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Abstract

Despite the remarkable progress of deep learning-based
methods in medical image segmentation, their use in clin-
ical practice remains limited for two main reasons. First,
obtaining a large medical dataset with precise annotations
to train segmentation models is challenging. Secondly,
most current segmentation techniques generate a single de-
terministic segmentation mask for each image. However,
in real-world scenarios, there is often significant uncer-
tainty regarding what defines the “correct” segmentation,
and various expert annotators might provide different seg-
mentations for the same image. To tackle both of these
problems, we propose Annotation Ambiguity Aware Semi-
Supervised Medical Image Segmentation (AmbiSSL). Am-
biSSL combines a small amount of multi-annotator labeled
data and a large set of unlabeled data to generate diverse
and plausible segmentation maps. Our method consists of
three key components: (1) The Diverse Pseudo-Label Gen-
eration (DPG) module utilizes multiple decoders, created
by performing randomized pruning on the original back-
bone decoder. These pruned decoders enable the genera-
tion of a diverse pseudo-label set; (2) a Semi-Supervised
Latent Distribution Learning (SSLDL) module constructs a
common latent space by utilizing both ground truth anno-
tations and pseudo-label set; and (3) a Cross-Decoder Su-
pervision (CDS) module, which enables pruned decoders
to guide each other’s learning. We evaluated the proposed
method on two publicly available datasets. Extensive ex-
periments demonstrate that AmbiSSL can generate diverse
segmentation maps using only a small amount of labeled
data and abundant unlabeled data, offering a more prac-
tical solution for medical image segmentation by reducing
reliance on large labeled datasets.

1. Introduction

Automatic medical image segmentation is a crucial step in
developing effective clinical applications. Despite the re-
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Figure 1. In semi-supervised segmentation (top), few labeled sam-
ples and abundant unlabeled data are utilized, producing a single
label map per image. Existing ambiguity-aware methods (middle)
use multiple annotations per image, generating multiple segmenta-
tions. AmbiSSL, by contrast, leverages both unlabeled data and a
limited amount of labeled data with multiple annotations, enabling
the generation of multiple segmentations per image.

markable progress of deep learning-based methods in med-
ical image segmentation [9, 11, 33], their use in clinical
practice [4] remains limited for two main reasons. First,
acquiring a large, accurately annotated medical dataset for
segmentation is challenging, as it requires pixel-level anno-
tations, which are both time-consuming and costly to pro-
duce. Second, existing methods typically provide only a
single segmentation map, while medical images often con-
tain regions of inherent ambiguity, and a single ”correct”
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segmentation map may not exist. This ambiguity can stem
from blurred or low-contrast images [34], complex anatom-
ical structures [10, 23], varying interpretations by human
raters, or specific downstream objectives [4]. Overlooking
this ambiguity can negatively impact downstream analysis,
diagnosis, and treatment.

Recent studies address the above issues separately, not-
ing that while acquiring labeled data is challenging, ob-
taining unlabeled data is more practical [7]. Consequently,
semi-supervised learning (SSL) has emerged as an effective
paradigm that can achieve performance comparable to su-
pervised learning at a lower cost [6, 7]. In SSL, a small
set of labeled data is utilized alongside a substantial amount
of unlabeled data. Several SSL techniques have been de-
veloped specifically for medical image segmentation [14];
however, these methods typically yield only a single seg-
mentation mask for a given input image.

Independently, stochastic or ambiguous segmentation
techniques generate multiple plausible segmentations dur-
ing inference, capturing task-related uncertainty [19, 25,
35]. Despite this progress, training a model for ambigu-
ous segmentation still requires annotations from multiple
experts, which is costly and time-consuming. However, ob-
taining a small annotated dataset is feasible, and acquiring
unlabeled data is relatively easy. Consequently, our work
focuses on leveraging a small annotated dataset together
with abundant unlabeled data to achieve diverse segmen-
tation results.

Given the importance of both challenges in medical im-
age segmentation, it is essential to develop a framework that
can leverage both labeled and unlabeled data while simulta-
neously generating multiple plausible segmentation maps.
To this end, we propose AmbiSSL, a novel annotation am-
biguity aware semi-supervised approach for medical im-
age segmentation (Figure 1). Our method comprises three
key modules to effectively utilize the labeled and unlabeled
data: (1) A Diverse Pseudo-label Generation (DPG) mod-
ule that leverages multiple decoders, created through ran-
domized pruning of the original backbone decoder. This
pruning selectively removes weights from the final layers,
resulting in varied representations across decoders. These
diverse features from each decoder are then concatenated
with sampled latent codes from the prior distribution to gen-
erate a diverse pseudo-label set. To further enhance quality,
outputs from the multiple decoders are aggregated into an
ensemble, refining the pseudo-label set for subsequent train-
ing, (2) The Semi-Supervised Latent Distribution Learning
(SSLDL) module constructs a common latent space by in-
corporating both ground truth annotations and pseudo-label
sets, and (3) The Cross-Decoder Supervision (CDS) mod-
ule enables a pseudo-label set generated by one pruned de-
coder to guide the training of another, promoting cross-
supervision that encourages the decoders to learn comple-

mentary features and correct each other’s mistakes.
Our Contributions: Our work presents the first solution to
address annotation ambiguity in semi-supervised medical
image segmentation. To tackle this, we introduce a DPG
module, which utilizes multiple decoders created by per-
forming random pruning on the original backbone decoder.
These pruned decoders enable the generation of a diverse
pseudo-label set. Secondly, we develop SSLDL module,
which leverages both ground truth annotations and pseudo-
label sets to construct a common latent space, where dif-
ferent latent codes lead to diversified segmentation results.
Furthermore, to enable a comprehensive evaluation of our
method, we establish several baselines that represent com-
mon approaches in the field, providing a fair comparison to
assess the performance of our approach. Extensive experi-
ments on two datasets with different label settings demon-
strate that our framework provides diverse segmentation re-
sults, effectively utilizing the unlabeled data and reducing
reliance on large labeled datasets.

2. Related work

2.1. Semi-supervised Medical Image Segmentation.

In the context of SSMIS, a variety of approaches have
emerged to leverage both labeled and unlabeled data [20].
One common strategy is pseudo-labeling, where the model
generates labels for unlabeled images, which are then used
in subsequent training cycles [14]. Pseudo-labeling can be
further divided into self-training and co-training methods.
Self-training involves a single model generating pseudo-
labels for unlabeled data, which are iteratively used to re-
fine the model’s predictions [5, 7]. In contrast, co-training
involves training two or more models simultaneously on
the same data but with different views or feature sets [6].
Each model provides pseudo-labels for the other, reducing
the risk of reinforcing the same errors. The mutual cor-
rection framework (MCF) [32] introduces two distinct sub-
networks that leverage their differences to identify and cor-
rect the model’s cognitive biases.

Another popular method involves consistency regular-
ization, which encourages the model to produce stable pre-
dictions for unlabeled data under various perturbations,
such as adding noise or applying transformations. Sajjadi
et al. [26] propose a model that maintains consistency
by evaluating outputs from augmented samples. Tarvainen
et al. [30] present a teacher-student framework that uti-
lizes exponential moving average weights to improve con-
sistency. Furthermore, hybrid methods that combine differ-
ent semi-supervised techniques, such as combining pseudo-
labeling with consistency regularization, have demonstrated
improved performance in various medical imaging chal-
lenges [2].

All these methods perform well for medical image seg-
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mentation. However, they are unable to handle multiple
label maps from different expert annotators and typically
produce only a single segmentation mask for a given input
image.

2.2. Ambiguous Medical Image Segmentation
Stochastic segmentation methods aim to generate multiple
plausible segmentations at inference time, which helps rep-
resent uncertainty in challenging tasks. Estimating uncer-
tainty allows users to assess their confidence in a segmen-
tation, helping them make informed decisions and guiding
subsequent processes. Various methods exist to capture this
uncertainty. A popular approach is to estimate pixel-level
probability [16, 17] by applying dropout to spatial features,
though this often leads to inconsistent outputs [19]. An al-
ternative, simpler approach involves training an ensemble of
deep models for more stable predictions, though these may
lack diversity and miss rare variations due to independent
training [21]. To address these limitations, the probabilistic
U-Net [19] incorporates pixel correlations using a multivari-
ate Gaussian distribution with low-rank covariance. Other
methods integrate hierarchical representations for UNet-
based models through variational auto-encoders [18]. Re-
cently, diffusion models have also been explored for en-
sembling and producing stochastic segmentations [25, 36].
However, these methods are relatively slow during training
and inference due to the inherent nature of diffusion.

Despite the progress, all these methods require annota-
tions for each image from multiple radiologists, which is
costly and time-consuming. In contrast, our work focuses
on using a small annotated dataset along with abundant un-
labeled data to achieve diverse segmentation results.

3. Method

In Annotation Ambiguity Aware Semi-Supervised Med-
ical Image Segmentation (AmbiSSL), we work with la-
beled data Dl = {(xl

i, Y
i
set)}Ri=1 and unlabeled data Du =

{xu
i }Si=1, where R represents the number of labeled images

and S represents the number of unlabeled images. Here,
each Y i

set = {y1, y2, . . . , ya} is a collection of annotations
for image xl

i, with a representing the number of annotations
per image. These annotations reflect variations in expert
criteria and preferences. Our goal is to learn a shared latent
space from Dl and Du. This latent space can then be sam-
pled to generate diverse segmentation outcomes, capturing
the variations in expert annotations.

3.1. Semi-Supervised Latent Distribution Learning
We utilize two separate encoders Eprior

θ and Epost.
θ to gener-

ate the prior and posterior distributions, respectively [19].
Additionally, an encoder-decoder architecture F b

θ is used
for feature extraction, and a segmentation head F seg

θ maps

Figure 2. Depiction of the Diverse Pseudo-Label Generation mod-
ule, which utilizes a backbone network with an encoder-decoder
architecture and incorporates two additional decoders transformed
through random pruning. For each decoder, latent codes are sam-
pled from the prior distribution and combined with the backbone
features to generate the pseudo-label set.

the latent space to segmentation results. The prior distri-
bution for labeled data xl is modeled as a multivariate nor-
mal distribution with a diagonal covariance matrix, denoted
as: Dprior(xl) = N (µl

prior, σ
l
prior). The posterior distribution

for the labeled data is defined as the joint distribution over
the labeled data xl and its corresponding annotator set Yset,
represented as: Dpost.(xl, Yset) = N (µl

post., σ
l
post.).

The corresponding mean values and variances for xl in
the prior and posterior distributions are determined as fol-
lows:

µl
prior, σ

l
prior = Eprior

θ (xl), µl
post, σ

l
post = Epost

θ (xl, Yset),
(1)

Next, we consider the unlabeled data, denoted as xu for
weak augmentation and xû for strong augmentation. Un-
like the labeled data, we model the prior distribution for
the unlabeled data as a Laplace distribution, represented
as Eprior

θ (xu) = G(µu
prior, b

u
prior), where G represents the

Laplace distribution and b is the scale parameter of the
Laplace distribution. For unlabeled data, we utilize two
pseudo-label sets P̂u;ϕ,θ and P̂u;ξ,θ to calculate the pos-
terior, and the process for generating both sets are de-
scribed in Section 3.2. However, since pseudo-labels are
not as reliable as ground truths provided by human annota-
tors, employing a normal distribution in this context would
impose excessive confidence on the pseudo-labels, poten-
tially leading to overfitting and skewed results. This is be-
cause the normal distribution is sensitive to outliers and as-
signs exponentially decreasing probabilities to values far
from the mean. In contrast, the Laplace distribution assigns
higher probabilities to these values, thereby not placing ex-
cessive confidence in the pseudo-label set. The posterior
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Figure 3. Illustration of two key modules of AmbiSSL: (Top) Semi-Supervised Latent Distribution Learning (SSLDL) module, which
constructs a shared latent space from labeled and unlabeled data, where different latent codes lead to diversified segmentation results.
(Bottom) Cross-Decoder Supervision (CDS) module, where pseudo-labels generated by one randomly pruned decoder guide the training
of another pruned decoder.

for the unlabeled data is modeled as Dpost(xu, P̂u:ϕ,θ) =

G(µu:ϕ
post, b

u:ϕ
post) and Dpost(xû, P̂u:ξ,θ) = G(µû:ξ

post, b
û:ξ
post). The

corresponding mean and scale values for xu in the prior and
posterior distributions are determined as follows:

µu
prior, b

u
prior = Eprior

θ (xu), µu
post, b

u
post = Epost

θ (xu, P̂u;ϕ,θ).
(2)

µû
prior, b

û
prior = Eprior

θ (xû), µû
post, b

û
post = Epost

θ (xû, P̂u;ξ,θ).
(3)

After calculating the prior and posterior, A common
Kullback–Leibler divergence (KL) loss is used to align the
two distributions:

Ll
kl = KL(Dprior(xl), Dpost.(xl, Yset)). (4)

Lu:ϕ
kl = KL(Dprior(xu), Dpost.(xu, P̂u;ϕ,θ)). (5)

Lû:ξ
kl = KL(Dprior(xû), Dpost.(xû, P̂u;ξ,θ)). (6)

3.2. Diverse Pseudo label Generation
For labeled data, we have the multi-annotator set Yset,
which guides the diversified segmentation process. Since
Yset is unavailable for unlabeled data, we generate pseudo-
label sets to facilitate learning from the unlabeled samples.
We utilize the backbone F b

θ , which can be further divided
into an encoder Eb

θ and a decoder Db
θ. Additionally, two

more decoders are used: the random pruned decoders Db
ϕ

and Db
ξ. The architectures of Db

ξ and Db
ϕ are similar to

Db
θ; however, to generate diverse pseudo-label sets, we use

a pruning transformation module to convert the model fθ
with parameters θ = {W1, . . . ,Wn} into fθ̃.

This pruning transformation is applied to the weight ma-
trices in the final layers of the decoder, beginning from
a threshold layer L. For each layer k ≥ L, the weight
matrix Wk is modified by a layer-specific pruning mask
Mk ∈ {0, 1}, which determines whether each weight in
Wk is retained or pruned. The transformed weight matrix
W̃k is defined as:

W̃k = Mk ⊙Wk + (1−Mk)⊙ λ(Wk), (7)

where λ(Wk) is given by:

λ(Wk) =

{
Top a(Wk) with probability qk

Wk with probability 1− qk
(8)

Here, “Top a(Wk)” retains the top a% of weights by
magnitude, and sets the remaining weights to 0. This prun-
ing is applied exclusively to the final layers of the decoder,
introducing targeted variability in these layers. The pruning
probability qk for each decoder layer controls the level of
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variability in the pruned features, generating diverse views
to enhance training on unlabeled data.

We generate pseudo-labels from all three decoders with
gradients turned off, as shown in Figure 2. The proce-
dure for generating pseudo-labels is consistent across the
three decoders: we first sample latent codes zprior:u from the
prior distribution of the unlabeled data, Dprior:u, match-
ing the number of multiple expert annotations available for
the labeled data. This latent code is then concatenated with
encoder-decoder features specific to each decoder and fed
into the specific segmentation to generate the final pseudo-
labels. For clarity, we use decoder-specific notation to rep-
resent the entire encoder-decoder features. Although the de-
coders differ, the encoder remains the same across all three.
Mathematically, the pseudo-label generation process is de-
tailed below.

P̂u;θ = F seg
θ (ẑprior:u, Dd

θ(x
u)) (9)

P̂u;ϕ = F seg
ϕ (ẑprior:u, Dd

ϕ(x
u)) (10)

P̂u;ξ = F seg
ξ (ẑprior:u, Dd

ξ (x
u)) (11)

To improve the quality of the pseudo-labels, we create an
ensemble of two sets from the three generated, as described
below:

P̂u;ϕ,θ = P̂u;ϕ + P̂u;θ (12)

P̂u;ξ,θ = P̂u;ξ + P̂u;θ (13)

This ensemble strategy combines the strengths of differ-
ent models, yielding higher-quality pseudo-labels for fur-
ther model training.

3.3. Training
To learn from labeled data, we train all three decoders on la-
beled samples by first randomly sampling a latent code from
the posterior distribution, denoted as zpost:l.

random ∈ RD×1×1.
This latent code is then scaled to match the image dimen-
sions. We concatenate this scaled latent code with back-
bone features, passing them through the segmentation head
to produce the segmentation result:

P post:l
η = F seg

η (zpost:l
random, D

d
η(x

l)), η ∈ {θ, ϕ, ξ}.

Here, we use the symbol η for brevity to represent the
three decoders θ, ϕ, and ξ. Since there is no inherent cor-
respondence between zpost:l

random and the label set Yset, we ran-
domly select an annotation Yrandom from the available anno-
tations in Yset, following [12, 15]. We then apply the con-
ventional Dice loss (DSC) [27] as shown below:

Ll:η
seg = DSC(P post:l

η , Yrandom), η ∈ {θ, ϕ, ξ}.

In line with [27], we apply a re-parameterization trick
to sample zpost:l

random from the posterior distribution Dpost:l, en-
abling gradient backpropagation for model training.

Furthermore, to enhance prediction diversity, follow-
ing the approach in [35], we utilize a bound prediction
task for segmentation training. This involves calculating
the intersection and union of the annotation set, Ybound =
{Yinter., Yunion}, as supervision labels. Sampling multiple la-
tent codes from the prior distribution, Dprior, yields multi-
ple segmentation results with their intersection and union
denoted by P prior

bound = {P prior
inter. , P

prior
union}. The complementary

segmentation loss is then calculated as:

Lbound = DSC(P prior
inter. , Ainter.) + DSC(P prior

union, Aunion).

Final supervised segmentation loss can be depicted as
follows:

Lsup = αl ∗ Ll;η
kl +Ll;η

seg + β ∗ Ll;η
bound η ∈ {θ, ϕ, ξ} (14)

Cross-Decoder Supervision. For unlabeled data, we sam-
ple latent codes for weakly and strongly augmented un-
labeled data, zpost:u,ϕ

random and zpost:û,ξ
random , from Dpost:u,ϕ and

Dpost:û,ξ, respectively. The scaled latent code zpost:u,ϕ
random is

concatenated with features from Dd
ϕ, and similarly, zpost:û,ξ

random

is concatenated with features from Dd
ξ . These concatenated

features are then passed through their respective segmenta-
tion heads to obtain the final segmentation results, as shown
below:

P post:u
ϕ = F seg

ϕ

(
zpost:u:ϕ

random , Dd
ϕ(x

u)
)
, (15)

P post:û
ξ = F seg

ξ

(
zpost:u:ξ

random , Dd
ξ (x

û)
)
. (16)

Cross-decoder supervision involves using the output of
one decoder to guide the learning of another decoder, en-
couraging both decoders to learn complementary features,
as shown in Figure 3. To implement this, we randomly
select predictions from the two decoders during training
[12, 15]. Specifically, we randomly choose P̂u:ϕ

random from the
set P̂u:ϕ

set and P̂u:ξ
random from the set P̂u:ξ

set . These randomly
selected predictions are then used in the computation of
the segmentation losses between the output of one decoder
and the randomly chosen prediction from the other decoder.
This process ensures that each decoder is supervised by the
other’s output in a cross-wise manner. The resulting losses
are computed as follows:

Lu:ϕ
seg = LDice(P

post:u
ϕ , P̂u:ξ

random), (17)

Lû:ξ
seg = LDice(P

post:û
ξ , P̂u:ϕ

random). (18)
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To facilitate gradient backpropagation during train-
ing, we employ a reparameterization trick [27] to sam-
ple zpost:u,ϕ

random and zpost:û,ξ
random from the posterior distributions

Dpost:u,ϕ and Dpost:û,ξ, respectively.
The final unsupervised loss can be depicted as follows:

Lϕ
unsup = αu ∗ Lu:ϕ

kl + Lu:ϕ
seg (19)

Lξ
unsup = αu ∗ Lû:ξ

kl + Lû:ξ
seg (20)

Overall, the model is trained with both supervised and
unsupervised loss as:

Lfinal = Lsup + µ ∗ (Lϕ
unsup + Lξ

unsup) (21)

where µ follows the epoch-dependent Gaussian ramp-up
strategy [24], gradually increasing the contribution of the
unsupervised loss over time. During inference, we use the
prior network Eprior

θ , along with the encoder Eb
θ and decoder

Db
ϕ, to generate diverse segmentation results.

4. Experiments and Results
4.1. Dataset
We evaluate our method on the two segmentation datasets:
the public lung nodule segmentation dataset (LIDC-IDRI)
[1] and ISIC 2018 dataset [8].
LIDC-IDRI dataset.The LIDC-IDRI dataset comprises
1,609 2D thoracic CT scans from 214 subjects, with each
scan accompanied by four binary masks that mark lung nod-
ules. Notably, 12 radiologists were involved in the annota-
tion process [1]. This dataset is commonly used for lung
nodule diagnosis. Consistent with standard practice [19],
the scans are cropped and centered to a size of 128 × 128.
Following [31], we use a four-fold cross-validation setup at
the patient level for our experiments.
The ISIC dataset. The ISIC dataset [8] includes dermo-
scopic images designed for the segmentation and identifi-
cation of skin lesions, specifically targeting melanoma and
nevi. It comprises 120 color (RGB) images, each annotated
by three experts. In line with [31], the images are cropped
to a size of 256 × 256. We use a four-fold cross-validation
setup at the patient level for our experiments.

4.2. Implementation Details
We use the Adam optimizer with an initial learning rate of
1e-4 for model training. All experiments are performed in a
consistent environment on a single NVIDIA A5000 GPU
with 24 GB memory, and the model contains a total of
31.60 million parameters. To prevent overfitting, an L2 reg-
ularization term is also applied, following the approach in
[19, 27]. For more details on implementation, please refer
to the supplementary material.

4.3. Benchmarks
Our method is the first to perform ambiguous semi-
supervised medical image segmentation. Existing ambigu-
ous segmentation methods cannot handle unlabeled data,
while current SSL methods are limited to producing only
a single segmentation mask. To ensure a fair comparison,
we establish baselines that are representative of common
semi-supervised image segmentation methods. To enable
the baseline methods to handle annotations from multiple
experts and learn a common latent space, we utilize the prior
and posterior networks [19], training them with a loss func-
tion to bring them closer together. The features from the
backbone networks and the common latent code from the
prior network are concatenated to generate the pseudo-label
set. The baseline methods presented below differ in how
they utilize the unlabeled data.
Baseline I: In this baseline, we utilize a self-training ap-
proach, where a single model generates pseudo-labels for
unlabeled data, which are iteratively used to refine the
model’s predictions [22]. To avoid noisy pseudo-labels,
only those with high confidence (above a set threshold) are
used to train the model in a self-training manner on the un-
labeled data.
Baseline II: In this baseline, we utilize a cross-pseudo su-
pervision approach [6], where two distinct networks are
trained simultaneously. Each network learns from the
other’s predictions while also leveraging its own views of
the data. The model is trained on these pseudo-labels in a
cross-correction manner, enabling both networks to itera-
tively refine each other’s predictions.
Baseline III: In this baseline, a consistency regularization
method is used to leverage unlabeled data by enforcing con-
sistency between model predictions on weakly and strongly
augmented versions of the same input [28]. The consistency
loss encourages the model to generate similar predictions
for both augmentations.

4.4. Evaluation Metrics
We employ four evaluation metrics to assess our method’s
performance. To estimate diversity, we utilize two standard
metrics: the Generalized Energy Distance (GED) [3, 19]
and the soft Dice score (Dicesoft) [13, 31]. The GED
quantifies prediction diversity, while Dicesoft evaluates the
consistency of generated results. Specifically, GED is for-
mulated as:

GED = 2E[d(P,A)]− E[d(P, P ′)]− E[d(A,A′)] (22)

where P and P ′ are independent samples from the pre-
diction set Pset, and A and A′ from the annotation set
Aset. Here, d denotes the distance function d(a, b) =
1 − IoU(a, b), as in [19]. A lower GED value suggests
greater variation across segmentation outputs.
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Method Ratio Diversity Performance Personalized Performance (%)
Labeled Unlabeled GED ↓ Dicesoft ↑ Dicemax ↑ Dicematch ↑

Upper Bound 100% 0 0.1461 90.24 90.75 90.51

Prob. U-Net [19]

60 (5%) 0

0.2792 60.22 81.26 80.22
CM-Global [29] 0.3342 85.38 85.88 85.41
CM-Pixel [37] 0.3367 85.40 85.79 85.34
Pionono [27] 0.2479 76.26 84.80 84.43

D-Persona [35] 0.2532 72.73 86.24 84.79

Baseline I

60 (5%) 1146 (95%)

0.2268 86.76 87.10 86.83
Baseline II 0.2169 87.02 87.51 87.23
Baseline III 0.2153 87.29 87.92 87.56

Ours 0.1872 88.34 88.98 88.75

Prob. U-Net [19]

120 (10%) 0

0.2679 83.09 86.83 85.87
CM-Global [29] 0.2833 87.68 88.28 88.02
CM-Pixel [37] 0.2808 87.87 88.18 87.94
Pionono [27] 0.2364 86.52 87.19 86.92

D-Persona [35] 0.2021 87.14 88.12 87.86

Baseline I

120 (10%) 1086 (90%)

0.1881 88.13 88.49 88.25
Baseline II 0.1834 88.36 88.60 88.40
Baseline III 0.1779 88.75 89.23 89.08

Ours 0.1620 89.86 90.03 89.84

Table 1. Performance of our proposed AmbiSSL framework on
the LIDC-IDRI dataset under four different settings: with 5% and
10% labeled data, compared against existing methods; with 5%
labeled data, utilizing the remaining unlabeled data; and with 10%
labeled data, utilizing the remaining unlabeled data, both com-
pared with baseline methods.

The Dicesoft metric calculates the average Dice similar-
ity score over multiple threshold levels to compare soft pre-
dictions Psoft and soft annotations Asoft, averaged across
T binary evaluations as:

Dicesoft =
1

T

T∑
i=1

Dice([Psoft > τi], [Asoft > τi]) (23)

where τ is a threshold selected from {0.1, 0.3, 0.5, 0.7,
0.9} and T = 5.

To further assess the personalized segmentation perfor-
mance, we employ two set-to-set metrics: Dicemax and
Dicematch. Specifically, Dicemax quantifies the highest
overlap between the prediction set and the annotation set,
representing the maximum alignment achieved. In contrast,
Dicematch imposes a one-to-one matching criterion, requir-
ing that each annotation has a unique corresponding pre-
diction with closely aligned segmentation results. In this
context, Dicemax serves as an upper limit for Dicematch,
with the difference between them reflecting the level of
unique alignment between each expert annotation and the
predictions. Smaller differences between Dicemax and
Dicematch indicate that each expert annotation has a dis-
tinct, well-aligned prediction.

4.5. Performance on LIDC-IDRI
Table 1 presents the evaluation of our model on the LIDC-
IDRI dataset, where the average performance from a four-
fold cross-validation is reported. We show the results for ex-
isting state-of-the-art ambiguous methods, which use only
5% and 10% labeled data and no unlabeled data, since these

Method Ratio Diversity Performance Personalized Performance (%)
Labeled Unlabeled GED ↓ Dicesoft ↑ Dicemax ↑ Dicematch ↑

Upper Bound 100% 0 0.2160 87.86 88.54 88.34

Prob. U-Net [19]

9 (10%) 0

0.3851 57.61 82.73 81.73
CM-Global [29] 0.3751 78.00 83.00 82.45
CM-Pixel [37] 0.3727 79.32 83.92 82.24
Pionono [27] 0.3461 52.15 73.61 72.87

D-Persona [35] 0.3504 66.20 83.92 83.22

Baseline I

9 (10%) 81 (90%)

0.3459 79.97 80.56 80.37
Baseline II 0.3421 81.54 82.02 81.67
Baseline III 0.3377 79.54 79.58 79.54

Ours 0.3358 83.40 83.35 83.29

Prob. U-Net [19]

18 (10%) 0

0.3160 80.74 83.29 82.83
CM-Global [29] 0.3594 83.35 85.33 84.45
CM-Pixel [37] 0.3280 83.60 85.01 84.76
Pionono [27] 0.2541 66.43 80.36 78.32

D-Persona [35] 0.3139 83.85 84.11 83.22

Baseline I

18 (20%) 72 (80%)

0.2927 82.22 82.37 82.27
Baseline II 0.2732 83.32 83.76 83.21
Baseline III 0.2862 82.62 83.78 83.63

Ours 0.2444 85.87 86.21 85.92

Table 2. Performance of our proposed AmbiSSL framework on the
ISIC dataset under four different settings: with 10% and 20% la-
beled data, compared against existing methods; with 10% labeled
data, utilizing the remaining unlabeled data; and with 20% labeled
data, utilizing the remaining unlabeled data, both compared with
baseline methods.

methods are not capable of handling unlabeled data. Sub-
sequently, we report the results for three baseline methods
and our approach using 5% and 10% labeled data, with the
remaining data being unlabeled. The results show that uti-
lizing unlabeled data is beneficial and leads to improve-
ments compared to using only a small amount of labeled
data. When compared to the upper bound, our method
achieves competitive results even with significantly fewer
labeled samples. For example, with 10% labeled data,
our method reduces the GED score to 0.1620, achieving
a soft Dice score of 89.86%, surpassing the performance
of all other baselines in terms of prediction diversity and
accuracy. These results highlight the effectiveness of our
framework in leveraging both a small labeled dataset and
abundant unlabeled data, while still generating diverse and
meaningful segmentation results.

Further, we also show the visualization results of the
AmbiSSL framework, as shown in Figure 4. We can see
that AmbiSSL provides a set of predictions that are diverse
and match those of the human annotators. Additional visu-
alization results are provided in the supplementary material.

4.6. Performance on ISIC Dataset
Table 2 presents the evaluation of our model on the ISIC
dataset. The same experiments were performed as with
the LIDC dataset; however, the percentage of labeled data
used is 10% and 20%, as the ISIC dataset is compara-
tively smaller, and results with 5% labeled data were unsta-
ble. Our approach consistently outperforms the baselines in
terms of both prediction diversity and accuracy, even with
fewer labeled samples. For instance, with 20% labeled data,
our method achieves a soft Dice score of 85.87%, and sig-
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αu

LIDC-IDRI ISIC
Scans Used Metrics Scans Used Metrics

Labeled Unlabeled GED ↓ Dicesoft ↑ Labeled Unlabeled GED ↓ Dicesoft ↑
0.3

60(5%) 1146(95%)
0.1987 88.33

9(10%) 81(90%)
0.3412 83.52

0.5 0.1872 88.34 0.3358 83.40
1.0 0.2134 86.75 0.3533 79.65
0.3

120(10%) 1086(90%)
0.1765 88.95

18(20%) 72(80%)
0.2645 85.32

0.5 0.1620 89.86 0.2444 85.87
1.0 0.1876 85.88 0.3014 81.19

Table 3. Ablation study of the weights αu in the unsupervised loss function.

Figure 4. Comparison of segmentation results of our proposed
AmbiSSL framework on the LIDC-IDRI dataset with human an-
notators.

L a% GED ↓ Dicesoft ↑(%)

0

50

0.1742 88.51
1 0.1613 88.78
2 0.1620 89.86
3 0.1689 89.32
4 0.1732 89.55

L a% GED ↓ Dicesoft ↑(%)

2

20 0.1751 88.21
30 0.1749 88.61
40 0.1678 89.44
50 0.1620 89.86
60 0.1667 89.65

Table 4. Ablation studies of different L and a% values in the
pruning-transformed decoder of our framework, evaluated on the
LIDC-IDRI dataset with 10% labeled and the remaining unlabeled
data. The number of samples is set to 10 for all comparisons.

nificantly reducing the GED score to 0.2444.

5. Ablation Experiments
5.1. Weights in Loss Function
In this section, we study the impact of the hyperparameter
αu. We vary αu across {0.3, 0.5, 1.0} to observe changes
in performance. As shown in Table 3, we achieve the best
results across all datasets by setting αu = 0.5. However,
a noticeable drop occurs when αu is set to 1.0. For the
supervised hyperparameter αl, we set its value to 1.0, and
for β, we use a value of 0.5.

5.2. Design Choices for Random Pruned Decoders
Our method incorporates two randomly pruned decoders to
generate a diverse pseudo-label set with different views. In
this section, we examine the impact of two key factors in
the pruning process: the threshold layer L (which deter-
mines where pruning begins) and the pruning percentage
a% (which defines the proportion of weights pruned in each

layer). Table 4 summarizes the results of the pruning exper-
iments, where we first vary L and keep a% constant. When
L = 0, pruning is applied across all layers of the decoder,
resulting in higher sparsity. As L increases, pruning is ap-
plied only to the final layers of the decoder. For example,
with L = 2, pruning starts at the third layer, resulting in a
GED score of 0.1620 and a DiceSoft score of 89.86, indi-
cating an improvement in prediction diversity.

Next, we fix L and vary the pruning percentage a%. As
the pruning percentage increases, the GED score decreases,
showing that higher pruning percentages lead to more di-
verse predictions. Specifically, the GED score decreases
with increasing a%, reaching the lowest value of 0.1620
and the highest DiceSoft score of 89.86 at a = 50%, in-
dicating that the model is able to generate more diverse yet
meaningful segmentation results.

6. Conclusion and Future Work

In this paper, we introduce AmbiSSL, the first frame-
work designed to address annotation ambiguity in semi-
supervised learning for medical image segmentation. Our
framework leverages both labeled and unlabeled data to
generate multiple plausible segmentation maps simultane-
ously. To achieve this, we propose the DPG module, which
produces diverse pseudo-label sets using randomly pruned
decoders. Additionally, we employ semi-supervised latent
distribution learning, utilizing both ground truth annota-
tions and pseudo-label sets to construct a common latent
space where different latent codes result in varied segmenta-
tion outcomes. Finally, Cross-Decoder Supervision enables
the pruned decoders to enhance their performance through
mutual guidance. Extensive experiments on two publicly
available datasets demonstrate that AmbiSSL generates di-
verse segmentation maps, effectively utilizing unlabeled
data and reducing dependence on large labeled datasets.

Despite the significant progress demonstrated by our
method, its performance remains below that of fully anno-
tated methods. To bridge this gap, future work should ex-
plore additional strategies to further enhance the effective-
ness of annotation ambiguity aware semi-supervised learn-
ing.
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