈ R
3 and ray direction d ∈ S

2. Mildenhall

et al. [33] first proposed to model this implicit function as a

neural radiance field (NeRF) that implements a multilayer

perceptron f with the training objective of learning the pa-

rameters θ with supervision from multi-images of the scene

  f_\theta (\bx , \bd ) \mapsto (\bc , \sigma ).     (1)

Object-level Semantics in Radiance Fields. To learn

object-level open-vocabulary instances within the radiance

field, we extend NeRF with two additional output embed-

ding heads: one predicts open-vocabulary features s in the

CLIP embedding space, inspired by [13], and the other pre-

dicts a grouping embedding i that co-locates rays of the same

instance in the same region of the embedding space for easy

instance clustering, similar to [23]. The open-vocabulary

feature is therefore defined as a tuple o = (s, i) of semantic

and instance features. These object-level open-vocabulary

features allow us to query object entities but do not capture

relationships. Therefore, it is necessary to model relation-

ships explicitly.

Relationship Semantics in Radiance Fields. Unlike radi-

ance fields, which only predict color and density for a point

x, relationship modeling requires an additional point z to

specify the relationship between x and z. Therefore, to cap-

ture relationships within the radiance field, we extend the in-

put by an additional implicit query location z ∈ R
3 (Fig. 2b).

With this query location, our approach implicitly models the

relationship feature r between the ray (x,d) and the location

z. The relationship feature r is located within the language

embedding space and can be queried for arbitrary relation-

ships based on the cosine similarity.

The complete function gθ that models the color, density,

open-vocabulary instance feature as well as open-vocabulary

relationships of the objects in the 3D scene is given by

  g_\theta (\bx , \bd , \bz ) \mapsto (\bc , \sigma , \bo , \br ).       (2)

3.2. Relationship Supervision

While vision-language models such as CLIP [39] excel at

modeling individual objects and concepts, their understand-

ing of relationships remains limited [60]. To address this,

we distill relationship knowledge from multi-modal LLMs,

which better represent complex relationships. However, a

challenge arises because multi-modal LLMs produce tex-

tual descriptions, while models like CLIP generate pixel- or

patch-level features that can be queried using various text

encodings. Our goal is to transfer relationship features into

the radiance field representation, enabling open-vocabulary

querying similar to object-centric approaches with CLIP

[13, 22]. The following paragraphs outline our approach

for extracting such high-dimensional, pixel-aligned features

from multi-modal LLMs, effectively bridging the gap be-

tween textual understanding and visual feature extraction.

Set-of-Mark (SoM). To extract dense pixel-aligned visual

relationship features, we utilize SoM prompting [58]. SoM

is a visual prompting approach that enhances the visual

grounding abilities of multi-modal LLMs by overlaying

marks, masks, or bounding boxes to help the model answer

fine-grained visual questions. By using SoM over a direct

approach, it has been shown, that it improves the spatial rea-

soning of LLMs, such as GPT-4 [58].

Feature extraction. To generate sparse high-dimensional

pixel-aligned visual relationship features, we use SAM [24]

to extractm segmentation masks each corresponding to a de-

tected object in the image from a training view. Using these

masks, we annotate the image with alphanumeric marks

for each segmented object following the SoM prompting

technique. Next, we prompt a multi-modal LLM to identify

and extract inter-object relationships for closely positioned

marked object pairs (Fig. 2e)2. The output text t includes a

textual description of the relationships between object pairs

(i, j) using the identifiers from the SoM annotations. Each

textual relationship description tij is then encoded to a high-

dimensional feature representation ϕtij using an encoder-

only language model such as [20], resulting in d dimensional

features for each relationship (Fig. 2d). These features are

then projected onto the image plane using the SAM segmen-

tation masks and the SoM marks as a reference to generate

a high-dimensional feature representation of the extracted

relationships that are aligned with the pixel locations of the

objects in the image.

Training. During training we randomly sample ray and

query origins uniformly throughout the input views in a

pairwise manner using a pair-pixel sampler (Fig. 2c). Us-

ing the density prediction of the radiance field, we estimate

the query positions along the ray of the query origin. Ray

and query samples are concatenated and fed together into

an MLP-head that predicts the relationship feature along the

sample ray. The feature is rendered onto the image plane

using the radiance field’s rendering weights. We minimize a

loss

  \cL = 1 - \frac {\br }{||\br ||_2} \cdot \frac {\hat {\br }}{||\hat {\br }||_2}, 








 (3)

that maximizes the cosine similarity between the rendered

relationship feature r and the ground-truth relationship fea-

ture r̂. Similarly, the rendered object-centric features, such

as color and open-vocabulary semantics, as well as instance

2A detailed analysis of our prompting technique is provided in the sup-

plementary material.
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features for each ray, are supervised by their respective ray

origin features.

3.3. Querying RelationField

To effectively explore and understand the relationships be-

tween objects in a scene, it is natural to first identify and

query the objects themselves before investigating their inter-

object relationships. In this context, RelationField supports

both object querying and subsequent relationship querying,

providing a comprehensive framework for scene understand-

ing. The querying process of RelationField consists of two

steps. First, selecting a query location, which involves de-

termining for which object in the scene to investigate rela-

tionships. This location can be specified directly by the user

or chosen based on detected object instances. The second

step requires to query a textual relationship for the selected

object. Once a query location is chosen, users can spec-

ify a particular relationship they wish to investigate, such

as “standing on” or “similar to” using a text query. Alter-

natively, a set of possible relationships for exploration can

be provided, which is particularly useful for an open-ended

investigation of the scene.

To evaluate the response of a queried relationship, we as-

sign a score to each ray in the radiance field by calculating

the cosine similarity between the language encoding of the

query ϕq , and the relationship embedding, r. However, since

it is difficult to interpret the cosine similarity directly with-

out context, we follow the approach introduced by [22] and

output the pairwise softmax with regard to canonical phrase

embeddings ϕcanon such as “and”, “next to” and “none”.

The relationship response is then

  \rho = \min _i\frac {\exp (\phi _q \cdot \br )}{\exp (\phi ^i_{canon}\cdot \br ) + \exp (\phi _q \cdot \br )}. 


 


     

 (4)

Intuitively, this softmax probability represents how much the

model favors a certain relationship query over no relation-

ship.

3.4. Implementation Details

RelationField is built in Nerfstudio [49] on top of the Ner-

facto model for color and density estimation of a given ray

from posed training images with known intrinsic and op-

tionally depth supervision. We define separate heads to es-

timate the open-vocabulary semantic object, instance, and

relationship feature fields. The open-vocabulary segmenta-

tion head outputs 768-dimensional features in CLIP [39] /

OpenSeg [14] embedding space for a given location vec-

tor without view-direction. Similarly, the instance head out-

puts a 256-dimensional grouping feature in the instance em-

bedding space for a given location vector. Our relationship

field encodes a pair of location vectors for the ray and query

locations by concatenating them and outputs a language-

aligned relationship feature of 512 dimensions in the jina-

embeddings-v3 [47] embedding space. For relationship fea-

ture supervision, we use GPT-4o [1] to extract relationship

features from the training image together with SoM [57]

using numeric marks and semi-transparent masks. The lan-

guage outputs are encoded using jina-embeddings-v3 [47].

4. Experiments

In the following, we present both qualitative and quantita-

tive results that highlight the capabilities of our method. To

highlight the performance of our method in an in-the-wild

setting, we provide a qualitative analysis of various relation-

ship queries in different indoor environments in Sec. 4.1. To

quantify RelationField performance, we leverage the task of

3D scene graph prediction in Sec. 4.2. Our approach outper-

forms several competitive baselines and establishes a new

state-of-the-art on the 3DSSG benchmark. We then perform

comprehensive ablation studies to demonstrate the impor-

tance of 3D consistency and knowledge distillation. Specif-

ically, we compare our method against various 2D multi-

modal LLMs. Further ablation studies justify our choice of

relationship encoders by comparing different multi-modal

LLMs for this purpose. Furthermore, we demonstrate the

capabilities of our model in Sec. 4.3 by reporting its per-

formance on a new task – relationship-guided 3D instance

segmentation – which leverages natural language prompts

e.g., “picture standing on the shelf” for 3D segmentation.

Notably, our method outperforms all recent open-vocabulary

feature fields, demonstrating its ability to understand object

relationships accurately.

4.1. Relationship Segmentation

Fig. 3, shows our method’s ability to segment relationships.

We visualize the model’s response for a given textual rela-

tionship prompt together with the selected target location.

Results are reported on 4 different scenes taken from three

datasets: LERF [22], Scannet++ [59], and Replica [46]. The

scenes consist of several complex object interactions such

as compositional relationships like “the freezer being part

of the refrigerator”, support relationships such as “the pil-

low lying on the couch”, comparative or similarity relation-

ships like “one ottoman being the same as another ottoman”,

or even affordances such as “the light switch turns on the

lamp”. The colormap which shows the top 50% confidence

for each query respectively, shows that our model is able to

segment these complex relationships.

4.2. 3D Scene Graph Prediction

Our method’s ability to estimate both open-vocabulary re-

lationships as well as object instances enables the genera-

tion of 3D scene graphs. The following section details the

extraction process of these graphs from our radiance field

representation and presents quantitative comparisons against

state-of-the-art open-vocabulary 3D scene graph prediction
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Figure 3. Results with RelationField in 4 in-the-wild scenes. Each image shows a rendering from RelationField, along with the relationship

response for each query relationship. The relevancy score describes the answer of the model to the question: What is standing on/attached

to/similar to etc.? For demonstration purposes, we highlight the click as well as the outline of the clicked object, which is not needed when

querying the model. Our model is able to understand complex relationships, such as the functionality of light switches or uncommon support

structures, such as “knives hanging on a magnetic mount”.

models. Our proposed approach is not only able to predict

open-vocabulary relationships but also open-vocabulary ob-

ject instances. Combining both predictions enables the in-

ference of open-vocabulary 3D scene graphs.

3D Scene Graph Construction. To extract explicit 3D

scene graphs from our implicit representation requires an

automated querying process. For a fair comparison with

point cloud-based methods, we query the radiance field di-

rectly on the provided 3D point cloud. This ensures align-

ment between the extracted graph and the provided point

cloud. Please note that while our method is trained solely

on RGB data, the 3D point cloud is utilized exclusively for

evaluation.

To do so, for each 3D point p in the point cloud P , we ex-

tract semantic and instance features by querying the radiance

field at the given location. Since this process is viewpoint-

independent, it does not require a ray direction d. We then

identify instances by clustering the instance embeddings

using DBSCAN [11]. For each instance i ∈ I, the open-

vocabulary object embedding Si is obtained by aggregating

the respective semantic features.

To extract relationships, each instance i, comprising of

points Pi, serves as a query for the relationship field, which

predicts relationship embeddings R for the remaining point

cloud. The relationship embedding Rij is then obtained for

each pair (i, j) by aggregating the relationship embeddings

Ri for all other instances j ∈ I, j ̸= i.

Since the scene graph benchmark evaluates on a closed-

set of object and relationship classes, we query with pre-

defined benchmark labels. Object and relationship classes

are encoded with CLIP [39] and Jina [47] respectively. We

then compute the pair-wise cosine similarity between the
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Object Predicate Relationship

Method R@5 R@10 R@3 R@5 R@50 R@100

GPT-4 [1] (2D+depth) 0.34 0.42 0.55 0.58 0.52 0.54

Llama 3.2 [12] (2D+depth) 0.40 0.52 0.46 0.48 0.45 0.51

Open3DSG [27] 0.56 0.61 0.58 0.65 0.55 0.56

ConceptGraphs [15] 0.37 0.46 0.74 0.79 0.69 0.71

RelationField 0.69 0.80 0.76 0.82 0.73 0.74

Table 1. 3D Scene Graph Prediction on 3DSSG. RelationField

outperforms existing open-vocabulary 3D scene graph approaches

as well as 2D-only frontier models. RelationField can lift different

frontier models into 3D with similarly strong performance.

ground truth label encodings with the predicted embeddings.

To evaluate the predictions, we use the top-k recall met-

ric, selecting the top-k highest-scoring classes as introduced

in [31]. For relationship prediction, we follow [56]; ranking

our relationship predictions by multiplying the object and

relationship scores.

Implementation details on the 3D scene graph extraction

can be found in the supplementary.

Data. In the following, we report quantitative 3D scene

graph evaluation results on the RIO10 subset of the 3DSSG

dataset [50]. The 3DSSG dataset consists of semantic scene

graphs for 3D point clouds and posed RGB-D frames ob-

tained from a Google Tango device. It contains a closed vo-

cabulary with 160 object classes and 27 relationship types.

Baselines. We compare our approach against Concept-

Graphs [15], which also uses GPT-4, but in combination

with a SLAM pipeline that predicts image captions. Once,

the scene is reconstructed, GPT-4 is used to provide scene-

consistent object and relationship caption. Additionally, we

compare against Open3DSG [27], which uses a combina-

tion of CLIP [39], and InstructBLIP [9] distilled into a 3D

graph neural network. Furthermore, we propose additional

2D-based baselines for GPT-4 [1] and Llama 3.2 [12], which

utilize recorded depth data to lift their 2D predictions to 3D.

Results. A quantitative 3D scene graph comparisons is re-

ported in Tab. 1. We query the 160 object and 27 relationship

classes and obtain the embedding similarity of the language

feature with the feature field and treat the extracted similarity

as a label confidence. RelationField demonstrates state-of-

the-art results compared to other recent open-vocabulary 3D

scene graph approaches and compared to ConceptGraphs

[15]. Our method demonstrates improved performance

across all tasks: object, predicate as well as relationship

prediction. Furthermore, 2D methods exhibit inferior per-

formance compared to the 3D approaches, potentially due

to occlusions and view-dependent challenges. Please note,

our approach, compared to closed-set segmentation methods

does not require any semantic labels for training and can be

deployed on any dataset that provides posed RGB frames.

Fig. 4 show a subset of extracted relationships with sub-

ject, predicate, and object labels, respectively, on a scene

Figure 4. 3D Scene Graph Prediction. Our open-vocabulary ap-

proach is able to predict complete 3D scene graph edges containing

a subject-predicate-object relationship.

from the 3DSSG dataset. For clarity, we omit the complete

graph but show the most interesting relationships. More 3D

scene graph results can be found in the supplementary.

Ablation – Advantages of 3D relationship modeling over

2D inference. This paper demonstrates a process to distill

knowledge from multi-modal LLMs such as GPT-4 into a

3D consistent representation. In Tab. 1 and Fig. 5, we an-

alyze the benefit of a 3D representation over a 2D-only

approach which directly utilizes our knowledge provider

GPT-4. It can be seen that the 2D approach will always suf-

fer from view-dependent effects. Fig. 5 shows how GPT-4

is missing the lying on relationship because some objects

are only partially visible in the current frame. Meanwhile,

when rendering the 3D prediction from RelationField, our

model is able to predict the correct relationships since it re-

lies on the underlying 3D representation. The quantitative

results confirm this observation, see Tab. 1 where Relation-

Field clearly outperforms the 2D-only GPT-4 model. This

shows that our model generalizes beyond simple view-level

supervision and, indeed, learns a consistent 3D representa-

tion, which improves over simple aggregated 2D inference.

Ablation – Impact of multi-modal LLM choice on re-

lationship understanding. While we utilize GPT-4 as our

backbone model for extracting relationships, our approach

is agnostic to the backbone model and can accommodate

any LLM capable of reasoning about object relationships.

In Fig. 6, we compare our approach which is using the latest

version of GPT-4o against the popular open-source alterna-

tive Llama 3.2 [12] (90B). Llama 3.2, which is considerably

smaller than GPT-4o, has only a minor recall drop for rela-

tionship prediction. This shows that our model can be trained

with any sufficiently powerful multi-modal LLM.

4.3. Relationship-guided 3D Instance Segmentation

To highlight the advantages of understanding relation-

ships, we propose a new evaluation task for quantitative

relationship-guided 3D instance segmentation. In this task,
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Figure 5. 3D Consistency Ablation. Left: Extracted SoM marks

per image with query. Center: Existing relationship in GPT-4

caption. Right: Relationship response from RelationField rendered

into image space. While GPT-4 struggles with partially visible ob-

jects, RelationField produces more robust results, independent of

the view, because our volumetric rendering incorporates informa-

tion from multiple views and models the underlying 3D relation-

ship representation.
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Figure 6. Language Model Ablation. We compare GPT-4 with

Llama 3.2 as the relationship extractor of RelationField for 3D

scene graph prediction.

we want to highlight the benefit of understanding relation-

ships from open-vocabulary textual descriptions for localiz-

ing objects of interest.

Data. We label a small benchmark on Scannet++ [59] of

language-based relationship queries across 8 scenes with

instance annotations for ~30 relationship queries spanning
~40 unique object types and ~10 semantic predicates. More

details can be found in the supplementary.

Baselines. For a fair comparison, we compare Relation-

Field against three state-of-the-art feature field methods for

open-vocabulary object segmentation, LERF [22], Open-

NeRF [13], and LangSplat [38] which all rely on posed RGB

for training and inference. All approaches are able to process

open-vocabulary queries in natural language and localize

them in the 3D scene by associating the CLIP [39] embed-

ding of the query with the learned features in the NeRF.

The experiments show that our approach is the only capable

method to reliably understand complex prompts such as “the

picture standing on the shelf” explicitly.

Localization. To localize target queries with RelationField,

we split the language queries into nouns and verbs. First,

the nouns are localized using the object field by computing

the cosine-similarity to the nouns in the language query.

Then, we refine the localization by combining the object

prediction with the relationship embedding by rejecting all

candidate predictions that do not have a relationship feature

Method IoU Acc

LERF [22] 0.25 0.50

OpenNeRF [13] 0.45 0.83

LangSplat [38] 0.49 0.87

RelationField 0.53 0.96

Table 2. Open-Vocabulary relationship-guided Instance Seg-

mentation. Comparison of open-vocabulary radiance field-based

methods on instance segmentation performance for challenging re-

lationship queries.

aligned with the verb from the query. For LERF, OpenNeRF

and LangSplat, the full query is processed directly, as these

models do not distinguish between verbs and nouns in their

query parsing.

Results. In Tab. 2, we report the segmentation accuracy

and IoU for the set of target queries. The performance of

LERF, OpenNeRF and LangSplat degrades in this special-

ized setting where all queries contain complex relationships.

We observe most failure cases for duplicate objects where

the bag-of-words representation of CLIP cannot differenti-

ate these objects by their relationship. Meanwhile, Relation-

Field clearly outperforms LangSplat, OpenNeRF and LERF

since it is able to model the relationship feature directly.

5. Limitations

The experiments conducted in this paper demonstrate the

potential and advantages of learning 3D relationships in

radiance fields. However certain limitations remain. For

instance, the relationship knowledge embedded in Rela-

tionField is highly dependent on the multi-modal LLM

prompting and its output. Furthermore, while posed RGB

recordings are easier to acquire than point clouds, Relation-

Field requires known calibrated camera intrinsics and high-

quality multi-view captures, which are not always available

or easy to capture. In general, the quality of RelationField is

bounded by the quality of the radiance field reconstruction.

6. Conclusions

In this paper, we present RelationField, the first 3D scene

representation based on radiance fields that allow for open-

vocabulary object and relationship queries. By distilling

knowledge from 2D multi-modal LLMs into radiance fields,

we are able to not only extract relationship information but

also to obtain state-of-the-art open-vocabulary 3D scene

graphs. We demonstrate that RelationField effectively learns

a consistent 3D representation that surpasses the perfor-

mance of simple aggregated 2D inference. Furthermore, we

introduce a new task of relationship-guided 3D instance seg-

mentation, to highlight the importance of understanding re-

lationships for localizing objects of interest. We hope this

work will encourage future 3D scene understanding tech-

niques to not only focus on object-centric features but ex-

plicitly incorporate the relations between them.
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