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Abstract

Diffusion models have achieved remarkable success in
text-to-image synthesis, largely attributed to the use of
classifier-free guidance (CFG), which enables high-quality,
condition-aligned image generation. CFG combines the
conditional score (e.g., text-conditioned) with the uncondi-
tional score to control the output. However, the uncondi-
tional score is in charge of estimating the transition between
manifolds of adjacent timesteps from xt to xt−1, which may
inadvertently interfere with the trajectory toward the spe-
cific condition. In this work, we introduce a novel ap-
proach that leverages a geometric perspective on the un-
conditional score to enhance CFG performance when con-
ditional scores are available. Specifically, we propose a
method that filters the singular vectors of both conditional
and unconditional scores using singular value decomposi-
tion. This filtering process aligns the unconditional score
with the conditional score, thereby refining the sampling
trajectory to stay closer to the manifold. Our approach
improves image quality with negligible additional compu-
tation. We provide deeper insights into the score function
behavior in diffusion models and present a practical tech-
nique for achieving more accurate and contextually coher-
ent image synthesis. project page

1. Introduction

Diffusion models [12, 31] have shown remarkable progress
in image generation [19, 27, 30]. In particular, the emer-
gence of classifier-free guidance [6, 11] (CFG) has attracted
significant attention because it allows us to provide desired
guidance by leveraging the conditional estimated score di-
rectly within the diffusion model.

The classifier-free guidance fundamentally computes the

*Equal contribution

Figure 1. (a) Classifier-free guidance. When the unconditional
score sθ(zt) and the conditional score sθ(zt, y) are misaligned,
the result of CFG tends to fall off the manifold. (b) Our proposed
method reduces the misalignment between the unconditional score
sθ(zt) and the conditional score sθ(zt, y), ensuring sampling
aligns with the target manifold.

final score by combining the unconditional and conditional
estimated scores. This approach ensures a generation
that aligns well with the given condition. Additionally,
using an appropriate guidance scale has been shown to
enhance image quality across various tasks, further driving
improvements in applications like text-to-image generation.

Let us say the guided score s̃θ as s̃θ = suncond
θ +

ωscale(s
cond
θ − suncond

θ ). In text-to-image models, the text
condition (scond

θ ) is randomly replaced with a null condition
(suncond

θ ) during training (e.g., with a probability p = 0.1),
enabling the null condition to act as a general estimator for
any sample. It means that suncond

θ is the score estimated from
zt to zt−1 for all samples in the sampling trajectory of dif-
fusion models.

The unconditional score for any sample has certainly en-
abled the successful use of classifier-free guidance. How-
ever, we argue that there can be a misalignment between the
unconditional and conditional estimated scores (See Eq. (2)
in Sec. 2), which hinders the approximation toward the
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manifold by the given condition. Fig. 1 (a) conceptually
illustrates the potential issue that arises when the manifold
of the unconditional score differs from that of the condi-
tional score. In this paper, we show that this misalignment
can be resolved with a simple algorithm, which significantly
reduces the tendency of CFG to generate off-manifold sam-
ples, as illustrated in Fig. 1 (b).

Our approach is based on the following insights. First,
the score predicted by the diffusion model estimates the
intrinsic dimension of the data manifold [32]. Addition-
ally, this intrinsic dimension can be captured by the tangent
space of the target manifold [3, 9]. Instead of directly es-
timating the intrinsic dimension, we focus on utilizing the
tangential component inherent in the unconditional score
during classifier-free guidance. By reducing its misalign-
ment with the conditional score, we enhance the alignment
and ultimately improve the quality of the generated outputs.

Specifically, we push the score s̃θ toward the normal di-
rection of the conditional manifold by eliminating the val-
ues of column vectors with small singular values using the
orthogonal matrix V obtained through the singular value de-
composition of the conditional and unconditional scores.

In this paper, we propose a novel sampling method that
leverages the unconditional score within CFG. To support
our approach, we first lay out the theoretical foundation in
section Sec. 2 and Sec. 3, discussing the manifold hypothe-
sis and its connection to diffusion models. In Sec. 4, we pro-
vide a comprehensive explanation of our proposed method.
This is followed by a detailed analysis using a toy example
in Sec. 5, and we demonstrate the practical applicability of
our method on real-world text-to-image models in Sec. 6.

Our experiments show a significant improvement in the
MS-COCO Fréchet Inception Distance (FID) across vari-
ous models that utilize classifier-free guidance, e.g., diffu-
sion models (Stable Diffusion v1.5 [26] and SDXL [23])
and rectified flow (Stable Diffusion 3 [8]). Additionally, our
method improves DiT [21] FID on ImageNet. Notably, our
method helps mitigate the overexposure bias problem, lead-
ing to resulting images that better align with the underly-
ing data distribution, as supported by improved quantitative
metrics.

2. Background

Diffusion models Diffusion models learn the score that
reverses the forward noising process. This forward process
from the real data distribution p(x0) to a latent distribution
p(z1) ∼ N(0, σ2

maxI) along timesteps t ∈ [0, 1] is defined
by a Gaussian kernel: zt = x0 + σ(t)ϵ. The function σ(t)
is a noise schedule where σ(0) = 0 and σ(1) = σmax, de-
termining the amount of noise to be added at each timestep
t to erase information from x.

A generative process is represented as its reverse with a

stochastic differential equation (SDE):

dz = −σ̇(t)σ(t)∇zt
log pt(zt) dt

− β(t)σ(t)2∇zt
log pt(zt) dt+

√
2β(t)σ(t) dωt,

where dωt is a standard Wiener process. Alternatively, it
can be expressed as an ordinary differential equation:

dz = −σ̇(t)σ(t)∇zt
log pt(zt) dt.

Diffusion models approximate the score function
∇zt

log pt(zt) with a neural network sθ(zt, t). They
are trained to predict the clean data from the noisy zt. The
trained model performs the reverse process using:

∇zt
log pt(zt) ≈

sθ(zt, t)− zt
σ(t)2

.

Classifier guidance (CG) and classifier-free guidance
(CFG) For an arbitrary class label y, CG defines the class-
conditional sampling distribution p̃θ(zt | y) as:

p̃θ(zt | y) ∝ pθ(zt | y) pθ(y | zt)γ ,

where pθ(y | zt) is the classifier distribution and γ is a
scaling parameter. [6] When γ > 0, it is known to reduce
sample diversity but enhance quality. However, CG requires
a classifier that can predict label y from the noisy zt. CFG
proposes a method to sample from the conditional distri-
bution by expressing the classifier distribution pθ(y | zt)
in terms of the conditional distribution pθ(zt | y) and the
unconditional distribution pθ(zt):

p̃θ(zt | y) ∝ pθ(zt | y)1+γ pθ(zt)
−γ .

As a result, the final score ∇zt log p̃θ(zt | y) is approxi-
mated by:

∇zt
log p̃θ(zt | y) = (1 + γ) sθ(zt, y)− γ sθ(zt)

= sθ(zt) + ω (sθ(zt, y)− sθ(zt)),

where ω = 1 + γ. [11]
In practice, both sθ(xt, y) and sθ(zt) are approximated

by a single neural network that is jointly trained to esti-
mate both the conditional and unconditional scores. Text-
to-image models use the null condition ynull = ∅ as a class
label to train sθ(zt) ≈ sθ(zt, ynull). This approach allows
sθ(zt, y) − sθ(zt) to provide guidance similar to the gra-
dient of an implicit classifier. Hereafter, we will simply de-
note sθ(zt, ynull) as sθ(zt).

Diffusion models and data manifold encoding The
manifold hypothesis suggests that high-dimensional data
lies on or near a lower-dimensional manifold, making in-
trinsic dimension estimation essential for data representa-
tion [9]. This intrinsic dimension is often encoded in the
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manifold’s tangent spaces, which capture underlying de-
grees of freedom and align local structures to reveal the
global geometry [3, 33].

Building on these ideas, further studies have analyzed
the approximation and generalization capabilities of diffu-
sion models [20, 22, 24], and have also proven that their
score functions can approximate the tangent space of the
data manifold [32]. In particular, for a compact embedded
sub-manifoldM ⊂ Rn, it has been shown that for a sam-
ple zt ∈ Rn sufficiently close1 to the target data, the score
∇zt

log pt(zt)(≈ sθ(zt)) and orthogonal projection π(zt)
onto data manifoldM0 satisfy a key relationship. For the
projection Np onto the normal space and Tp onto the tan-
gent space ofM0, the ratio of their magnitudes goes to zero
as t approaches 0 (i.e., gets closer to the target data). In
other words, for samples zt close to the target data, the fol-
lowing equation holds:

∥Tp∇zt log pt(zt)∥
∥Np∇zt

log pt(zt)∥
→ 0, as t→ 0, (1)

where Tp and Np are the projection operators onto the
tangent space Tπ(zt)M0 and the normal space Nπ(zt)M0,
respectively (for a detailed proof, see Theorem 4.1, Corol-
lary 4.2 and Appendix D in [32]).

This implies that, for samples sufficiently close to the
target manifoldM0, the cosine similarity between the score
function and the normal vector n = π(zt)−zt

∥π(zt)−zt∥ converges

to 1 (i.e., Scos(n,∇zt log pt(zt))
t→0−−−→ 1).

This suggests that for a sample zt very close to the tar-
get, the score function ∇z log pt(zt) ≈ sθ(zt) becomes an
element of the normal space of the target manifold (that is,
∇z log pt(zt) ∈ Nπ(zt)M0 ≈ Nπ(z0)M0 for sufficiently
small t). Leveraging this property, the estimated diffusion
score can approximate the intrinsic dimension of the tar-
get data by utilizing the huge gap in the singular values of
the sampling scores S =

[
sθ

(
z
(1)
t , t

)
, . . . , sθ

(
z
(4n)
t , t

)]
,

where the singular vectors corresponding to the higher sin-
gular values represent the normal components ofM0, while
those corresponding to the lower singular values represent
the tangential components.[32]

3. Intuition
In this section, we assume the mathematical concept behind
our method and supporting experiments. Our approach re-
fines CFG at each step by dropping the tangential compo-
nent of the unconditional score, enhancing the quality of
conditional generation. This adjustment allows the condi-
tional score to guide the generated sample more directly

1Every compact embedded submanifold of Rd has a tubular neighbor-
hood, and for a given manifold M, each point z ∈ Rn within this tubular
neighborhood has a unique orthogonal projection π onto M [16].

Figure 2. Singular values of the score function across all
timesteps. We computed the singular values for all timesteps us-
ing a total of 17,000 samples from Stable Diffusion v1.5. For both
the unconditional and the conditional scores, a significant drop
in singular values was observed at indices close to 0 across all
timesteps. This suggests the existence of an intermediate mani-
fold.

toward the manifold specified by the condition, improving
alignment.

To support this, we provide empirical evidence suggest-
ing that not only does the target data manifoldM0 exist but
there is also a manifoldMt−ϵ at each time step t ∈ (0, 1)
where∇z log pt(zt) ∈ Nπt−ϵ(zt)Mt−ϵ.

There exists an intermediate manifoldMt We hypoth-
esize the existence of a manifold M(t−ϵ) that contains
∇zt log pt(zt) as elements of its normal space, not only
for samples close to the target data but also for t ∈ (0, 1).
Specifically, we assume the following:

Assumption 1. Suppose that the support of the data dis-
tribution P0 is contained in a compact embedded subman-
ifold M0 ⊂ Rd, and let Pt be the distribution of latents
at time t diffused from P0. Then, under mild assumptions2,
∀t ∈ (0, 1), ∃t′ ∈ (t− ϵ, t+ ϵ) such that:

∇zt log pt(zt) ∈ Nπt′ (zt)Mt′ ,

for sufficiently small ϵ and orthogonal projection πt′(zt)
onto manifoldMt′ . This hypothesis is indirectly supported
by the clear gap in singular values arranged in descending
order for a sufficient number of samples. This phenomenon
occurs not only when t goes to 0 (near the image manifold)
but also consistently for all time step t ∈ (0, 1).

To observe the gap, we compute 17,000 score sam-
ples across all timesteps on Stable Diffusion v1.5. Let
[σ1, . . . , σD] represent the singular values from the SVD
applied to sθ(zt) and sθ(zt, y), with 17,000 samples
collected per timestep, arranged in descending order.
The corresponding singular vectors are denoted as

21) The distribution P0 has a smooth density p0 w.r.t the volume mea-
sure on the manifold. 2) The density p0 is bounded away from zero on the
manifold.
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Figure 3. Cosine similarity between singular vectors of uncon-
ditional and conditional scores. We computed the singular vec-
tors V at each timestep using a total of 17,000 samples from Stable
Diffusion v1.5. We observe the similarity of significant singular
vectors (i.e., those with indices close to 0) between unconditional
and conditional scores are mostly high across all timesteps T .

[v1, . . . ,vD]T for sθ(zt) and [v̂1, . . . , v̂D]T for sθ(zt, y),
respectively (D ≈317, 000).

As shown in Fig. 2, both sθ(zt) and sθ(zt, y) have gaps
between the highest singular values and the rest for all
t ∈ [0, 1], not just for 0 + ϵ. Interpreting from the per-
spective that the score function sθ(zt) becomes an element
of the data manifold’s normal space as t approaches 0 [32].
Assuming the existence of an intermediate manifold Mt

for all t ∈ (0, 1), this suggests that the singular vectors as-
sociated with the largest singular values contain dominant
components ofNMt, while vectors associated with smaller
singular values correspond to component of TMt.

Tangential misalignment between unconditional and
conditional score We empirically justify the principle of
modifying the unconditional score by dropping the compo-
nents with low singular values and retaining only the com-
ponents with high singular values.

Fig. 3 shows that conditional and unconditional singular
vectors [v1, . . . ,vD]T and [v̂1, . . . , v̂D]T at corresponding
indices are more similar when their singular values are high
than the rest.

More specifically, the cosine similarity of the singular
vectors v1 and v̂1 associated with the highest singular value
σ1 from sθ(zt) and sθ(zt, y), respectively, is higher than
the others.

[Scos(v1, v̂1) > Scos(vj , v̂j)]

≈ [Scos(Np∇zt log pt(zt, y),Np∇zt log pt(zt))

> Scos(Tp∇zt log pt(zt, y),Tp∇zt log pt(zt))]

(2)

for 1 < j ≤ D. The cosine similarity Scos between two
vectors vi and vj is defined as Scos(vi,vj) =

vi·vj

∥vi∥∥vj∥ .

3Approximately 4×n samples are sufficient to accurately estimate the
intrinsic dimension of the target manifold M0 [32]. However, our goal is
to verify the existence of a manifold where ∇zt log pt(zt) is an element
of the normal space. Therefore, it suffices to observe the presence of a
large gap in the singular value spectrum, thus N < D is enough.

This indicates that the intermediate manifolds associated
with∇zt log pt(zt) and∇zt log pt(zt, y) share similar nor-
mal components, while their tangent components are rela-
tively less aligned.

These less-aligned components interfere with the gener-
ative process, making it harder to align with the target man-
ifold. We modify the unconditional score sθ(zt) at each
timestep by removing its tangential components that are less
aligned with the conditional score sθ(zt, y). We provide
detailed methods in the following section.

4. Methods
Our main method proceeds as follows. At each step, we
take the predicted unconditional score sθ(zt) and the con-
ditional score sθ(zt, y) and concatenate them into a score
matrix A = [sθ(zt), sθ(zt, y)]. Next, we perform SVD
on A, obtaining singular values and corresponding singular
vectors that consider both components s(zt) and s(zt, y).
This results in singular vectors [v1,v2, . . . ,vD]T where v1

is the normal component of both s(zt) and s(zt, y). We
project the unconditional score onto v1 and drop the rest.

ŝθ(zt) = sθ(zt) · V T · [v1,0]. (3)

Consequently, the singular vectors associated with high
singular values in the score matrix A retain the well-aligned,
normal components of sθ(zt) and sθ(zt, y), while those
with lower singular values represent misaligned tangential
components, which we set to zero in Eq. (3) to drop these
components from the unconditional score. Next, we update
the score ŝθ(zt, y) with classifier-free guidance (CFG):

∇zt log p̂t(zt|y) = ŝθ(zt) + w(sθ(zt, y)− ŝθ(zt)). (4)

Algorithm 1 Tangential damping classifier-free guidance
(TCFG)
Inputs: sθ(zt) and sθ(zt|y): predicted unconditional and
conditional scores, t ∈ (0, 1): time step, y : condition, w:
CFG scale.
Output: z0

1: for t ∈ (0, 1) do
2: Get sθ from zt
3: Make score matrix A = [sθ(zt), sθ(zt, y)]
4: (σi)

d
i=1, (wi)

d
i=1, (vi)

d
i=1 ← SVD(A)

5: ŝθ(zt) = sθ(zt) · V T · [v1,0]
6: (Dropping T∇zt

log pt(xt))
7: ŝθ(zt, y) = ŝθ(zt) + w(sθ(zt, y)− ŝθ(zt))
8: Update zt
9: end for

10: Output z0
(σi)

d
i=1, (wi)

d
i=1, (vi)

d
i=1 denote singular values, left

and right singular vectors respectively.
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Figure 4. Sampling results on different methods with diffusion
model trained on two moons dataset. Our proposed methods
(c, d) demonstrate a closer match to the target distribution com-
pared to using conditional scores only or CFG. In (c), SVD is
computed across all samples, while in (d), SVD is calculated sep-
arately for each pair of conditional and unconditional scores.

We provide a detailed algorithm in Algorithm 1.
Unlike traditional CFG update methods,∇zt

log p̂t(zt|y)
drops tangential component from the unconditional score at
each step. It prevents accumulating misaligned components
from the unconditional score sθ(zt) using the direction of
the manifold defined by the given condition y over time evo-
lution. This concept is further illustrated with a simple dis-
tribution in Sec. 5, where the toy example clarifies the ben-
efits of our methods.

5. Toy example
We empirically verify our method on a toy problem, gen-
erating the two moons dataset. Experiments consist of
the generated samples with different guidances including
the original classifier-free guidance (CFG) and ours, and the
sampling trajectories following their respective score func-
tions.

The target data distribution p(X0) consists of samples
distributed along two distinct curves (moons). We trained
a conditional diffusion model using a small neural network
that receives a binary label y ∈ {0, 1} for the two moons
or y = ∅ denoting the null condition. For detailed settings,
please refer to the Appendix.

Fig. 4 shows the generated samples using four differ-
ent guiding strategies. (a) uses only the conditional score
sθ(zt, y). (b) uses the CFG score. (c) and (d) employ our
guidance score at each step with multiple samples and one
sample, respectively, to compute singular value decompo-
sition (SVD) of the unconditional score siθ(zt) and condi-
tional score siθ(zt, y).

According to the result, generated samples using our

Figure 5. Visualization of the sampling trajectory. In CFG (or-
ange path), the unconditional scores (red arrows) include compo-
nents that point towards directions other than the target distribu-
tion, making the final destination deviate from the target distri-
bution. Whereas, our method (green path) removes the inconsis-
tent tangent components in unconditional scores and eventually
reaches the target distribution.

strategies lie closer to the target compared to those gen-
erated using only the conditional score or CFG. CFG,
while potentially bringing samples closer to the target than
merely using conditional scores, may face challenges due to
the misalignment of tangent components between uncondi-
tional scorse and conditional scores.

In contrast, our guidance score can reduce the tangent
component of the unconditional score at each step. This
helps samples converge more effectively towards the tar-
get data, which suggests that the tangent components of the
unconditional score might hinder alignment with the target
data manifold under the given condition, and our method
helps in mitigating this misalignment.

We further validate this hypothesis by examining the tra-
jectories of generated samples. Fig. 5 visualizes the trajec-
tories induced by our score ∇zt

log p̂t(zt|y) compared to
the original CFG score ∇zt

log p̃θ(zt|y). As shown, in the
orange CFG trajectory, the direction of unconditional scores
changes frequently. This results in difficulties for the blue
conditional score to maintain an orthogonal direction rela-
tive to the target manifold near the target distribution. In
contrast, our method consistently adjusts the score to pre-
dict in a direction closer to orthogonal with respect to the
target manifold, particularly as the samples converge toward
the target data. Our method removes the tangential compo-
nent of the unconditional score with respect to the manifold
of the conditional score. This results in a direction that leans
either to the right or to the left.

Additionally, the similar results between (c) and (d) in
Fig. 4 suggest that computing SVD for only a single sample
is sufficient to yield nearly the same result.

6. Experiments

In this section, we demonstrate that our method is applica-
ble to high-dimensional diffusion models. We employ rep-
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FID ↓ CLIPScore ↑

SD v1.5 original 13.26 0.31
+ ours 13.12 0.31

SDXL original 13.36 0.32
+ ours 12.65 0.32

SD v3 original 16.66 0.32
+ ours 13.74 0.32

Table 1. Zero-shot FID and CLIPScore measured on MSCOCO
30k. Our method consistently improves FID across all mod-
els—Stable Diffusion v1.5, SDXL, and SD v3—while maintaining
a nearly identical CLIPScore.

FID ↓ sFID ↓ Precision ↑ Recall ↑ IS ↑
DiT 32.67 17.92 0.90 0.13 271.1
DiT+ours 29.5 13.27 0.90 0.19 270.0

Table 2. Evaluation metrics measured on ImageNet 50k using DiT.
Our method achieves better performance in FID, sFID, Precision,
and Recall while showing a slight decrease in Inception Score.

resentative diffusion models such as Stable Diffusion v1.5
[27] and SDXL [23], and showed that it functions identi-
cally on SD v3 [7], which is based on Rectified Flow. Ad-
ditionally, we conducted experiments on DiT [21], which is
trained on ImageNet [5].

Experimental details For the text-to-image models, we
used zero-shot FID [10] and CLIPScore [25] on the MS-
COCO 2014 validation set [17] consisting of 30,000 images
under the commonly used text-to-image evaluation proto-
cols. [7, 23, 27] For DiT, we evaluated using 50,000 images
under the same settings as ADM [6]. All models used the
official pretrained weights, and sampling was performed us-
ing the same latent codes. We used the best CFG scales as
the default value of each repository. Our method does not
increase the inference time of all baselines.

Quantitative evaluation Tab. 1 presents the FID and
CLIP Scores for SD1.5, SDXL, and SD3. Our method
achieved better FID scores while maintaining the same
CLIP Scores across all three models. Notably, the decrease
in FID is larger for SDXL compared to SD1.5, and even
larger for SD3 compared to SDXL. We speculate that this is
because SD3, known as a better model publicly, has a rel-
atively clearer manifold. Furthermore, the results on SD3
demonstrate that our method is applicable not only to diffu-
sion models but also to all CFG-based score functions, in-
cluding those based on Rectified Flow. Fig. 6 also shows
FID-CLIP curves on SDXL, demonstrating that FID im-
proves even as the CFG scale changes.

Tab. 2 shows the results on the DiT model. Except for a
slight decrease in Inception Score, our method exhibits rela-
tively superior performance in FID, sFID, and Recall. This
indicates that our method can be equally applied to both
text-to-image generation and class-conditioned generation.

Figure 6. FID-CLIP curves on SDXL with 50 sampling steps.

Qualitative evaluation Our method drops the tangential
component from the unconditional score while retaining
the normal component. This reduces misalignment with
the conditional score, thereby improving image quality as
shown in Fig. 7. Specifically, the changes introduced by our
approach transform “strange” objects or scenes into more
“plausible” images. This indirectly demonstrates that the
misalignment of the unconditional score in the conventional
CFG was causing the “strange” aspects in the final outputs.

For example, our method converts physically impossible
or unusual combinations of objects (SD3), uncommon ap-
pearances or characteristics (SDXL), and ambiguous shapes
or forms (SD1.5) into “normal” results.

Fig. 8 presents the results obtained from DiT. We ob-
served that our method causes relatively more changes in
the images generated by DiT. We speculate that this is be-
cause DiT is trained on ImageNet dataset with class labels.
The results qualitatively show that when using our method,
DiT generates images that are more detailed, have better
structure, and appear more natural.

Notably, in both text-to-image and class-conditioned im-
age generation, we observed a reduction in the overexpo-
sure bias problem. We attribute this improvement to the
mitigation of misalignment between the unconditional score
and the conditional score.

What happened to the unconditional score? In this
paragraph, we qualitatively demonstrate that the misalign-
ment with the conditional score is reduced when we drop
the tangential component from the unconditional score and
retain the normal component. We compared the results sam-
pled using CFG with those sampled using the null condi-
tion (i.e., unconditional) when generating images from the
same random noise (i.e., latent variables) in SDXL. In our
method, we used the text condition to compute ŝ but used
only ŝ for denoising; that is, we set ω = 0. Although this
approach does not perfectly explain our method, we can in-
directly infer its role by observing how the modified null
condition changes.

Fig. 9 shows that images sampled using the original null
condition generate different objects such as trees, snowy
mountain landscapes, and women. In contrast, images gen-
erated using our modified null condition ŝ show that the tree
part takes the form of a feather, the snowy mountain land-
scape changes into a woman, and the woman transforms
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Figure 7. Qualitative evaluation of text-to-image models. Our method prevents overexposure, enhancing the shapes and details of
objects.

Figure 8. Qualitative evaluation of DiT Our method mitigates
overexposure and enhances object shapes and details in DiT mod-
els trained on ImageNet.

into a shape resembling a glove. These changes align with
the objects we aim to generate: a feather, a woman, and a
baseball glove. We observe that these changes due to the
null condition help eliminate unwanted structures or arti-
facts in the generated images. In other words, we demon-
strate that the misalignment of the null condition is reduced,
and we claim that this improvement aids in image genera-
tion.

SAG SAG+TCFG PAG PAG+TCFG CFGPP CFGPP+TCFG
FID 13.53 11.48 14.45 11.87 13.97 13.44
CLIP Score 0.31 0.30 0.31 0.31 0.32 0.32

Table 3. Quantitative comparison with existing baselines. The
evaluation was conducted on 30k images from the MS-COCO
dataset using the official code; SD v1.4 for SAG, SD v1.5 for PAG
and SDXL for CFG++.

7. Related work

Calssifier-free guidance Experimental methods to en-
hance the performance of Classifier-Free Guidance (CFG)
have been studied. SAG [13] proposed a method to improve
CFG by using intermediate self-attention maps. PAG [2]
suggested computing CFG by transforming self-attention
maps into identity matrices. ICG [29] enhanced CFG by
utilizing random text embeddings. Recently, CFG++ [4]
demonstrated better performance by modifying the CFG
computation method. Our proposed approach modifies the
unconditional score based on the conditional score and can
be used alongside these existing works; please refer to
Tab. 3 and the appendix for more results.

Manifold hypothesis and diffusion There are also sev-
eral studies that have utilized the manifold hypothesis prop-
erties of the score function estimated by diffusion models
to address various inherent challenges associated with dif-
fusion processes. One approach introduces the manifold
memorization hypothesis to understand model memoriza-
tion through the relationship between data and model man-
ifold dimensionalities [28]. Another extends memorization
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Figure 9. TCFG reduces misalignments between unconditional and conditional generation. Starting from the same random noise z1,
when SDXL samples images with only the unconditional score, it produces random images such as trees, snowy mountain landscapes, and
women. In contrast, our modified unconditional score, projected on dominant (conditional), generates images that somewhat match the
desired text prompts. This is because our method reduces misalignment with the conditional score by dropping the tangential components
of the unconditional score. Once the misalignment decreases, the quality of the final images (unconditional + conditional score) improves:
The base of the feather has a more natural structure, the human arm appears more natural, and the extra string on the left side of the baseball
glove is removed.

Figure 10. Limitations Our method occasionally struggles to fix
severely wrong regions in the baseline samples.

theory to diffusion models [1], showing that high-variance
subspaces are selectively lost due to memorization effects.
Separately, different researchers proposed an approach for
detecting synthetic images generated by diffusion models,
achieving high accuracy across diverse datasets [18].

8. Discussion and conclusion

Our work experimentally analyzes the issues arising in the
standard CFG method, where the tangential component of
the unconditional score does not align well with that of the
conditional score. By using SVD to drop the tangential
component in the unconditional score, we effectively
improve text-to-image generation quality. Additionally, our
CFG method is easily applicable, has low computational

cost, and enhances image quality. We leverage the ability
of the diffusion model’s score function to encode the
intrinsic dimension of the target data, demonstrating the
misalignment between the conditional and unconditional
scores to improve sampling quality. This is the first attempt
to utilize this misalignment to enhance sampling.

Despite these advantages, several unresolved issues re-
main. First, it is uncertain whether the misalignment of
tangential component and the alignment of normal com-
ponent between the predicted unconditional score sθ(zt)
and the conditional score sθ(zt, y) in the CFG setting, at
a given timestep t, would similarly apply to the features
derived from a separately trained classifier and the null
condition score in the classifier guidance setting. Second,
while our task leverages the capability of diffusion models
to estimate intrinsic dimensions for enhancing conditional
sampling methods, we present only experimental observa-
tions regarding the existence of an intermediate manifold
for t ∈ [0, 1], without theoretical proof. Further explo-
ration and rigorous analysis of these aspects are left as fu-
ture work. Third, additional investigation is needed to adapt
our approach effectively in the context of diffusion distilla-
tion using CFG scale as an input [14, 15], which we also
identify as a promising direction for future research.

Finally, although our method successfully demonstrated
on-manifold image generation, we observed that when the
original image exhibits significant abnormalities, substan-
tial changes may occasionally cause the structure to break
down. Fig. 10 illustrates such examples. Nevertheless, it
is evident that our method transforms “strange” images into
more “normal” ones.
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