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Abstract

Open-vocabulary semantic segmentation models aim to ac-
curately assign a semantic label to each pixel in an image
from a set of arbitrary open-vocabulary texts. In order to
learn such pixel-level alignment, current approaches typi-
cally rely on a combination of (i) image-level VL model (e.g.
CLIP), (ii) ground truth masks, (iii) custom grouping en-
coders, and (iv) the Segment Anything Model (SAM). In this
paper, we introduce S-Seg, a simple model that can achieve
surprisingly strong performance without depending on any
of the above elements. S-Seg leverages pseudo-masks and
language features to train a MaskFormer, and can be easily
trained from publicly available image-text datasets. Con-
trary to prior works, our model directly trains for pixel-
level features and language alignment. Once trained, S-Seg
generalizes well to multiple testing datasets without requir-
ing fine-tuning. In addition, S-Seg has the extra benefits of
scalability with data and consistently improving when aug-
mented with self-training. We believe that our simple yet
effective approach will serve as a solid baseline for future
research. Project page: zlai0.github.io/S-Seg.

1. Introduction
Open-vocabulary semantic segmentation presents a unique
challenge as it requires assigning accurate semantic labels
to each pixel in an image using arbitrary open-vocabulary
texts, rather than a fixed set of classes. This means that
the model must be able to segment and classify any arbi-
trary categories expressed in language. Achieving this re-
quires a robust, pixel-level alignment between images and
textual descriptions, which enables accurate association of
each pixel with the most relevant class from a dynamically
provided set of textual categories.

A primary obstacle in this domain is that it is impossi-
ble to construct datasets that provide pixel-level annotations
for all possible labels. This limitation often results in the
adoption of weakly-supervised or semi-supervised learning
approaches. Current methods typically rely on a combina-
tion of strategies to learn the required pixel-level alignment.

Figure 1. S-Seg result on a web image. Our goal is to segment
everything, including fictional characters like minions.
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Figure 2. Our S-Seg framework leverages pseudo-mask and lan-
guage to train a MaskFormer. We show that our method of directly
training for pixel-level feature and language alignment yields su-
perior results.

One common tactic is adapting existing Vision-Language
(VL) models, which are initially trained for image-level
alignment (e.g., CLIP [37]), to perform at the pixel level.
Another strategy involves training models on ground truth
masks that are annotated for a select number of seen classes,
thereby encouraging the model to extrapolate its knowledge
to novel unseen classes during testing. Furthermore, spe-
cialized models such as GroupViT [47] and OVSegmen-
tor [48], which are explicitly designed for open-
vocabulary segmentation, are being explored. Lastly, recent
literature adapts the Segment Anything Model (SAM), orig-
inally not designed to classify segments, for effective use in
open-vocabulary segmentation.

In this paper, we report a model that can work surpris-
ingly well with none of the above strategies. Our approach,
named S-Seg, is built on top of a standard MaskFormer
model. Our model directly trains for pixel-level feature
and language alignment, using neither existing large image-
level alignment models like CLIP [37] nor manually anno-
tated segmentation or classification labels.

One of the biggest challenges we face is finding the right
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Figure 3. Qualitative results of S-Seg, evaluated using all dataset classes as queries. Our model copes with challenging situation, such
as overlapping objects (col. 2) and small objects (col. 5). Our model is also capable of handling “stuff” categories such as water and floor
(col. 3, 4). Moreover, our S-Seg+ model is able to correct small errors observed in the S-Seg method (col. 4). Finally, in the COCO dataset,
which featured a significantly higher number of objects, our model is still able to achieve high accuracy in its predictions.

supervision since annotated masks and labels are not avail-
able. To address this issue, we propose to leverage pseudo-
masks and language to supervise MaskFormer. Our strategy
involves using a pseudo-mask generator to provide class-
agnostic mask supervision by generating pseudo ground
truth masks. We adopt a simple design that clusters image
representations obtained through self-supervised represen-
tation learning methods like DINO [3]. Our experiments
demonstrate that this approach delivers exceptional perfor-
mance, which is essential for high-quality supervision, as
well as rapid processing speed, which is necessary for effi-
cient training. In addition, we use noisy web texts to pro-
vide semantic supervision. The image-text dataset contains
a wide range of concepts and has demonstrated impressive
zero-shot classification results [37]. We utilize a straight-
forward image-text contrastive loss, which has proven to be
highly effective. Once trained, our model generalizes well
to new categories without requiring fine-tuning.

S-Seg is a simple and effective model that can be trained
using publicly available image-text datasets, such as Con-
ceptual Captions [5, 40]. This makes it easy to reproduce
and extend for further research. The S-Seg framework is
also designed to be flexible with easily replaceable submod-
ules. We prioritize simplicity in our subcomponent selection
to focus on the general design of our framework, while re-
maining open to more advanced techniques that could result
in further improvements.

We conducted a thorough evaluation of S-Seg using mul-
tiple benchmark datasets, and we show that our method
achieve competitive results on three widely tested bench-
marks (Pascal VOC, Pascal Context, and COCO). In addi-
tion, pseudo-mask and language provide scalable supervi-
sion and our model consistently improves in performance as
more data became available. Finally, we find adding an ad-

ditional self-training step leads to an even greater improve-
ment to our model, with an average increase of 5.5% mIoU
over three datasets, highlighting the potential for further im-
provement of our approach.

Our simple solultion suggests that the reliance on com-
plex models and extensive ground truth data in open-
vocabulary semantic segmentation may be reduced, lead-
ing to more streamlined and accessible framework for fu-
ture developments in the field, and we hope our exploration
can serve as a solid baseline for future research.

2. Related work
Open-vocabulary segmentation. The earliest efforts to
employ language for image segmentation can be traced back
to Duygulu et al.’s seminal work [13], where the authors
tackled image segmentation by framing it as a machine
translation problem. Current approaches leverage a com-
bination of strategies to learn pixel-level image-text align-
ment.

Adapting image-level vision-language models. The first
strategy involves the adapting pretrained vision-language
models, originally designed for image-level alignment, to
the more granular task of pixel-level alignment. This strat-
egy is widely adopted in open-vocabulary methods [4, 15,
18, 19, 22, 24, 27, 32, 33, 38, 44, 48, 49, 52]. These works
vary in their methods of refining image-level models for
finer alignment tasks.

MaskCLIP [52] demonstrates modifying the CLIP im-
age encoder can significantly enhance its pixel-level align-
ment capabilities without requiring retraining. TCL [4]
employs CLIP for initial text-to-image region grounding,
followed by contrastive learning to refine the alignment
between the text embedding and the grounded region.
OpenSeg [15] fine-tunes ALIGN [20] using a grounding
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Figure 4. Overview of S-Seg. A MaskFormer model computes masks and mask features from an image input. A pseudo-mask generator
produces segmentation maps to supervise mask predictions, while a text that describes the image, encoded by a language model trained
together with the MaskFormer, provides supervision for mask features using image-text contrastive loss.

loss [17] to better align words in captions to segmentation
masks. OpenSeg and DiffuMask [44] also explored the use
of pseudo-masks. The primary distinction lies in their de-
pendency on different sources for learning; OpenSeg uses
annotated segments while DiffuMask employs masks gen-
erated through diffusion. In contrast, our method is entirely
learned from pseudo masks. Also, our mask generator is en-
tirely self-supervised, whereas their mask generator is fully-
supervised.

Ground truth masks. Another effective strategy [11, 15,
18, 19, 24, 27, 33] involves training models using ground
truth masks annotated for a limited set of seen classes.
By training on seen annotations, models are encouraged to
learn detailed features and patterns that are potentially ap-
plicable beyond the scope of the trained classes.

Of most relevance, ZegFormer [11] trains a MaskFormer
by decoupling zero-shot semantic segmentation into two
sub-tasks, a class-agnostic grouping task and a zero-shot
segment classification task. Our method has similar train-
ing paradigm but with notable distinctions. Similar to
GroupViT, we train exclusively with image-text pairs and
do not utilize a pretrained CLIP model. Notably, even
without access to ground truth masks, labels, or CLIP, our
method outperforms ZegFormer in unseen categories, indi-
cating potentially stronger generalization.

Custom grouping-based encoders. The third strategy
employs custom-designed models specifically for open-
vocabulary segmentation. GroupViT [47] groups pixels in
an image hierarchically based on their attention scores with
learnable group tokens. OVSegmentor [48] applies Slot At-
tention [31] for a similar pixel grouping process based on
feature proximity.

Segment Anything Model (SAM). The final strategy
adapts the Segment Anything Model (SAM) [23], a pow-
erful segmentation model trained on over 11 million images
and 1.1 billion masks, for open-vocabulary segmentation.
While the SAM model segments object with high accu-
racy, it does not effectively classify these segments. To ad-
dress this limitation, follow-up works has adapted the SAM
model for grounding, closed-set, and open-vocabulary seg-
mentation [25, 39, 51] by leveraging additional training

# I [n, h, w, c] - minibatch of aligned images
# T [n, l]       - minibatch of aligned texts
# N              - number of MaskFormer queries
# C              - number of pseudo masks

# predict mask, mask feature, and text feature
M, M_f = maskformer(I) # [n, N, H, W], [n, N, d_f]
T_f = text_encoder(T)  # [n, d_f]

# aggregate all mask features [n, d_f]
M_f = M_f.mean(axis=1)

# generate pseudo masks [n, C, H, W]
S = pseudo_mask_generator(I)

# compute loss
loss_c = contrastive_loss(M_f, T_f)
loss_m = mask_loss(M, S)
loss = (loss_c + loss_m)/2

Figure 5. Pseudocode for training S-Seg with image-text pairs.

data, adaptors, and distillation.
Our model, S-Seg, can be conceptualized as a synergy

of these approaches. It can be viewed as a CLIP model
integrated with a MaskFormer image encoder, directly opti-
mizing for pixel-level feature and language alignment. Al-
ternatively, it resembles “ZegFormer with pseudomask and
language training” or “GroupVit with a MaskFormer as the
grouping mechanism.” Interestingly, our model relates to
each method by omitting certain core architectural compo-
nents or supervision method. Even so, our method is able
to achieve competitive performance.

3. Approach
Our proposed method, called S-Seg, is conceptually simple:
we learn a MaskFormer model from pseudo-mask and lan-
guage. Our method leverages image-text pairs solely, with-
out relying on ground truth masks or large-scale preatrained
models. In figure 5, we provide pseudocode for the core
implementation of training S-Seg. Figure 4 provides a
schematic layout of our approach.

3.1. Problem definition
We consider the problem of open-vocabulary semantic seg-
mentation, where we aim to learn a function f that maps an
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image I and a set of category names C = {ci}NC
i=i to a se-

mantic segmentation map S, where ci can be any category
name expressed as open vocabulary texts.

Our approach adopts the unsupervised setting [4, 38,
47, 52], which aims to learn open-vocabulary segmentation
from image-text pairs only, without learning from any dense
annotation or class labels. Specifically, we use a web dataset
of image-text pairs D = {(Ii, Ti)}ND

i=i for training, where
Ti is a caption that describes the corresponding image Ii.
However, since the textual labels are gathered from the web,
they may be noisy and contain errors. We do not use any
additional manually annotated segmentation or classifica-
tion labels during training.

During testing, a set of category names C is provided,
and the model is tasked with assigning a semantic label ci ∈
C to each pixel in an unlabeled image. The performance of
the model is evaluated based on its mean Intersection over
Union (mIoU) with the ground truth labels.

3.2. Adapting MaskFormer
Our approach builds on top of MaskFormer [8]. Here, we
begin by briefly review MaskFormer and explain the adjust-
ments we made.

The Maskformer model takes an image as input and gen-
erates N masks and mask features. First, the input im-
age passes through a backbone model to produce feature
maps at different output resolutions. These image features
are then fed into a per-pixel encoder, which upsamples and
aggregates them into a set of feature maps with higher res-
olution. Meanwhile, a transformer decoder uses N learn-
able queries to cross-attend to the set of features with the
lowest resolution and gather global information about each
segment.

In the original Maskformer, a linear classifier and soft-
max activation were applied to the output of the decoder
to predict class probabilities for a fixed list of categories.
However, as we do not have a fixed list of categories, we
remove this classifier branch and output the N raw mask
features instead.

In addition to predicting mask features, the Maskformer
also predicts N binary masks. To predict each mask, a dot
product is taken between the mask embedding, generated
from mask features, and the high resolution per-pixel fea-
ture. Finally, N mask-feature pairs are combined to gener-
ate the output.

3.3. S-Seg
S-Seg employs MaskFormer as its segmentation model, but
in our weakly-supervised learning setting (where only texts
are available), we face the challenge of not having anno-
tated masks and labels. To overcome this, we utilize pseudo
labels and language to as supervision.

Our training framework is illustrated in Figure 4. We first
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Figure 6. Testing on S-Seg. During inference, S-Seg generalize
to new categories by leveraging language features generated from
a list of candidate classes in text.

DINO

ViT K-Means

Figure 7. Pseudo-mask generator generates pseudo-masks to su-
pervise predicted mask during training. This module takes an im-
age as its input, extracts its features using a DINO pre-trained ViT,
and then employs K-means clustering to group the pixels into seg-
ments.

generate a set of segmentation maps using our pseudo-mask
generator (Sec. 3.4) and use them as supervision for mask
prediction. Meanwhile, we use a language model to pro-
cess input text and generate language embeddings. These
embeddings provide supervision for mask features by lever-
aging image-text contrastive loss (Sec. 3.5).

Notably, unlike the supervised learning setting, where
mask and label annotations are coupled, we decouple mask
and semantic supervision. This enables us to utilize pseudo-
mask and language as two distinct forms of supervision.

In the testing phase (as shown in figure 6), the trained
MaskFormer model predicts N masks and mask features
from the input image. The language model takes as input a
list of candidate category names (represented as texts) and
extracts a set of language features. These features are then
used to classify the mask features. This process is similar
to the one used in CLIP [37], where the image and possible
text inputs are encoded by their respective encoders to com-
pute feature embeddings. The cosine similarity between
these embeddings is calculated and adjusted by a learnable
temperature parameter. The resulting values are normalized
into a class probability distribution using a softmax func-
tion, and a combination module is used to takes N mask-
class pairs to produce the final segmentation map, similar
to [8].

Next, we provide a details of the subcomponents in our
framework.

3.4. Pseudo-Mask Generator
In our approach, we use a pseudo-mask generator (fig. 7) to
produce a class-agnostic segmentation map from the input
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Figure 8. Example pseudo-masks. Our pseudo-mask generator
is capable of generating high-quality artificial masks. When pro-
vided with an oracle label, these masks demonstrate a high degree
of overlap with the ground truth annotations.

Method Sup. P. VOC↑ P. Context↑ Time(s)↓

Spectral Clus. [41]* none 49.2 43.2 0.543
K-Means [21]* none 49.5 43.3 0.188

ImageNet [12]+[21] label 68.8 58.1 0.079
GroupViT [47] text 73.7 54.6 0.002

Pseudo-mask (Ours) self 78.8 66.3 0.002

Table 1. Our pseudo-mask generator achieves excellent oracle
performance with rapid speed, making it an ideal mask supervi-
sion. We report amortised running time on a batch of 128 samples,
simulating training time scenario. * We process downsampled im-
age at H

8
× W

8
resolution to obtain reasonable running time.

image, which supervises the mask prediction of our model.
To implement the pseudo-mask generator, we adopt a

simple strategy that involves clustering tokens extracted
from a self-supervised pre-trained ViT. Specifically, we use
a DINO-pretrained ViT to compute a set of featurized to-
kens from the input image. We then apply a clustering algo-
rithm (K-Means in our case) to these tokens, assigning each
token a label that corresponds to the index of the cluster it
belongs to. We reshape the resulting label map into an im-
age and resize it to the original resolution to supervise the
mask prediction of our segmentation model.

Despite its simplicity, our pseudo-mask generator
achieves both impressive performance, which is crucial for
high-quality supervision, and fast processing speed, which
is essential for efficient training. We evaluate its per-
formance and compare against baseline methods, and the
quantitative results are presented in Table 1, with exam-
ple predictions visualized in 8. Our method significantly
outperforms simple baselines such as K-Means and Spec-
tral Clustering, which naively cluster image pixels, while
running two orders of magnitude faster. We also observed
that clustering DINO representation outperforms cluster-
ing ImageNet pre-trained ViT representation by a signifi-
cant margin. Notably, our pseudo-mask generator even out-
performs GroupViT, which has already employed vision-
language training.

Since the predicted masks are unordered, we need to

match the N predicted masks with K pseudo ground truth
masks. To accomplish this, we utilize bipartite matching,
as described in [2, 8], which assigns a pseudo-mask to each
predicted mask such that the overall assignment cost is min-
imal in all possible assignments. Since each pseudo-mask
is assigned to at most one predicted mask, N −K pseudo-
masks are unassigned to no-object. Unlike standard training
recipe [8], we do not penalize these no-object masks, nor do
we use classification loss as an assignment cost. Finally, we
compute the mask loss between predicted masks and their
corresponding pseudo-mask, utilizing a combination of dice
loss [34] and focal loss [29].

Lmask = λdiceLdice + λfocalLfocal (1)

3.5. Language Supervision
Our model learns to classify open-vocabulary concepts
from language supervision. To train the model, we use an
image-text contrastive loss [15, 37]. Specifically, we view
N mask features as representation of the input image, each
capturing information about a different part of the image.
We then compute a single feature that represents the en-
tire image by taking the average of these mask features. To
encode the text, we use a text transformer [42] and select
the embedding corresponding to the [EOS] token, result-
ing in a textual feature. Since the visual and textual fea-
tures may have different dimensions, we project each rep-
resentation into a common embedding space using 2-layer
MLPs. To compute the image-text contrastive loss, we cal-
culate the cosine similarity between the image embeddings
and the text embeddings within the same batch. Following
common practice [26, 36, 37], we decouple the image-text
contrastive loss into two parts:

LI→T = − 1

N

N∑
i

log
exp(x⊺

i yi/σ)∑N
j=1 exp(x

⊺
i yj/σ)

(2)

LT→I = − 1

N

N∑
i

log
exp(y⊺i xi/σ)∑N
j=1 exp(y

⊺
i xj/σ)

(3)

where xi and yi are L2-normalized embedding of im-
age and text of the i-th pair. N denotes batch size and σ is
a learnable temperature parameter optimized together with
the rest of the model. The total loss is the sum of these two
losses, Lcontrastive = LI→T + LT→I .

3.6. Training Loss
Overall, mask loss (Sec. 3.4) and image-text contrastive loss
(Sec. 3.5) complete the necessary mask and semantic super-
vision that is needed to train our model. The final loss is a
weighted combination of the two losses:

L = λmaskLmask + λcontrastiveLcontrastive (4)

30225



Input CLIP MaskCLIP GroupViT Ours Ours+ AnnotationFully Sup.

Figure 9. Qualitative comparison with existing methods. CLIP [37] is primarily designed for classification and does not perform well
in segmentation. MaskCLIP [52] adapts CLIP for segmentation, although it produces noisy predictions and cannot handle background
classes. GroupViT [47] is a strong competitor, but it could struggle in challenging scenarios.

In our experiment, we use λmask = 1.0, λcontrastive = 1.0,
λdice = 1.0, λfocal = 20.0.

3.7. Self-training
To further improve our results, we introduce an optional
step wherein we train a new model using the predictions
generated by our current model. This process of self-
training results in an augmented model, which we refer to
as S-Seg+. More specifically, when we evaluate on a given
dataset, we generate pseudo labels for the unlabeled images
in the training set. Subsequently, we employ these pseudo
labels to train a new segmentation model.

Self-training improves the accuracy by leveraging addi-
tional data [46], augmentation [53], and bootstrapping [16].
In our situation, self-training offers even greater benefits
since we can take advantage of additional information that
is obtainable during testing: unlabeled images and testing
categories. We show that this additional step improves our
results significantly at no extra manual labelling cost.

4. Experiments
In this section, we empirically evaluate our method and
compare to existing approaches. We show that, although
our method is quite simple, it performs surprisingly well
against more complex existing methods.

4.1. Implementation details
Architecture. Our experiments use MaskFormer [8] with
a 6-layer transformer decoder and N = 64 queries. The

hidden and output feature dimension is 256. The language
model is a Transformer [42] with 12 layers, each with a
hidden dimension of 256. We use a 2-layer MLP to project
the visual and text feature into a common embedding space.
We use DINO ViT-S/8 as the pretrained ViT in pseudo-mask
generator.

Training. During training, we used three publically
available datasets: CC3M [40], CC12M [5], and Red-
Caps [10], containing 3M, 12M and 12M image-text pairs,
respectively. Due to storage constraint, we use only first
11M data samples at a smaller resolution of 448×448 when
using RedCaps dataset. In total, we use at most 26M image-
text pairs for training - this is an order of magnitude fewer
data than CLIP [37] and 1-4M fewer than GroupViT [47].
For more detailed training hyperparameters, please refer to
the appendix.

Inference. We evaluate S-Seg on the validation set of
three datasets: Pascal VOC 2012 [14], Pascal Context [35]
and COCO [28]. The Pascal VOC dataset contain 1449 im-
ages for testing. Each image is labeled with 20 foreground
classes and a background class. The Pascal Context dataset
contains 5104 testing images with 59 foreground classes
and a background class. The COCO dataset contains 5000
images for testing with 80 foreground classes and an ad-
ditional background class. Following GroupViT [47], we
threshold the maximum probability to obtain background
prediction. During inference, we set the input resolution to
448× 448, in consistent with [47].
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Method OV Mask VLM Enc. SAM P. VOC P. Context COCO

Linearly-probed classification models:
MoCo v3 [7] ✗ - - - - 34.3 21.3 -

DINO [3] ✗ - - - - 39.1 20.4 -

Open-vocabulary models:
CLIP [37]† ✓ ✗ ✓ ✗ ✗ 13.5 8.1 5.9

MaskCLIP [52]† ✓ ✗ ✓ ✗ ✗ 26.8 22.8 12.8
ViL-Seg [30] ✓ ✗ ✓ ✗ ✗ 34.4 16.3 16.4
CLIPpy [38] ✓ ✗ ✓ ✗ ✗ 52.2 - -

GroupViT [47] ✓ ✗ ✗ ✓ ✗ 50.8 23.7 27.5
SegCLIP [32] ✓ ✗ ✓ ✗ ✗ 52.6 24.7 26.5

OVSegmentor [48] ✓ ✗ ✗ ✓ ✗ 53.8 20.4 25.1
TCL [4] ✓ ✗ ✓ ✓ ✗ 55.0 30.4 31.6

SAM-CLIP [43] ✓ ✓ ✓ ✗ ✓ 60.6 29.2 31.5

S-Seg (Ours) ✓ ✗ ✗ ✗ ✗ 53.2 27.9 30.3
S-Seg+ (Ours) ✓ ✗ ✗ ✗ ✗ 62.0 30.2 35.7

Fully-supervised segmentation models:
DeepLabV3+† [6] ✗ - - - - 78.7 46.4 55.7
MaskFormer† [8] ✗ - - - - 81.2 50.0 62.1

Table 2. Open-vocabulary (OV) semantic segmentation re-
sults (background pixels included in evaluation). Benchmarked
following standard evaluation protocols for unsupervised open-
vocabulary models trained without annotated masks [4, 32, 47,
48]. Models labels: Mask (use GT mask), VLM (employ pre-
trained large VL model like CLIP), Enc. (require specialized
grouping encoder), and SAM (use the SAM model). Our approach
obtain second highest performance on average, without using any
extra components such as CLIP and SAM. † denotes our recom-
puted results. Higher values are better.

Method P. VOC P. Context COCO 3-Avg.

B1: Pseudo Mask + CLIP 12.9 3.9 2.9 6.6
B2: Pseudo-mask ViT 23.2 11.0 10.4 14.9

S-Seg (Ours) 44.9 22.9 22.5 30.1

Table 3. Simple baselines for open-vocabulary semantic seg-
mentation. All models are trained on CC12M. Higher values are
better. Two simple baselines fail to obtain satisfactory results, even
using after using our pseudo masks and no less training data.

4.2. Simple baselines
The high quality of pseudo-masks (as shown in Figure 7)
may lead one to assume that the primary challenge is simply
classifying these masks, and that this can be accomplished
by utilizing pre-existing methods such as CLIP. To test this
assumption, we first develop two simple baselines.

Baseline 1: Pseudo-mask + CLIP. Firstly, our pseudo
label generator is utilized to obtain pseudo segments. Then,
we iterate through all the masks and apply the current mask
to the original image. Next, the masked image is fed to
CLIP for classification and the resulting class label is as-
signed to the corresponding segment.

Baseline 2: Pseudo-mask ViT. We introduce a new vi-
sual backbone that differs from the regular ViT. Instead of
pooling all image tokens into a single feature, we first in-
dividually pool tokens in each segment of the pseudo-mask
into segment features, and then pool these features into a vi-

Method OV Mask VLM Enc. SAM P. VOC P. Context COCO

Open-vocabulary models (annotated masks required for training):
ZS3Net [1] ✓ ✗ ✗ ✗ 38.3 19.4 21.1
LSeg [24] ✓ ✓ ✗ ✗ 52.3 - 27.2

OpenSeg [15] ✓ ✓ ✗ ✗ 77.2 45.9 38.1
ZegFormer [11] ✓ ✓ ✗ ✗ 80.7 - -

GKC [19] ✓ ✓ ✗ ✗ 83.2 45.2 -
ODISE [49] ✓ ✓ ✓ ✗ 84.6 57.3 65.2*
DeOp [18] ✓ ✓ ✗ ✗ 91.7 48.8 -
OVSeg [27] ✓ ✓ ✗ ✗ 94.5 55.7 -
SAN [33] ✓ ✓ ✓ ✗ 94.6 57.7 -

FC-CLIP [50] ✓ ✓ ✓ ✗ 95.4 58.4 -
SED [45] ✓ ✓ ✓ ✗ 96.1 60.6 -

CAT-Seg [9] ✓ ✓ ✓ ✗ 96.6 62.0 -

Open-vocabulary models (annotated masks not required for training):
CLIP [37]† ✓ ✗ ✓ ✗ ✗ 39.6 9.0 13.8

MaskCLIP [52]† ✓ ✗ ✓ ✗ ✗ 49.5 25.5 23.6
GroupViT [47]† ✓ ✗ ✗ ✓ ✗ 77.2 23.0 37.5

TCL [4] ✓ ✗ ✓ ✓ ✗ 83.2 33.9 -

S-Seg (Ours) ✓ ✗ ✗ ✗ ✗ 81.8 27.2 42.4
S-Seg+ (Ours) ✓ ✗ ✗ ✗ ✗ 84.7 31.6 53.0

Fully-supervised segmentation models:
DeepLabV3+† [6] ✗ GT - - - 89.9 48.5 66.9

Table 4. Open-vocabulary (OV) semantic segmentation re-
sults (background pixels excluded in evaluation). Bench-
marked following standard protocol for evaluating supervised
open-vocabulary models trained with annotated masks [11, 18, 19,
27, 33]. Similar to the previous setting, S-Seg achieves competi-
tive performance compared to earlier methods trained without us-
ing any extra components such as CLIP and SAM. *COCO is used
for training. Higher values are better.

sual embedding. We train a CLIP-like model from scratch
using this visual backbone. During testing, we classify each
segment feature and assign the label to that segment.

The results are presented in Table 3. As we can see,
open-vocabulary segmentation is more complex than sim-
ply grouping image into segments and then categorizing
them into classes, even when the segments are of high qual-
ity. Baseline 1 employs a significantly larger pretrained
CLIP ViT/L-14 model that was also trained on a much
larger dataset, while Baseline 2 is trained using the same
data as ours. Nevertheless, both baselines fail to achieve sat-
isfactory results, suggesting that open-vocabulary segmen-
tation cannot be naively deconstructed in such ways. We
hypothesize that a multi-task learning approach that jointly
trains for segmentation and classification could yield signif-
icant advantages.

4.3. Evaluation with background
In table 2, we evaluate our model and compare with ex-
isting method on open-vocabulary semantic segmentation
task. Following standard evaluation protocols on open-
vocabulary model trained without annotated masks [4, 32,
47, 48], we include background pixels in evaluation and ob-
tain background prediction by setting a theshold for back-
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(c) COCO (+17.6%)
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Figure 10. Self-training improvement. We show average relative improvement in bracket on top of the plot. we observe that self-training
consistently leads to significant improvement for S-Seg across all of our training and testing data settings.

S-Seg (details) S-Seg+ (details) S-Seg (details) S-Seg+ (details)

Figure 11. Visualizing effect of self-training. Our self-trained
S-Seg+ model demonstrates the ability to accurately predict in re-
gions overlooked by S-Seg, as shown in the colorful rectangles.

ground classes [47]. Despite the simplicity of S-Seg, our
approach achieve competitive performance over previous
open-vocabulary segmentation methods that does not re-
quire mask annotations. Our model has second highest per-
formance on average and has better results than GroupViT
on all datasets. Moreover, our self-trained model, S-Seg+,
provides an impressive 5.5% mIoU improvement over our
base model S-Seg (42.6% vs 37.1% 3-avg. mIoU), suggest-
ing the efficacy of self-training.

4.4. Evaluation without background
We also evaluate our model on the evaluation protocol com-
monly used for evaluating open-vocabulary models with an-
notated masks [11, 18, 19], where the background pixels are
excluded in evaluation. We note that this setting is easier be-
cause background class is more diverse in appearance and
often requires additional processing such as thresholding.
Table 4 shows the results. Similar to the previous setting,
our S-Seg and S-Seg+ models achieve competitive perfor-
mance compared to earlier methods.

4.5. Ablation studies
Self-training. We investigated the effectiveness of self-
training for improving segmentation performance. To this
end, we compared S-Seg and S-Seg+ on three datasets
and evaluated the results using Figure 10. We found that
self-training consistently improved the segmentation per-
formance by a significant margin (+5.5% mIoU on aver-
age), regardless of the data size and test dataset. These
results indicate that self-training is a reliable approach for
enhancing the performance of S-Seg and can provide a de-
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(b) S-Seg+
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Figure 12. Scaling training data provide consistent gain in per-
formance, with or without self-training. We train our model
using different sizes of data: CC12M (12M), CC12M+CC3M
(15M), and CC12M+CC3M+RedCaps (26M). We note a steady
improvement in the performance as the data size increases.

sirable complement for further improvement.
Data scalability. To evaluate the scalability of our

method, we trained S-Seg and S-Seg+ using three datasets
of increasing sizes: 12M, 15M, and 26M. The results of
the experiments are presented in Figure 12. We observed
that both models achieve significant improvements in per-
formance across all three testing datasets as the amount of
data increased, suggesting that our method scales well with
larger datasets.

5. Conclusion
To summarize, we propose S-Seg, a simple and intuitive
framework that enables accurate and generalizable open-
vocabulary segmentation. Our algorithm directly trains for
pixel-level feature and language alignment, and does not
require manual segmentation annotations or extensive pre-
training. We hope that our simple yet effective approach
will serve as a solid baseline for future research.
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