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Figure 1. We train an LLM to decode a frozen CLIP embedding of a natural image into a structured, compositional scene representation
encompassing explicit representations of both animals and their surrounding environment, reconstructing animals and the wild (RAW).

Abstract

The notion of 3D reconstruction as scene understanding is
foundational in computer vision. Reconstructing 3D scenes
from 2D visual observations necessitates strong priors to
disambiguate structure. Much work has been focused on the
anthropocentric, which, characterized by smooth surfaces,
coherent normals, and regular edges, allows for the integra-
tion of strong geometric inductive biases. Here, we consider
a more challenging problem where such assumptions do not
hold: the reconstruction of natural scenes containing trees,
bushes, boulders, and animals. While numerous works have
attempted to tackle the problem of reconstructing animals
in the wild, they have focused solely on the animal, ne-
glecting environmental context. This limits their usefulness
for analysis tasks, as animals exist inherently within the
3D world, and information is lost when environmental fac-
tors are disregarded. We propose a method to reconstruct

natural scenes from single images. We base our approach
on recent advances leveraging the strong world priors in-
grained in Large Language Models and train an autoregres-
sive model to decode a CLIP embedding into a structured,
compositional scene representation, encompassing both an-
imals and the wild. To enable this, we propose a synthetic
dataset comprising one million images and thousands of as-
sets. Through our introduction of a CLIP-projection head,
we demonstrate that our approach generalizes to the task
of reconstructing animals and their environments in real-
world images, despite having been trained solely on syn-
thetic data. We release our dataset and code to encourage
future research at https://raw.is.tue.mpg.de/.

1. Introduction
The 3D reconstruction of the physical world from visual ob-
servations plays a fundamental role in computer vision, pro-
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viding the foundation for Marr and Nishihara [56]’s com-
putational model of visual perception. The process cul-
minates in a structured 3D representation of the environ-
ment. Compositional 3D reconstructions of scenes, where
objects are distinguished into semantic classes, are particu-
larly amenable to analysis, enabling editing and simulation.
When such reconstructions are represented in a compact
form that encapsulates and can be used to reproduce the
scene, they become expressive models of 3D reality, sup-
porting applications in modeling of physical behavior [47].

Recent work has built on developments in Large Lan-
guage Models (LLMs) to reconstruct simple scenes com-
posed of a few objects from a monocular image by inferring
graphics code [41], or to reproduce architectural layouts of
indoor scenes represented in an ad-hoc vector format [4].

We consider a more challenging problem, the reconstruc-
tion of outdoor natural scenes containing diverse vegeta-
tion and animals. These open settings present distinct diffi-
culties: unlike man-made scenes, natural environments are
harder to interpret, as animals often blend into their sur-
roundings with camouflaging colors and patterns; objects
may be positioned at varying distances, some very close and
others very far, or under a range of lighting conditions; and
natural scenes can feature complex interactions between el-
ements, such as trees, animals, and other natural objects.
Unlike Avetisyan et al. [4] and in line with Kulits et al. [41],
we reconstruct scenes in compositional graphics code from
a single image, producing interpretable, editable, and ani-
matable scenes that integrate with existing graphics assets.

While reconstructing natural scenes is itself an unsolved
computer-vision problem, we are motivated by the goal
of enabling a next-generation computational ethology [2].
Early vision-aided animal-behavior analysis methods relied
on 2D pose observations [65]. However, 2D pose pro-
vides only limited information and, given that the solution is
view-dependent, it is typically only applicable in controlled
environments for problems like animal-gait analysis from
a fixed camera [19]. The transition to 3D reconstruction
of animals represents a natural progression [13, 38, 102],
offering a more comprehensive picture. However, recon-
structing animals in isolation presents limitations for anal-
ysis; for example, studying animal behavior in an empty
volume cannot account for occlusions, physical boundaries,
or natural interactions. Precise environmental context is
useful for understanding animal behavior, yet natural en-
vironments pose challenges for both representation and re-
construction. To date, no work has attempted to concur-
rently reconstruct both 3D animals and their 3D environ-
ment. Instead, research in recent years has largely fo-
cused on creating increasingly detailed 3D representations
of isolated animals. We take a step back, opting instead
to work in a complementary direction: rather than pur-
suing ever-finer models of animals, we prioritize estimat-

Figure 2. Dataset Samples. Training images from our synthesized
dataset. See the Supp. Mat. for additional sample visualizations.

ing precise layout of the greater scene context with rela-
tively coarse shape representations, to capture the overall
environment. In this work, we are the first to tackle the
problem of compositionally reconstructing natural scenes
from monocular images, presenting the first approach
to Reconstruct Animals and the Wild (RAW); see Fig. 1.
Modeling Natural Environments in 3D. The 3D recon-
struction of natural environments from monocular images
presents challenges, stemming both from the fundamental
ill-posedness of inverting 2D images into their originating
3D scenes and from a lack of adequate graphics models
for representing natural environments. The natural world is
notably more complex and varied than anthropocentric en-
vironments with their geometric regularity. Consequently,
modeling natural environments in a manner conducive to
analysis is not straightforward. To address this, we propose
a compositional approach that represents environments as
ordered sets of objects in conjunction with various scene-
level attributes. This explicit, object-based representation is
interpretable and low-dimensional, abstracting away com-
plexity in a manner facilitating downstream analysis [90].
Data. Teaching a model to decompose single images of
animals and their natural environments into structured 3D
representations requires it having broad compositional un-
derstanding, yet acquiring suitable training data presents
its own obstacles. Because the 3D scanning of nature at
scale is impractical, here we exploit synthetic-data gen-
eration. Building upon tools introduced by the Infinigen
project [64], we design a data generator to construct RAW,
a million-image dataset comprising both synthetic animals
and their environments. Our scenes encompass a range
of elements types, including birds, carnivores, herbivores,
bushes, boulders, and trees. See Fig. 2 for dataset samples.
Reconstruction. Our goal is to approximately reconstruct
3D animals, scene objects, and layout from a single natu-
ral image. To that end, we design a structured graphics-
program representation, or language. Akin to [41], we train
an LLM to decode CLIP [63] image features into graphics
code where objects are represented by their asset identities.
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However, when naively training the language model to
produce this sequence, we observe that, while it may learn
to capture well the scene layout, it fails to generalize to es-
timating out-of-distribution objects in a semantically mean-
ingful way, preventing real-world generalization. This man-
ifests as reconstructing a tiger with a bush or a bird with
a boulder; see Fig. 5a. We hypothesize this inconsistency
arises due to limitations in representation/train-time super-
vision. Built upon a causal LLM, the model operates au-
toregressively, reconstructing scenes in incremental chunks
(Fig. 1). These discretized units, known as tokens, repre-
sent bits of text. During training, language models typically
are optimized through a cross-entropy next-token objective,
whereby they are trained to predict the probabilities of the
subsequent token, conditioned on the preceding ones. Al-
though this discrete text-based representation and supervi-
sion excel in capturing distinct categorical attributes such as
“small,” “purple,” “shiny,” or “cube,” difficulties arise when
representing quantities that are naturally continuous [41].

Asset names, represented as discrete tokens, lack a
meaningful distance metric between one another. This be-
comes problematic when the objective is not to retrieve the
precise object, for which no dataset match may exist, but
to provide the best estimate. We hypothesize that, rather
than training the LLM to infer exact assets by their IDs, the
model can be taught to estimate continuous visual appear-
ance, representing assets by their CLIP encodings and su-
pervising prediction by a loss in semantic CLIP space. We
do so by adding a unique token, [CLIP], which signals
LLM hidden state should bypass the discretizing tokeniza-
tion process and be projected as a CLIP embedding (Fig. 3).

We observe that with the incorporation of the CLIP-
projection head, the model demonstrates the ability to scale,
estimating objects in scenes featuring much-expanded di-
versity. Our approach successfully reconstructs animals
and their environments in real images. We will release our
dataset and code to encourage further research in this area.

2. Related Work
Animal Pose and Shape. Many works have attempted to
estimate animal pose and shape from visual observations,
evolving from primitive 2D representations to parametric
3D models. Early work by Ramanan et al. [65] focused
on recovering 2D articulated models of animals from video.
Research later progressed to 3D representations, with Cash-
man and Fitzgibbon [13] developing a 3D morphable model
of a dolphin from images. Kanazawa et al. [38] extended the
idea, additionally learning to model articulations and pose-
dependent deformations. Zuffi et al. [102] advanced this
further by constructing an articulatable multi-species 3D
morphable model from scans of toy animals, used to recover
3D shape and pose of quadrupeds [8, 9, 58, 68, 103], while
others built models to estimate the shape of birds [5, 89].

Recent approaches have somewhat diverged from a clear
progression. Kanazawa et al. [39] learned to recover 3D
shape and texture of deformable objects from an image.
Sanakoyeu et al. [71] adapted 2D dense pose from humans
to animals and Kulkarni et al. [42] developed canonical-
ized surface mappings across articulated objects. Yang et al.
[95] extracted template-free 3D neural models of articulated
shape from video, while Yao et al. [97] and Wu et al. [91]
learned articulated shape models using DINO [12]-feature-
aided part discovery or correspondence. Sharing an asset-
based approach, Wu et al. [92] estimated shape and pose
from video by retrieving proximal 3D templates from a col-
lection of video-game assets and deforming the templates.
Inverse-Graphics Approaches. The inverse-graphics
problem – the task of inverting an image into physical vari-
ables that, when rendered, enable reproduction of the ob-
served scene – has a long history, dating back to Larry
Roberts’s Blocks-World thesis [67]. Considerable efforts
have focused on tasks such as estimating object pose [46,
49, 53, 61, 79, 85–87, 93] and reconstructing shape from
single images [16, 25, 30, 57, 60, 76, 88]. However, works
addressing multi-object scenes [21, 28, 74] often neglect
object semantics and relationships, limiting deeper reason-
ing. Holistic 3D-scene understanding aims to reconstruct
individual objects along with scene layout. Initial efforts
centered on 3D bounding boxes [18, 33, 48, 55, 66], with
recent advancements emphasizing finer shape reconstruc-
tion [29, 51, 98]. Relatedly, some methods also involve
retrieving CAD or mesh models, followed by 6-DoF pose
estimation for objects or scenes [3, 6, 24, 31, 36, 37, 43–
45, 50, 70, 82]. In contrast, our work, like IG-LLM [41],
explores the use of LLMs for the inverse-graphics problem,
seeking a possibly simpler and more generalizable solution.
Synthetic Data in Vision. The use of synthetic data for
training transferable models has proven successful in recent
years. Applications involve learning to detect [81], seg-
ment [14], track objects [101], navigate [20, 69], and es-
timate optical flow [22], depth [64], and human pose and
shape [10, 84]. We extend this paradigm by learning to ex-
tract compositional 3D scene representations from natural
images using procedurally generated Blender [17] scenes,
building off tools introduced by the Infinigen project [64].
LLMs and 3D Understanding. Recent applications of
LLMs have extended to various 3D-related tasks. These
tasks include 3D question answering [23, 34], task plan-
ning [34, 52, 99], text-to-3D scene synthesis [35, 78, 96],
procedural model editing [40], multi-modal representation
learning [34, 94], and 3D scene reconstruction from cal-
ibrated RGB-D image sequences [4]. These applications
demonstrate the broad applicability of LLMs to tasks not
traditionally considered text-based. We continue along the
line of IG-LLM [41] and employ an LLM to decode CLIP
embeddings into structured 3D scene representations.
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Figure 3. CLIP Head. Rather than teaching the LLM to generate asset names as discrete tokens without a semantic distance metric, we
train the model to produce a special token to signal when the hidden state should instead be projected into a continuous CLIP embedding.

3. Method

3.1. Preliminaries
Autoregressive Language Generation. Causal language
models generate text in an autoregressive manner, proceed-
ing chunk by chunk. Each generated chunk, known as a
token, is conditioned on the preceding sequence of gener-
ated chunks. Individual tokens can represent bytes, or one
or more characters [72]. The models are typically trained
with only a simple next-token prediction objective [7], con-
ditioned on the sequence of previously observed tokens:

p(x) =

n∏
i=1

p (si|s1, . . . si−1) (1)

The loss is cross-entropy over predicted token probabilities.
Inverse Graphics With LLMs. LLMs are known for their
robust zero-shot generalization capabilities [1, 11, 62], ow-
ing to their scale in parameters and the vast amounts of data
on which they are trained. Departing from traditional ap-
proaches, the success of LLMs to diverse tasks stems from
training on large, diverse datasets with a simple objective,
followed by fine-tuning on smaller, task-specific sets. This
contrasts with previous paradigms that relied heavily on in-
creasing task-specific data for improvements on that task.

Motivated by the remarkable generalization ability of
LLMs, IG-LLM [41] treats inverse graphics as LLM-
backed inductive program synthesis. It employs an LLM,
aligns a CLIP [63] vision encoder to its token space as a vi-
sual tokenizer, and finetunes it on primitive demonstrations
of images paired with graphics programs, teaching the LLM
to decode CLIP embeddings into structured code represen-
tations that can be used to reproduce the observed scene us-
ing a standard 3D graphics engine. The demonstrations are
produced using procedurally generated image–code pairs.
Continuous-Parameter Estimation in LLMs. Tokens are
discrete entities, and the cross-entropy loss applied does not

impose any particular ordering. In this loss space, a ‘4’ to-
ken is equally distant from a ‘5’ as it is from an ‘8.’ The dis-
crete nature of the tokens makes it difficult to enforce met-
ric supervision. IG-LLM [41] addresses this challenge by
introducing a numeric module for continuous-parameter es-
timation. Rather than passing numbers through the text tok-
enizer, IG-LLM trains the model to produce a special mask
token, [NUM], indicating that the token embedding should
bypass the gradient-breaking token discretization and be
processed by an MLP to produce a continuous, gradient-
preserving parameter estimate. By circumventing tokenizer
discretization, IG-LLM maintains differentiability, facili-
tating the use of metric supervision on floats. This adap-
tation led to stronger parameter-space generalization and
smoother training dynamics. We adopt a similar approach
of using a special token to signal the re-routing of a token
embedding. See Sec. 3.4 for details on our design decisions.

3.2. Base Architecture
We adopt the framework established by IG-LLM and base
our architecture on an instruction-tuned version [15]1 of
LLaMA-7b [80], incorporating a frozen CLIP [63] visual
tokenizer2 and applying a learnable linear projection to
link the vision embeddings with the word-embedding space
of the LLM. Following IG-LLM’s coarse vision–language
alignment strategy, we pre-train the projector using image–
caption pairs sourced from the Conceptual Captions dataset
(CC3M) [73]. See also IG-LLM [41] for additional details.

3.3. Data-Generation Setting
We design an image–code training-data generator, building
upon the tooling of the Infinigen project [64]. Infinigen is
a procedural data-generation framework designed to create
realistic 3D Blender [17] scenes of the natural world. The

1https://huggingface.co/lmsys/vicuna-7b-v1.3
2https://huggingface.co/openai/clip-vit-large-

patch14-336
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framework not only generates diverse terrain but produces a
broad range of 3D assets to populate these environments,
including various types of plants, trees, rocks, and crea-
tures. These assets are fully parameterized through mathe-
matical rules. The framework boasts 182 unique procedural
asset generators and 1,070 interpretable parameter degrees
of freedom, in addition to those parameterized by seeds.

The complexity of the scenes is notable, with the au-
thors reporting an average “wall time” of 4.5 hours to cre-
ate a single image. Although experiments were conducted
on 30k generated images, only ten samples were released,
none having 3D-object ground truth. To effectively model
the natural world, data generation must be made scalable.

In its public iteration, Infinigen renders an image from a
single camera location within each scene; the scene is gen-
erated around the camera’s field of view to mitigate unnec-
essary rendering complexity. This setup presents challenges
for randomly placing multiple cameras within the scene ad
hoc, as scenes are designed for a single camera perspective.
To improve efficiency, we implement a number of simplify-
ing modifications, which primarily include the following:
• We limit the generated assets to the object types of boul-

ders, bushes, trees, carnivores, herbivores, and birds.
• We pre-generate 1,000 instances of each above asset type.
• We produce two resolutions for each individual asset.
• In each scene, we sample five types of tree, bush, boulder,

or creature from those pre-generated. Unlike Infinigen,
where assets are individually unique, we instance them.

• We populate the entire scene with assets, rather than
solely in the area observed from a single camera location.

Following our modifications, we generate 100 images of
each of 10,000 distinct scenes, resulting in 1M total images.
Each scene is backed by an explicit Blender representation.

Only the carnivore, herbivore, and bird assets are na-
tively orientable, that is, have a canonical “front.” The trees,
boulders, and bushes may have very different visual appear-
ances from different angles, such as a left-leaning tree. To
be able to incorporate and estimate this information, we as-
sign labels to each object based on its yaw (rotation around
the vertical axis) relative to the camera. We divide the yaw
into increments of five degrees, resulting in 72 orientations
for each object. This increases the total effective number of
assets to 432,000. In constructing our ground truth, we zero
the yaw of the non-orientable objects local to the camera.

3.4. RAW
Here we define our model objective. We show a partial
scene representation in Fig. 4, where [ROT] represents a
variation of the [NUM] token as applied in IG-LLM, signal-
ing the token embedding to instead be put through an MLP
to regress a nine-parameter rotation matrix. This choice was
motivated pragmatically by reducing code dimensionality
to enable the use of up to twenty-five objects per sequence

set_sun_intensity(0.981)
set_sun_elevation(0.691)
set_sun_size(0.811)
set_camera(88.130)
set_atmospheric_density(0.009)
set_ozone(1.499)
set_sun_rotation(231.110)
set_dust(0.169)
set_sun_strength(0.212)
set_air(0.771)
set_ground([CLIP])
add(pixels=1582, loc=(-0.553, -0.809, -22.591),

height=1.365, rotation=[ROT], appearance=[CLIP])↪→
add(pixels=111, loc=(-1.524, -0.939, -30.159),

height=1.224, rotation=[ROT], appearance=[CLIP])↪→
...

Figure 4. Code Sample. The figure displays a partial scene code.
height is estimated as embeddings do not capture object scale.

in model context, and through the greater generalization
demonstrated in IG-LLM. The semantic token, [CLIP],
is used to signal whether the token embedding should be
projected to CLIP space with a projection layer. During
training, we set the target of the embedding head to be that
of the rendered asset image at the given yaw of the scene
asset. See Fig. 3 for a visualization of the projection head.

Scene-level attributes are estimated at the beginning of
the sequence prior to defining objects. These include sun
parameters (intensity, elevation, size, strength, and rotation
relative to the camera) and atmospheric conditions (density,
ozone, dust content, and air density). Additionally, a CLIP
embedding is estimated to retrieve ground texture, improv-
ing the visual realism of the resulting scene reconstruction.

Objects are ordered in the code-sequence objective by
the number of pixels they occupy: from the visually largest
to the least significant. In this way, the model is taught to
first focus on the most-salient objects before attempting to
explain bushes in the background. See the project page for
a step-wise reconstruction visual, highlighting the ordering.

3.5. RAW-RW
To complement our synthetic test setting and enable quanti-
tative evaluation of image syn-to-real generalization, we cu-
rate a set of online, permissively licensed photos of animals
in their natural habitats, which we refer to as RAW-RW.

3.6. Supervision
In addition to the next-token prediction objective loss ap-
plied to the text of the generated code, our introduction of
additional heads for rotation and CLIP-appearance estima-
tion enables – and necessitates – further supervision. Fol-
lowing Geist et al. [26], we apply a mean-squared-error loss
on rotation matrices after performing symmetric orthogo-
nalization. The CLIP estimation is supervised by a cosine-
similarity loss between the estimated and target embeddings
and an additional regularization term because similarity is
vector-norm invariant. See Supp. Mat. for further details.
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Figure 5. Qualitative Comparison. (a) In-distribution, the discrete-name baseline confuses classes: a tiger and a bush; a bird and a
boulder. (b) When tasked with the reconstruction of real scenes, it well-estimates layout, but struggles to generalize in an aligned manner.

4. Evaluations
In this section, we evaluate the ability of our model to recon-
struct both held-out synthetic in-distribution (ID) and natu-
ral real-world (RAW-RW) scenes. We begin by measuring
the effect of representing assets by semantic CLIP embed-
dings in Sec. 4.2. In Sec. 4.3, we evaluate the effect of
conditioning-memorization on model generalization. Later,
in Sec. 4.4, we test how introducing additional conditioning
into the sequence affects learning. Finally, in Sec. 4.5, we
compare alternatives to CLIP for appearance estimation.

4.1. Metrics
To evaluate our method quantitatively, we render the re-
constructed scene and evaluate it primarily with perceptual
metrics against the source image. Prior to rendering, we
warp a ground plane to the estimated object locations using
an RBF kernel. Central to our evaluation is LPIPS [100],
which measures perceptual similarity between two images
– the source and rendered reconstruction – using learned
VGG [75] features. LPIPS serves as a spatial metric as it
is patch-based. We additionally compute cosine similarity
between the input and reconstruction using CLIP [63], Bio-
CLIP [77], and DINOv2 [59]. We however de-emphasize
the metrics due to their indirect usage in model ablations,
but find they offer a complementary perspective to LPIPS.
See Supp. Mat. for object-wise 3D evaluations and a quanti-
tative comparison against a YOLOX-6D-Pose [54] baseline.

4.2. Discrete Names and Continuous Embeddings
We begin with evaluating the naive discrete-shape-name
version of our pipeline (IG-LLM) trained on our synthetic
dataset. In this template, rather than set ground and ap-
pearance being parametrized by [CLIP] tokens and cor-
responding embeddings, the assets are named by integers,
which represent the scene ID in the case of ground texture.
See representative scene reconstructions in Figs. 5 and 7.

↓LPIPS ↑SCLIP ↑SBioCLIP ↑SDINOv2

IG-LLM 0.720 0.748 0.421 0.833
+ CLIP 0.654 0.806 0.537 0.858
+ Fuzz. 0.612 0.807 0.526 0.849
+ Cond. 0.598 0.815 0.539 0.858

(a) ID

↓LPIPS ↑SCLIP ↑SBioCLIP ↑SDINOv2

IG-LLM 0.772 0.385 0.254 0.559
+ CLIP 0.762 0.445 0.335 0.561
+ Fuzz. 0.762 0.445 0.349 0.565
+ Cond. 0.724 0.490 0.409 0.631

(b) RAW-RW

Table 1. Quantitative Ablation Effects. Each change impacts
performance. SCLIP, SBioCLIP, and SDINOv2 represent cosine similar-
ity between embeddings of the input and rendered reconstruction.

Bird
Boulder

Bush
Carnivore
Herbivore

Tree

Tr
ue

IG-LLM
Bird

Boulder
Bush

Carnivore
Herbivore

Tree

Ours

0.0

0.5

1.0

Figure 6. ID Class-Confusion Matrices. While the discrete
model variant estimates objects with another of the same type on
average, it biases heavily toward those with the greatest frequency.

We observe that both models estimate scene layout fairly
consistently both in- and out-of-distribution. However,
while the majority of assets estimated by each of the mod-
els appear as reasonable approximations in the ID case
(Fig. 5a), the discrete variant often confuses classes of sim-
ilar sizes (Fig. 6). Rather than another instance of the type
of object portrayed, the reconstructions mix assets with dis-
tinct semantics: a tiger with a bush or a bird with a boulder.

16570



Figure 7. Additional Reconstructions. Additional real-world-generalization samples (top: input; bottom: output). Note how our model is
able to reconstruct scenes where the animal is very far or close to the camera, under severe occlusion, and with difficult lighting conditions.

Moving to the OOD case, while the baseline continues to
somewhat consistently predict layout, it fails to reconstruct
the scene with meaningful assets (Fig. 5b). In its uncertainty
it will often select a tree for a tree, but not the right tree.

Predicting instead semantic asset appearance in the
CLIP-estimation variant yields improved results. Images
are explained with similar layout, but by assets with notice-
ably greater perceptual alignment. This is reflected by a
jump across metrics in both evaluation settings (Tab. 1a).

4.3. Value Fuzzing

We next investigate the effect of memorization of condi-
tioning. Producing the graphics-code sequence autoregres-
sively, the model conditions the generation of any token on
all preceding it. In causal-language model training, the con-
text tokens the model sees are always ground-truth values.

In estimating the value of atmospheric density,
the model should have all the information necessary to
produce the quantity based on only the conditioned-on
image features. However, in practice, if the model
knew that the sun intensity was 0.981, and that the
sun intensity is only ever 0.981 in scene 3,389, it may
be simpler to memorize a table mapping scene identities to
scene attributes. While some token conditioning is nec-
essary – the model must know that it is now estimating
atmospheric density and hasn’t already done so –
conditioning on ground-truth scene-level values might hurt
the model’s ability to estimate these values in new scenes. If
the training scenes were unique, and each of the million im-
ages were from distinct scenes, this could not be expected to
be such an issue, but as one hundred images are produced in
each scene, we suspect it may harm generalization ability.

We hypothesize that adding a small amount of noise, or
“fuzzing” to the target scene-level attributes during training
will force the model to pay more attention to image features,
and learn to better avoid memorization of exact scenes. For
each value, we add a uniformly distributed ±0.5% of noise
to each of the scene-level attributes. The magnitude of the
noise added is small enough to not have a noticeable effect
on the values themselves, but results in a measurable im-
provement in LPIPS (Tab. 1a), supporting our intuition.

4.4. Additional Conditioning

We then evaluate the effect of introducing additional value
conditioning to the sequences. The model, when generat-
ing, conditions object predictions off all preceding objects
in the sequence. In the base version, it is able to leverage
positional information (loc) and estimated object height
(height) to determine where in the sequence it is and what
should be produced next. As the objects are ordered in the
objective by the count of their pixels visible in the source
image, the model is expected to reason about – and disen-
tangle – objects by saliency. It must follow the GT sequence
during training, and can not learn its own object ordering.

We hypothesize that reasoning about this ordering from
only the list of what came before is difficult for the model
to learn. Motivated by this, we task the model to addition-
ally estimate the number of pixels visible for each object.
In doing so, it must explicitly model visibility, and it can
also condition off the information during training to reduce
uncertainty. We evaluate adding pixel count to the sequence
(pixels), and find quantitative improvement (Tab. 1).
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↓LPIPS ↑SCLIP ↑SBioCLIP ↑SDINOv2

CLIP 0.598 0.815 0.539 0.858
BioCLIP 0.676 0.795 0.512 0.833
DINOv2 0.597 0.850 0.603 0.865

(a) ID

↓LPIPS ↑SCLIP ↑SBioCLIP ↑SDINOv2

CLIP 0.724 0.490 0.409 0.631
BioCLIP 0.730 0.443 0.339 0.575
DINOv2 0.743 0.473 0.387 0.611

(b) RAW-RW

Table 2. Embedding Ablation. While DINOv2 [59] features are
most discriminative, we suspect they are more difficult to interpret.

4.5. Choice of Embedding
Finally, we explore the use of alternate embeddings for
appearance estimation, namely DINOv2 [59] and Bio-
CLIP [77], to determine both their efficacy and the LLM’s
ability to estimate them effectively. For clarity, this evalu-
ation does not examine the differences in behavior of alter-
natives to the CLIP visual tokenizer, which remains fixed
throughout. DINOv2 was trained with a self-supervised
learning objective roughly based on masked-image mod-
eling [32], and BioCLIP is a fine-tuned version of CLIP
trained on image–label data of taxonomic species from the
iNaturalist [83] and BIOSCAN-1M [27] image databases.

We quantitatively evaluate the variants in terms of the
earlier evaluation setting. Results can be seen in Tab. 2.
Contrary to our initial speculation, we find that BioCLIP
performs worst as the target embedding across metrics. We
suspect that the finetuning applied to the model hinders its
generalization ability. On the other hand, DINOv2, per-
formed best in-distribution (Tab. 2a), but did not effectively
generalize (Tab. 2b). We suggest that, while the features
may increase the separability of the assets, the space is less
interpretable, and more difficult to learn a general mapping.

5. Limitations and Future Work
While assets produced using Infinigen tooling are paramet-
rically defined, reconstructing them solely as code presents
challenges, as they are frequently the result of complex non-
invertible physical processes, including seeded noise op-
erations. Consequently, while the assets may have com-
pact low-dimensional representations, the parameters are
not smooth: small seed changes might result in an object
with dramatically different shape or appearance. Future
work could explore a compromise between retrieval and as-
set generation (predicting some parameters while retrieving
others), rely on differentiable proxies for the non-invertible
steps, or employ models with fully interpretable parameters.

Figure 8. Limitations Samples. Our model struggles reconstruct-
ing images with highly out-of-distribution layout or camera pose.

The creature-articulation system in Infinigen is non-
functional (as pictured throughout Raistrick et al. [64], all
creatures are of static pose, many with feet visibly off the
ground). This restricts the expressivity of the data frame-
work. Future work may involve inferring articulated pose.

While we observe fairly consistent semantically aligned
reconstruction of real-world environments, our model can
struggle to reconstruct images of scenes with highly out-
of-distribution configurations, such as those in which the
pose of the camera is outside the distribution seen during
training. We suspect that some such generalization issues
might be abated with better layout sampling during data-
generation, but without a more-diverse pool of assets, the
model will not be able to sufficiently explain all relevant
aspects of the scene, such as a vehicle on the road (Fig. 8).

While our goal was to compositionally reconstruct natu-
ral scenes from monocular images, we expect our findings
may generalize to other domains too. Future work should
expand to additionally model the anthropocentric world.

6. Conclusion
Our investigation represents the first compositional recon-
struction of natural scenes from a monocular image that
captures both animals and their environments, bridging the
gap between reconstructing animals and the wild (RAW).
In summary, we make the following key contributions:

First, we identify and address a limitation in scaling
LLM-backed inverse graphics [41] to real-world scenes. By
teaching an LLM to “name” objects in terms of semantic
CLIP appearance, rather than as a sequence of discrete to-
kens, we overcame limitations inherent in pure token-based
supervision, making the problem effectively continuous.

Second, we introduce a million-image synthetic dataset
built on tooling introduced in the Infinigen project [64], ad-
dressing data limitations. Despite training exclusively on
synthetic data, our approach demonstrated successful gen-
eralization to reconstructing natural scenes from an image.

Finally, by enabling comprehensive scene reconstruction
that includes both animals and their environmental context,
we lay the groundwork for a next generation of computa-
tional ethology. This opens new possibilities for automated
interpretation of animal behavior grounded in their habitat.
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