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a) Qualitative comparisons with 3 training views: the vanilla 3D/4DGS v.s. ours. b) Comparisons with SOTA methods on the LLFF dataset.

Figure 1. Our proposed Generative Sparse-view Gaussian Splatting (GS-GS) achieves high-fidelity quality with only three training
views. 1) GS-GS is a general pipeline for static and dynamic scene reconstruction with sparse camera views (left: vanilla GS model, right:
ours). 2) Quantitative comparisons with other state-of-the-art methods on the LLFF [22] dataset.

Abstract
Novel view synthesis from limited observations remains a

significant challenge due to the lack of information in under-
sampled regions, often resulting in noticeable artifacts. We
introduce Generative Sparse-view Gaussian Splatting (GS-
GS), a general pipeline designed to enhance the rendering
quality of 3D/4D Gaussian Splatting (GS) when training
views are sparse. Our method generates unseen views us-
ing generative models, specifically leveraging pre-trained
image diffusion models to iteratively refine view consistency
and hallucinate additional images at pseudo views. This
approach improves 3D/4D scene reconstruction by explic-
itly enforcing semantic correspondences during the genera-
tion of unseen views, thereby enhancing geometric consis-
tency—unlike purely generative methods that often fail to
maintain view consistency. Extensive evaluations on various
3D/4D datasets—including Blender, LLFF, Mip-NeRF360,
and Neural 3D Video—demonstrate that our GS-GS outper-
forms existing state-of-the-art methods in rendering quality
without sacrificing efficiency.

1. Introduction
Gaussian splatting [15], known for its efficiency in repre-
senting 3D scenes using Gaussian primitives, has achieved
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impressive results in generating high-quality renderings from
dense input views. However, when input views are sparse,
this approach struggles to maintain scene fidelity. The lack
of sufficient view constraints leads to severe ambiguities in
reconstructing scene geometry and appearance, causing de-
graded performance with visible artifacts, such as incorrect
depth estimation, floating structures, and inconsistent colors.

This problem is fundamentally ill-posed due to the under-
constrained nature of sparse-view scenarios. Without enough
observations, it becomes exceedingly difficult to accurately
infer the 3D structure and appearance of a scene. As a result,
existing methods either rely heavily on the large multi-view
training datasets [5–7, 36, 41, 43, 48] or introduce regular-
ization strategies [8, 18, 27, 51] that are often insufficient to
address the inherent limitations posed by sparse views. The
challenge is exacerbated in textureless or color-inconsistent
areas [15, 23], where traditional reconstruction methods fail
to establish reliable correspondences between views.

Our intuition is to leverage generative models to compen-
sate for the missing information in under-sampled regions.
Specifically, we propose GS-GS, a pipeline designed to
enhance the quality of 3D/4D Gaussian splatting reconstruc-
tions from sparse inputs.

At the core of our approach is the integration of pre-
trained image diffusion models, which are used to generate
unseen views and iteratively refine the view consistency of
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the reconstructed scene. Unlike conventional generative so-
lutions that often struggle with maintaining geometric consis-
tency, our method incorporates explicit geometric constraints
to guide the generation process. By enforcing semantic cor-
respondences when generating new views, we ensure that the
synthesized content aligns well with the underlying scene
structure, preserving both geometric and photometric accu-
racy.

GS-GS introduces three key innovations: First, we pro-
pose a joint optimization approach for both the pre-trained
diffusion model and the Gaussian Splatting model. The train-
ing datasets for both models are iteratively updated, with the
images generated by the diffusion model at novel views im-
proving the quality of Gaussian Splatting, and the rendered
images from Gaussian Splatting enhancing the diffusion
model to generate more scene-specific outputs. Second, we
introduce a geometry-aware diffusion fine-tuning strategy to
ensure geometry consistency across camera views, which is
essential for producing consistent and realistic reconstruc-
tions by aligning the generative model’s outputs with the
true scene structure. Finally, we incorporate a depth regular-
ization term when optimizing the Gaussian Splatting model,
enabling more detailed and accurate geometry information.

To evaluate the effectiveness of our approach, we con-
ducted extensive experiments on a variety of benchmarks,
including the Blender, LLFF, Mip-NeRF360, and Neural
3D Video datasets. Our results demonstrate that GS-GS
outperforms state-of-the-art methods in terms of both visual
quality and reconstruction accuracy. This performance is
achieved without sacrificing efficiency, as our method retains
the speed and scalability benefits of Gaussian splatting.

In summary, our contributions are as follows:
1. We introduce GS-GS, a novel pipeline that significantly

improves 3D/4D Gaussian splatting reconstructions from
sparse input views by leveraging pre-trained diffusion
models for view generation.

2. We enforce geometric consistency through semantic cor-
respondences, ensuring that generated views align accu-
rately with the scene’s structure, which addresses com-
mon issues of view inconsistency in generative methods.

3. We demonstrate that GS-GS achieves state-of-the-art
performance across multiple datasets, producing high-
quality novel view synthesis with minimal input views
and achieving results comparable to models trained with
dense input data.

2. Related Works
Novel view synthesis. Recent advancements in neural
rendering, such as Neural Radiance Fields (NeRFs)[23],
have significantly improved novel view synthesis. Many
studies[1–3, 25] have focused on enhancing the quality
and efficiency of differentiable volume rendering. More
recently, 3D Gaussian Splatting (3DGS)[15] has enabled

real-time, high-fidelity view synthesis for various scenes,
including objects and unbounded environments. Extensions
of 3DGS [9, 17, 20, 35, 42, 46, 49] have been developed
for dynamic scenes. Despite these advances, reconstruct-
ing scenes from sparse camera views remains challenging,
and creating a general pipeline for 3DGS/4DGS methods in
sparse-view settings is still an open area of research.

Sparse-view novel view synthesis. Few-shot novel view
synthesis aims to generate novel views from a sparse set of
input views. Various methods [18, 27, 39, 44, 51] address
this challenge by adding regularization to NeRF [23] and
3DGS [15] to enhance geometry under sparse inputs. For ex-
ample, the depth regularization [8, 18, 26] is one of the most
widely used techniques. In addition, feed-forward models [5–
7, 36, 41, 43, 48] have been developed for sparse-view recon-
struction, often trained on large multi-view datasets [21, 50].
Despite promising results, these models often struggle when
input images largly differ from the training data, leading to
reduced performance.

Lifting 2D diffusion models for 3D/4D generation.
Leveraging 2D diffusion priors for generating 3D/4D con-
tent [28, 34, 37, 47] has seen significant advancements with
pre-trained text-to-image/video diffusion models [4, 31]. For
instance, DreamFusion [28] uses Score Distillation Sam-
pling (SDS) to generate 3D objects from text prompts. Later
methods [10, 11, 40, 45] enhance temporal and multi-view
modeling by adding control signals to diffusion models. Al-
though these approaches achieve high-quality results, they
are designed for content generation and lack precision for
accurate scene reconstruction. In contrast, our method fo-
cuses on improving 3D/4D reconstruction from sparse views,
offering greater generalizability and reliability.

3. Preliminary
3.1. Gaussian Splatting
3D Gaussian Splatting [15] (3DGS) optimizes a set of 3D
Gaussians through differentiable rasterization to represent a
static 3D scene using images captured from multiple camera
views with known extrinsic parameters. The process starts
with 3D point clouds reconstructed through Structure-from-
Motion (SfM). Each Gaussian primitive G(x) is described
by a position µi, a scaling factor s, and a rotation quater-
nion q. The basic function of the i-th Gaussian primitive is
defined as:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ), (1)

where x is a 3D point location within the 3D scene. Σ is
formulated using a scaling matrix S and rotation matrix R:

Σ = RSSTRT . (2)
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Figure 2. The pipeline of our method. Our method jointly optimizes the vanilla 3D/4D Gaussian Splatting model and the LoRA modules
inserted to the pre-trained diffusion model by iteratively generating the pseudo-view images. 1) an image is rendered from an arbitrary
pseudo viewpoint, 2) the depth map of the image is estimated by a depth estimation model, 3) depth-guided hallucination image at the
pseudo view is generated by the pre-trained diffusion model and the depth adpater, 4) the hallucinated images are set as additional training
dataset for training 3D/4DGS model and the parameters of inserted LoRA module of diffusion model are optimized based on the images at
the training and pseudo views. For generating images with geometry consistency across various camera views, we constrain the diffusion
features to be the same by warping images with known camera extrinsics. Specifically, an image rendered at a pseudo camera view is firstly
warped to a training camera view with known camera poses {R, T}. The warped image and the ground-truth image at the training view are
fed into the pseudo view hallucination pipeline to obtain the their corresponding diffusion feature ftrain and f ′

train. The parameters of LoRA
module are optimized with the additional geometry-aware feature loss.

To render an image from the given view, 3D Gaussians are
first projected to 2D, and the rendered pixel value C is
formulated as:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αi), (3)

where ci and αi denote the color and density of the point,
and N is the number of sorted Gaussians contributing to the
rendering process.

To represent 4D dynamic scenes, various strategies have
been proposed to model the attributes of each Gaussian over
time [20, 35, 42, 49]. In this work, we use vanilla 3DGS [15]
for static scenes and SpacetimeGS [20], a state-of-the-art
multi-view 4DGS method, as the base models for dynamic
scenes.

3.2. Diffusion Models
A diffusion model [12] consists of a forward noising process,
which gradually adds noise to an image, and a denoising
process that iteratively removes the noise to reconstruct a
valid image. In this work, we leverage Stable Diffusion [31]
(SD), a text-conditioned latent diffusion model (LDM). SD

employs an autoencoder [16] to map images to a latent space
and a modified UNet [32] denoising network, ϵΘ, parame-
terized by Θ, to perform denoising in the latent space. The
encoder E embeds an input image I into a latent represen-
tation z = E(I), and the decoder D reconstructs the image
from z as I ′ = D(z). The LDM is optimized using the
following equation:

LLDM(I, y;Θ) = Eϵ∼N (0,1),t ∥ϵ− ϵΘ(zt, t, τ(y))∥22 , (4)

where y is the text prompts, τ is the text encoder (e.g.,
CLIP [29]), and t is the timestep.

DreamBooth [33] is a subject-driven method for SD,
which fine-tuning all parameters of the UNet or insert low
rank adaptation [13] (LoRA) to generate personalizied im-
ages.

T2I-adapter [24] is a lightweight module to align internal
knowledge in SD with external control signals, achieving
rich control and editing effects in the color and structure of
the generation results. In this work, we apply a pre-trained
depth T2I-adapter [24] as the foundation module of our
pipeline.
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4. Generative Sparse-View Gaussian Splatting
4.1. Overview
Problem Definition. Given a set of input images
I = {I1, I2, · · · , IN} with known camera poses P =
{P1, P2, · · · , PN}, the goal is to generate a set of images
Ĩ =

{
Ĩ1, Ĩ2, · · · , ĨÑ

}
from pseudo-novel views P̃ ={

P̃1, P̃2, · · · , P̃Ñ

}
. These pseudo-novel views are interpo-

lated from the original camera poses P . Using a pre-trained
text-to-image diffusion model, we generate the images Ĩ for
these interpolated views, which are then used to update the
3D/4D scene representation.
Alternating Optimization. Consider a conditional dif-
fusion model from which we can sample images using
I = sample[ϵΘ(y)], where y is the conditioning input and
ϵΘ represents the diffusion model parameterized by Θ. Our
ultimate objective is to optimize the 3D/4D representation
parameterized by θ. The above problem can be formularized
as a bi-level optimization problem as:

θ∗ = argmin
θ

N∑
i=1

LGS
(
R(Pi;θ), Ii

)
+

Ñ∑
j=1

LGS
(
R(P̃j ;θ), Ĩj

)
[Scene Reconstruction]

s.t. Θ∗ = argmin
Θ

N∑
i=1

LLDM(Ii, yi;Θ), [Model Adaptation]

Ĩj = sample[ϵΘ∗ (ỹj)] [View Generation]
(5)

where R(·;θ) is the rendering function, and LGS is the
reconstruction loss between the rendered images and the
observations. The variables Pi and P̃j denote the original
and pseudo-novel camera poses, respectively.

To solve the optimization problem above, we alternating
between 3 steps. We start by adapting the diffusion model to
the available views. Using the pre-trained depth adapter [24],
we generate new training images at pseudo-novel views.
These images are then used to optimize the parameters of
the 3D/4D GS model.

We loop over these three steps iteratively. In each itera-
tion, the 3D/4D representation renders new images, which
serve as supplementary data for further fine-tuning the dif-
fusion model. This iterative process gradually improves the
quality of the 3D/4D reconstruction as more data becomes
available.

4.2. Geometry-aware Pseudo View Hallucination
Our goal is to hallucinate the images for novel pseudo views,
which facilitates the optimization of 3D/4D scene recon-
struction under sparse-view setting. To achieve this, we
need to guarantee that the pre-trained diffusion model can
generate scene-specific images with camera-view-related
condition. Specifically, we use LoRA [13] and a pre-trained

depth adapter [24] to train the diffusion model. This setup
allows us to generate scene-specific images based on the
given depth image. An overview of the entire pipeline is
shown in Fig. 2.

As shown in Sec. 4.1, our pipeline involves a joint op-
timization, in which the training dataset for LoRA and
3D/4DGS model are iteratively updated by each other. This
iterative process allows for gradual percolation of the diffu-
sion priors to static or dynamic scene and personalize the
diffusion model to the specific scene.

When optimization begins, we optimize the GS model
based on the sparse training view to initialize a coarse 3D/4D
scene. Then we update the training images for LoRA model
and GS model, iteratively. Specifically, 3D/4DGS models
firstly render all images at training views {P1, P2, · · · , PN}
and pseudo views

{
P̃1, P̃2, · · · , P̃Ñ

}
. All the rendered im-

ages serves as the training dataset for fine-tuning LoRA
model. After the LoRA parameters optimized for several
iterations, we generate the images

{
Ĩ1, Ĩ2, · · · , ĨÑ

}
by the

fine-tuned diffusion model given the estimated depth maps
at pseudo views

{
P̃1, P̃2, · · · , P̃Ñ

}
. The GS model are fur-

ther optimized by the ground truth images {I1, I2, · · · , IN}
and the hallucinated images

{
Ĩ1, Ĩ2, · · · , ĨÑ

}
. The overall

procedure is illustrated in Alg. 1.

Algorithm 1 Joint Optimization for 3D/4DGS with Diffu-
sion Prior

1: Input: Sparse-view images I at views P , pseudo views
P̃ , pre-trained diffusion model, depth adapter, LoRA
module.

2: for initialize iteration do
3: Train GS with I at views P
4: end for
5: for training iteration do
6: Render images I and Ĩ from GS at views P and P̃ .
7: for fine-tuning LoRA do
8: Optimize LoRA parameters with I and Ĩ.
9: end for

10: Update refined pseudo-view images Ĩ at views P by
the fine-tuned diffusion model.

11: for optimizing GS do
12: Optimize GS model with I and Ĩ.
13: end for
14: end for
15: Output: Optimized 3D/4DGS model.

4.3. Geometry-aware Diffusion Fine-Tuning
The main challenge in hallucinating images at pseudo views
is maintaining geometry consistency across views. While the
LoRA module personalizes the pre-trained diffusion model
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Figure 3. Dataset Evolution. We illustrate the dataset evolution process for the horn scene using the LLFF [22] dataset. Starting with two
camera views, the diffusion model generates geometry-consistent image pairs as the training dataset is updated iteratively.

to a specific scene, ensuring geometry consistency remains
difficult, especially with depth maps from two camera views.
Recent work by DIFT [38] demonstrates that the interme-
diate features of diffusion models contain strong semantic
information and can establish correspondences between im-
ages. To address this, we propose a geometry-aware fine-
tuning strategy for updating the LoRA parameters of the
diffusion model.

The geometry-aware diffusion fine-tuning pipeline is il-
lustrated in Fig. 2. Given a image Ĩ rendered by 3D/4DGS
at the pseudo view P̃ ∈

{
P̃1, P̃2, · · · , P̃Ñ

}
, we first warp

it to the known training view P ∈ {P1, P2, · · · , PN} with
known camera entrinsic parameter {R, T}, denoting ĨR,T .
The depth maps of the ground-truth image I at view P and
the warped image ĨR,T are estimated by the pre-trained
Dense Prediction Transformer (DPT) [30], serving the condi-
tion of the diffusion model. The diffusion features of images
I and ĨR,T , denoting ftrain and f ′

train are extracted by the
diffusion model with the inserted fine-tuned LoRA module.
Ideally, the diffusion features ftrain and f ′

train should be the
same since the camera extrinsic parameters of I and ĨR,T

are the same. To this end, we calculate the L1 loss for ftrain
and f ′

train as the regularization term when fine-tuning LoRA
parameters. The loss function for fine-tuning LoRA module
formulate as:

LΘ = LLDM (I, y;Θ) + LLDM (ĨR,T , y;Θ)

+ λgeo ∥ftrain, f ′
train∥ ,

(6)

where LLDM (·, y;Θ) is the optimization loss for LDM with
optimized parameters Θ, as depict in Eq. (4). λgeo repre-
sents the geometric regularization term for fine-tuning LoRA
module. We set λgeo = 0.1 in all experiments.

We visualize the evolution of hallucinated images gener-
ated by the fine-tuned diffusion model in Fig. 3. Specifically,
we show the ground-truth images, estimated depth maps,
and hallucinated images at different training iterations for

two camera views. Initially, the generated images at pseudo
views are inconsistent across camera views. However, as
training progresses, the hallucinated images become more
geometry-consistent. The high-fidelity, 3D-consistent im-
ages at pseudo views facilitate the optimization of 3D and
4D scene representations in a sparse-view setting.

4.4. Depth Regularization for Gaussian Optimiza-
tion

Although the pseudo-view hallucination pipeline generates
additional images with geometry awareness, the resulting
images are not perfectly aligned with the scene, leading to
blurring in the rendered results. To inject richer geometric
information into the Gaussian optimization, we incorporate
pixel-level geometric correspondences as regularization dur-
ing 3D/4DGS training. Specifically, for each camera view
P in the training views P and pseudo views P̃ , we first ren-
der an image I at view P . We then compute the structural
similarity between the rasterized depth Drender at view P
and the estimated monocular depth of the rendered image
I . This structural similarity serves as a regularization term
when optimizing the 3D/4DGS model. We now detail this
procedure.

Similar to the differentiable rasterization for RGB images
in Eq. (3), the rendered depth map DGS at camera views P
and P̃ are calculated by:

DGS =
∑
i∈N

diαi

i−1∏
j=1

(1− αi), (7)

where di and αi denote the z-buffer and density of the Gaus-
sian point, and N is identical to that in Eq. (3).

For each image I at either the ground-truth training views
P or the generated pseudo views P̃ , we first estimate its
monocular depth map DDPT by the pre-trained Dense Predic-
tion Transformer (DPT) [30]. To mitigate depth ambiguity
between the estimated depth DDPT and the rasterized depth
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map DGS, DDPT and DGS are further normalized by the fol-
lowing equation:

Dnorm
GS =

DGS − µDGS

σDGS

, (8)

and
Dnorm

DPT =
DDPT − µDDPT

σDDPT

, (9)

where µD∗ and the σD∗ are the mean and variance values of
DDPT and DGS, respectively.

Rather than previous methods [18, 51] which calculate
L1 or L2 distance between DDPT and DGS, we calculate the
multi-scale structural similarity (MS-SSIM) between DDPT
and DGS by

Lreg = −MS-SSIM(Dnorm
DPT , Dnorm

GS ). (10)

4.5. Optimization
The 3D/4DGS model is optimized by the regular photometric
loss terms with depth regularization.

LGS
(
R(·;θ)) = L1(R(P;θ), I) + L1(R(P̃;θ), Ĩ)

+ λLD-SSIM(R(P;θ), I) + λLD-SSIM(R(P̃;θ), Ĩ)
+ λregLreg,

(11)
where, R(·;θ) is the rendering function, θ is the parameter
of 3D/4D Gaussian representation. L1 and LD-SSIM are the
L1 reconstruction loss and D-SSIM loss, respectively.

5. Experiments
5.1. Datasets
We conduct our experiments on four datasets: the
NeRF Blender Synthetic dataset (Blender) [23], the LLFF
dataset [22], the Mip-NeRF-360 dataset [2], and the Neural
3D Video dataset [19].

NeRF Blender Synthetic dataset (Blender) [23] con-
sists of 8 object with realistic images rendered by Blender.
Aligned with [14, 18, 51], we use 8 views for training and
25 views for testing.

LLFF dataset [22] consists of eight real-world scenes.
Following baseline methods [18, 27, 51], we select every 8th

image as the test set, and sample 3 views from the remaining
views for training evenly.

Mip-NeRF360 dataset [2] consists of 9 real-world com-
plex ourdoor scenes. Following [51], the test images are
selected the same as the LLFF dataset [22] and the training
views are 24.

Neural 3D Video dataset [19] contains six indoor multi-
view video sequences captured by 18 to 21 cameras. Fol-
lowing other methods [20, 35], the first camera is set for
evaluation. Since there are no method designed specifically
for sparse dynamic scene generation, we evenly sample 3
views from the all other views for training.

5.2. Experimental Settings
Baselines. We compare our method with several state-of-
the-art methods on these datasets, including Mip-NeRF [1],
DietNeRF[14], RegNeRF [27], FreeNeRF [44], SparseN-
eRF [39], 3DGS [15], DNGaussian [18], and FSGS [51].
We report PSNR, SSIM, and LPIPS scores to evaluate the re-
construction performance quantitatively. For sparse view dy-
namic scene reconstruction, we conduct experiments based
on SpacetimeGS [20] under sparse-view setting.

Implementation details. We build our pipeline based on
the official 3DGS [15] and SpacetimeGS [20] for sparse-
view 3D and 4D scene reconstruction, respectively. We train
the overall pipeline with 10, 000 iteration for all datasets.
We apply pre-trained DPT [30] to estimate monocular depth
for all training and pseudo views. The initial point clouds
for each scene are reconstructed by Structure-from-Motion
(SfM) with the sparse training views. Please refer to the
supplementary material for details.

5.3. Few-shot 3D Reconstruction

Table 1. Quantitative comparisons on the Blender, LLFF,
and Mip-NeRF360 datasets. We color each cell as the best ,
second best , and third best .

Method
Blender LLFF Mip-NeRF360

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Mip-NeRF [1] 20.89 0.830 0.168 16.11 0.401 0.460 19.51 0.517 0.413
3DGS [15] 21.56 0.847 0.130 17.43 0.522 0.321 20.89 0.588 0.401

DietNeRF [14] 22.50 0.823 0.124 14.94 0.370 0.496 20.21 0.482 0.452
RegNeRF [27] 23.86 0.852 0.105 19.08 0.587 0.336 22.19 0.546 0.398
FreeNeRF [44] 24.26 0.883 0.098 19.63 0.612 0.308 22.78 0.587 0.377

SparseNeRF [39] 24.04 0.876 0.113 19.86 0.328 0.328 22.85 0.600 0.389
DNGaussian [18] 24.31 0.886 0.088 19.12 0.591 0.132 23.09 0.637 0.322

FSGS [51] 24.64 0.895 0.095 20.31 0.652 0.288 23.70 0.693 0.293

Ours 28.57 0.923 0.055 24.82 0.737 0.105 25.87 0.745 0.182

Blender dataset. The quantitative results on the Blender
dataset [23] with 8-view setting are reported in Tab. 1. Our
method outperforms all other approaches on the Blender
dataset [23] across all three evaluation metrics—PSNR,
SSIM, and LPIPS. Specifically, it achieves a substantial
improvement in PSNR with a value of 28.57, surpassing the
second-best method, FSGS, by more than 3 dB. Additionally,
our method demonstrates the highest SSIM score of 0.923,
reflecting superior structural similarity between the recon-
structed and ground-truth images. These results highlight the
effectiveness of our approach in accurately reconstructing
3D scenes with high fidelity, both in terms of geometry and
visual quality.

LLFF dataset. The evaluation results on the LLFF
dataset [22] are shown in Tab. 3. Our method leads in all
three metrics, achieving a PSNR of 24.82, SSIM of 0.737,
and LPIPS of 0.105, significantly outperforming the 2nd-best
method, FSGS [51]. The PSNR improvement over FSGS
is approximately 4.5 dB, demonstrating the robustness of
our approach in sparse-view reconstruction. Additionally,
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Figure 4. The visualization results on the Blender [23], LLFF [22], and Mip-NeRF360 datasets. Our method produces detailed
foreground geometry and renders high-quality novel views with sparse camera views. Please refer to the supplementary material for more
visualization results.

our SSIM score of 0.737 indicates superior structural align-
ment, while our LPIPS score of 0.105 reflects the lowest
perceptual discrepancy, highlighting the visual quality of our
method. These results confirm that our method excels in
both geometric accuracy and perceptual realism on the LLFF
dataset.
Mip-NeRF360 dataset. The performance of our method
on the Mip-NeRF360 dataset [2] is also exceptional, with a
PSNR of 25.87, SSIM of 0.745, and LPIPS of 0.182. These
results mark the highest scores across all three metrics, out-
performing the second-best method, FSGS [51], by a sub-
stantial margin. Notably, our PSNR score is the highest,
indicating that our method produces the sharpest reconstruc-
tions. The SSIM score further confirms the high level of
structural consistency with ground-truth images, and our
LPIPS score of 0.182 is the best, showing minimal percep-
tual deviation. These results reinforce the effectiveness of
our method in handling the complex, large-scale reconstruc-
tions in the Mip-NeRF360 dataset. We visualize the ren-
dering results in Fig. 4. We observe that both 3DGS [15]
and DNGaussian [18] fail to capture the geometry and the
intricate details of scenes. In comparisons, our method recov-
ers the fine-grained details, such as the Lego in the kitchen
scene, aligning well with the ground truth.

5.4. Few-shot Dynamic Scene Reconstruction

Due to there are no proper baselines for sparse-view dynamic
scene reconstruction, we compare our method with the base-
line 4DGS method, i.e., SpacetimeGS [20]. The evaluation
results are listed in Tab. 2. Our method outperforms the
baseline SpacetimeGS across all camera view configurations
in the Neural 3D Video dataset. Even with just 3 views,
our method achieves a PSNR of 27.13, which is over 12
dB higher than SpacetimeGS’s 14.98. The SSIM score also
reflects this improvement, with our method scoring 0.907
compared to SpacetimeGS’s 0.774. Furthermore, our LPIPS
score of 0.135 demonstrates a significant reduction in per-
ceptual discrepancy. As the number of views increases to
6 and 9, the gap between our method and SpacetimeGS
continues to widen, with our method achieving a PSNR
of 30.21, an SSIM of 0.928, and an LPIPS of 0.082 at 9
views. Notably, even when comparing our results with just
3 views to SpacetimeGS’s performance with 9 views, our
method still outperforms them in all metrics, highlighting
the efficiency and effectiveness of our approach in sparse
view 4D scene generation. We visualize the rendering re-
sults for both SpacetimeGS [20] and our method with 3, 6,
and 9 camera views in Fig. 5. SpacetimeGS suffers from
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Qualitative Comparison on Neural Video Dataset.
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Figure 5. The visualization results on the Neural 3D Video dataset. Comparisons are conducted with SpacetimeGS [20] with 3, 6, and 9
training views. Please refer to the supplementary material for more results.

poor results and inaccurate RGB values with only 3 views.
Our method achieves much better rendering results, with a
high-fidelity appearance. Though both SpacetimeGS and
our method improve the rendering results with more training
views, our method still achieves higher results with various
camera views.

Table 2. Quantitative comparisons on the Neural 3D Video
dataset. Our proposed pipeline is general for both 3D and 4D scene
reconstructions. We set SpacetimeGS [20] as the baseline model
for dynamic scene reconstruction and evaluate the performance
with different number of camera views.

3 Views 6 Views 9 Views
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

SpacetimeGS [20] 14.98 0.774 0.327 25.15 0.895 0.163 26.72 0.913 0.165
Ours 27.13 0.907 0.135 29.20 0.916 0.117 30.21 0.928 0.082

5.5. Ablation Studies and Analysis

Ablation w or w/o depth reg or sd or sd w correspondence.

GT w/o SD hallucination Full modelw/o depth regSD w/o feature 
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Figure 6. Ablation studies for the proposed modules. We ablate
for each component of our GS-GS.

Diffusion Hallucination. To demonstrate the effectiveness
of our diffusion hallucination strategy, we conduct an abla-
tion study by removing the diffusion prior from the pseudo-
view hallucination pipeline. As shown in Tab. 3 and Fig. 6,
without the diffusion prior, the 3DGS model struggles to
render high-quality novel views due to the limited number
of camera views.

Geometry-Aware Fine-Tuning. Introducing the diffusion
hallucination pipeline into the optimization of the 3DGS
model leads to improved rendering results. As shown in
Tab. 3, the PSNR score increases from 17.43 to 22.71 on the
LLFF dataset [22]. The flowers depicted in Fig. 6 exhibit
better appearance. However, compared to the full model, the
rendering results still appear blurry, and the details are not as
refined. This is because, although the diffusion process helps
hallucinate images at pseudo views, the generated images
lack geometry consistency, which negatively impacts scene
reconstruction.
Depth Regularization. As shown in Fig. 6, incorporating
depth regularization further enhances geometric details, such
as the edges of the flowers. With the addition of the depth
regularization term, the PSNR score on the LLFF dataset
increases from 24.09 to 24.82.

Table 3. Ablation studies on the proposed components.

w/o diffusion hallucination diffusion w/o geometry-aware fine-tuning w/o depth reg. full model

Mip-NeRF360 [2] 20.89 23.23 25.28 25.87
LLFF [22] 17.43 22.71 24.09 24.82

6. Conclusion
In this work, we present Generative Sparse-view Gaussian
Splatting (GS-GS), a general pipeline designed to enhance
the quality of 3D/4D Gaussian Splatting (GS) with sparse-
view inputs. By leveraging pre-trained diffusion models
to hallucinate additional views while maintaining seman-
tic and geometric consistency, GS-GS enhances the qual-
ity of 3D/4D Gaussian splatting even in under-sampled re-
gions. Through extensive experiments on diverse datasets,
we demonstrate that our method significantly outperforms
existing state-of-the-art techniques in both reconstruction
accuracy and rendering performance, offering a promising
solution for high-quality view synthesis in sparse-view set-
tings.
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