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Abstract

Video-Text Retrieval (VTR) is a core task in multi-
modal understanding, drawing growing attention from both
academia and industry in recent years. While numerous
VTR methods have achieved success, most of them as-
sume accurate visual-text correspondences during training,
which is difficult to ensure in practice due to ubiquitous
noise, known as noisy correspondences (NC). In this paper,
we rethink how to mitigate the NC from the perspective of
representative reference features (termed agents), and pro-
pose a novel relation-aware purified consistency (RPC) net-
work to amend direct pairwise correlation, including rep-
resentative agents construction and relation-aware rank-
ing distribution alignment. The proposed RPC enjoys sev-
eral merits. First, to learn the agents well without any
correspondence supervision, we customize the agents con-
struction according to the three characteristics of reliabil-
ity, representativeness, and resilience. Second, the ranking
distribution-based alignment process leverages the struc-
tural information inherent in inter-pair relationships, mak-
ing it more robust compared to individual comparisons. Ex-
tensive experiments on five datasets under different settings
demonstrate the efficacy and robustness of our method.

1. Introduction
Video-text retrieval [5, 20, 24, 27] aims to identify videos
that most accurately correspond to a textual query, and
vice versa, where textual descriptions are retrieved based
on video content. With the exponential growth of online
videos and the increasing use of video platforms, video-text
retrieval has become a critical task and benefits broad ap-
plications across various domains [2, 11, 42]. This task
is fundamental to cross-modal understanding and presents
significant challenges due to the substantial disparities in
representation between video and text modalities.
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Figure 1. The motivation of our proposed method. (a) The illus-
tration of noisy correspondence. (b) A set of representative refer-
ence pairs (termed agents). (c) False matches tend to occur under
conditions where noise correspondence leads to inaccurate super-
vision signals. (d) The proposed ranking distribution consistency
suppresses false matches and provides a more reliable supervision.

In prior literature, the dominant paradigm for video-text
retrieval is to establish correspondences between the video
and text modalities by global-level and local-level align-
ments. Specifically, global-level methods [8, 24, 25, 27]
achieve semantic alignment by leveraging contrastive learn-
ing on holistic representations of videos and texts. For
local-level methods [5, 15, 44, 45], cross-modal correspon-
dences are established through more fine-grained align-
ments, such as frame-to-word [44] or action/entity-level
alignments [5, 15]. Although these methods have shown
promising results, they are based on the core assumption of
accurate visual-language correspondences during training,
making their performance heavily reliant on the availability
of high-quality annotated data.

However, collecting such high-quality annotated data is
resource-intensive and time-consuming. In fact, due to fac-
tors such as non-expert annotators and web crawling noise,
it is often difficult or unrealistic to maintain the assump-
tion that every video-text pair in a dataset is accurately
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matched (see Fig. 1(a)). Therefore, the dataset collection
process inevitably introduces some semantically irrelevant
video-text pairs, which are erroneously treated as matched
pairs, referred to as noisy correspondences (NC). Align-
ing these mismatched pairs during training can mislead the
model and substantially degrade its matching performance.

To mitigate the negative impact of noisy data pairs, a
series of noise-rectify approaches [10, 13, 49, 52] have
been developed. These works typically divide the orig-
inal training data into clean and noisy subsets based on
the memory effect of DNNs [3] and achieve robust match-
ing through label correction. Despite achieving some suc-
cess, these methods are highly sensitive to clean sample
selection, which relies heavily on the model’s similarity
prediction. Confident yet erroneous predictions tend to
be self-perpetuating, where noisy correspondences can be
strengthened and memorized in subsequent training, result-
ing in a feedback loop of error accumulation, especially
with high noise ratios. Furthermore, erroneous supervision
from noisy data can impair the model’s representation abil-
ity, increasing the likelihood of mismatches between video
and text. This situation further deteriorates the establish-
ment of connections between the video and text modalities.

In this paper, we investigate the limitations of noise-
rectify methods, and provide a novel viewpoint on rep-
resentative reference features (termed agents) to establish
more reliable supervision for robust video-text retrieval un-
der noisy correspondences (NC). Intuitively, most methods
ignore that video-text retrieval involves rich inter-pair cor-
relation in addition to simple single-pair similarity. This
highlights the potential of closer cooperation between the
inter-pair correlation and single-pair similarity to reliably
mitigate the effects of NC. The core point is that, for each
video/text, we can acquire the agent-level correlation (i.e.,
a likelihood vector) via a group of representative refer-
ence agents (see Fig.1(b)) to capture the inter-pair rela-
tion. Essentially, the agent-level correlation captures the
consistency across a wider scope. Therefore, it encapsu-
lates a higher-order correlation regularization to rectify er-
roneously matched video-text pairs caused by NC. Build-
ing on the preceding analysis, it follows logically to en-
force the regularization based on the agent-level correla-
tion. However, this simple regularization considers each
agent in isolation and is overly dependent on independent
and identically distributed (i.i.d.) assumption, resulting in
limited model optimization. Indeed, specific structural re-
lations exist among the agents. For instance, as depicted
in Fig. 1(b), agent α and agent γ are both ‘a man’, while
agent β is ‘a woman’. Accordingly, agent α should be more
closely related to agent γ than agent β. To utilize the inter-
agent structural relations, rather than treating each agent in
isolation, we meticulously develop a relation-aware align-
ment based on ranking distribution. The main principle is

to treat the agent ranking as a stochastic event instead of a
fixed permutation. Given a video/text, the varying similarity
among different agents can be viewed as ranking probabil-
ities. The ranking permutation indicates the relation of the
corresponding agents to video/text. By associating every
ranking permutation of the agents, we build the relation-
aware ranking distribution of video and text. As shown
in Fig. 1(d), the consistency of the relation-aware ranking
distribution between video and text provides more reliable
guidance for the model optimization under NC.

However, it is non-trivial to learn the agents well with-
out any correspondence supervision. For agent mining, we
meticulously design this customized for the following three
characteristics. (1) Reliability. Since similarity calculation
plays a crucial role in video-text retrieval particularly un-
der NC, confident yet erroneous calculations can adversely
affect all subsequent processes. Therefore, we design a
semantic purification mechanism instead of a simple dot
product. Based on this, we perform a bi-directional evalua-
tion strategy to select agents with relatively high reliability.
(2) Representativeness. Intuitively, the agents should rep-
resent a broad array of semantics from both video and text
modality. Therefore, we adopt a cross-aggregation mech-
anism that allows the agents to recognize the semantics of
current pair and extend to the semantics of various video-
text pairs. (3) Resilience. Given the substantial gap be-
tween video and text, it is essential for agents to narrow this
gap and increase their referability. Specifically, we attach a
self-aggregation mechanism to refine agents by harmoniz-
ing the inherent resilience between video and text.

In this work, our contributions can be concluded as fol-
lows: (1) We analyze the bottlenecks exist in noise-rectify
methods for amending video-text pair consistency regular-
ization. To the best of our knowledge, this is the first work
to mitigate the NC in VTR methods, from the perspective of
representative reference features. (2) We develop a coherent
RPC network, including construction of reliable and repre-
sentative agents and a ranking distribution-based alignment
to capture structure information inherent in inter-agent re-
lationships. They can cooperate well to enable more robust
matching. (3) Extensive experimental results on five chal-
lenging benchmarks show that our method achieves notable
performance improvements, with particularly pronounced
gains under high noise ratios.

2. Related Work
In this section, we briefly overview several lines of research
in video-text retrieval and noisy correspondence learning.

2.1. Video-Text Retrieval
Building on advances in deep neural networks [22, 28,
31, 33, 39, 41, 46, 47], many video-text retrieval meth-
ods have been proposed and achieved remarkable results.
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These methods broadly fall into two categories based on
the alignment: global-matching [6, 8, 24, 25, 27] and local-
matching methods [5, 15, 44, 45]. Global-matching meth-
ods aim to learn and align holistic video/text features within
a joint embedding space. Local-matching methods estab-
lish fine-grained alignments, such as frame-word, action,
and event levels, enabling more precise matching. Recently,
visual-language pre-training (VLP) [14, 21, 37], particu-
larly CLIP [37], has gained increasing attention. Benefiting
from VLP, several works [9, 16, 19, 25, 27, 30, 53] have
been proposed to exploit the powerful knowledge of CLIP
for VTR. Despite achieving promising results, these meth-
ods typically rely on the implicit assumption that all training
pairs are accurately matched. However, this assumption is
often unrealistic, as real-world data is frequently affected
by pervasive noise. In this paper, we tackle the unavoidable
and intractable issue of noisy correspondences.

2.2. Learning with Noisy Correspondence
Noisy correspondence (NC) was first proposed in NCR [13]
and is a novel paradigm in the field of noise learning. Un-
like conventional noisy label which denotes incorrect cate-
gory labels [23, 40], NC denotes alignment errors in paired
data, i.e., semantically irrelevant videos and texts are incor-
rectly treated as matched. To mitigate this problem, various
approaches have emerged, which are mainly classified into
two categories: noise-rectify paradigm [10, 13, 29, 36, 49,
52] and robust loss functions [7, 12, 34, 35]. Noise-rectify
methods typically partition the training set into clean and
noisy subsets and alleviate the effects of noise through the
label correction. Robust loss function methods concentrate
on designing noise-tolerant loss functions to enhance the ro-
bustness of the model against NC during training. Although
these methods have shown promising results in numerous
tasks, the area of VTR still lacks sufficient exploration. In
this paper, we offer a fresh perspective on representative
reference features to construct more safe and effective su-
pervision signals for robust video-text retrieval under NC.

3. Method

3.1. Problem Definition
Given a dataset D = {(vi, ti)}Ni=1, where (vi, ti) is the i-th
video-text pair and N is the dataset size, video-text retrieval
seeks to learn a similarity function s(·) that assigns a high
similarity score to semantically related video-text pair and
a low similarity score to irrelevant pair. Formally, given a
pair of text ti with Nt words and a video vi with Nv frames,
we feed ti and vi into a text encoder and a video encoder,
respectively, to obtain their corresponding embeddings ti =
[w0

i ,w
1
i , · · · ,w

Nt
i ] and vi = [f1i , f

2
i , · · · , f

Nv
i ]. Here, w0

i

denotes the [CLS] token and fni denotes the n-th frame
feature. The similarity between video and text is calculated

based on the features ti and vi, for instance, by computing
the inner product of the [CLS] token w0

i and the average
frame features vi = Avg([f1i , f

2
i , · · · , f

Nv
i ]):

s(vi, ti) =
〈
w0

i ,vi

〉
. (1)

Given a batch of B video-text pairs {(vi, ti)}Bi=1, the In-
foNCE loss [32] is employed to maximize the similarity be-
tween annotated video-text pairs (vi, ti) and minimize the
similarity for irrelevant pairs (vi, tj , i ̸= j):

Lt2v = − 1

B

B∑
i

(log
es(ti,vi)/τ∑B
j es(ti,vj)/τ

), (2)

Lv2t = − 1

B

B∑
i

(log
es(vi,ti)/τ∑B
j es(vi,tj)/τ

), (3)

Linfo =
1

2
(Lt2v + Lv2t), (4)

where τ is the temperature parameter. In reality, due to
unavoidable annotation errors during the dataset collection
process, some mismatched pairs are erroneously labeled as
matched, resulting in noisy correspondences (NC) and con-
sequently causing a decline in performance. Our objective
is to alleviate the detrimental effects of NC for robust VTR.

3.2. Overview of Framework
As illustrated in Fig. 2, the proposed RPC mainly includes
two procedures, i.e., 1) representative agents construction,
and 2) relation-aware ranking distribution alignment. In
procedure 1), we develop the semantic purification mecha-
nism, cross-aggregation, and self-aggregation to ensure the
reliability, representativeness, and resilience of the agents,
respectively. In procedure 2), we conduct agent-ranking
probability distributions for each video/text features on cor-
responding agents. The details are as follows.

3.3. Agents Construction
It is non-trivial to construct agents well-tailored for each
video-text pair without any correspondence supervision.
The agent construction process comprises three compo-
nents, namely semantic purification, cross-aggregation, and
self-aggregation, which equip the agents with reliability,
representativeness, and resilience, respectively.

Semantic Purification Mechanism. Similarity calcu-
lation is crucial for video-text alignment, with further in-
creased demands for similarity reliability in the NC. How-
ever, few noisy correspondence learning methods have ex-
plored this area. In the mainstream noise-rectify paradigm,
confident yet incorrect similarity calculations can lead to
errors in subsequent noisy subset partitioning and label
correction, which tend to be self-perpetuating. Thus, to
improve the reliability of similarity calculation, we use
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Figure 2. Framework of proposed Relation-aware Purified Consistency (RPC) Network. There are two main procedures: 1) representative
agents construction and 2) relation-aware alignment based on ranking distribution, with noisy pairs in red border and clean pairs in green.

a purified maximum-correspondence interaction to con-
solidate the alignment. In specific, we begin by com-
puting the token-wise similarity between frame embed-
dings vp = [f1p , f

2
p , · · · , fNv

p ] and word embeddings tq =

[w0
q ,w

1
q , · · · ,wNt

q ] to generate the frame-word similarity

matrix S ∈ RNv×Nt , where (S)ij = (f i)Twj

∥f i∥∥wj∥ denotes the
similarity between i-th frame and j-th word. For simplicity,
we omit the subscript indicating the p-th video and q-th text.

Next, we select the most closely aligned word (frame)
for each frame (word), i.e., the highest scores in each row
and column of S . We then calculate the weighted average
of these highest scores to obtain the overall similarity score
between the video vp and text tq , denoted as s(vp, tq):

s(vp, tq) =

Nv∑
i=1

ωi
v max

j
(S)ij +

Nt∑
j=1

ωj
t max

i
(S)ij , (5)

ωi
v =

d(w0, f i)√
L

, ωj
t =

d(v,wj)√
L

, (6)

where w0 denotes [CLS] of text, v is obtained by average
pooling over all frame features, d(·, ·) denotes the dot prod-
uct similarity in [43] and

√
L is a scaling factor. Moreover,

due to the presence of semantic inconsistency and noise,
some frames may be semantically irrelevant to any of the
words, and vice versa. Hence, it is unreasonable to include
all the so-called ‘most aligned’ frame-word pairs in the sim-
ilarity computation. To reduce the negative impact and pu-
rify similarity calculation, we measure the holistic relevance

of the video and text as a threshold in a data-driven manner:

ωi
⋆ =

{
ωi
⋆ ωi

⋆ > δ

0 ωi
⋆ ≤ δ

, δ =
d(w0,v)

α
√
L

, ⋆ ∈ {v, t}. (7)

Finally, we use the purified similarity from Eqs. 5-7 to de-
termine the relative reliability of video-text pairs based on
bidirectional cross-modal correspondences.

yi =
1

2

(
es(ti,vi)/τ∑B
j es(ti,vj)/τ

+
es(vi,ti)/τ∑B
j es(vi,tj)/τ

)
, (8)

where s(ti, vj) is the similarity between i-th text and j-
th video in Eq. 5 and τ is the temperature parameter. For
clean pairs, ti and vi should exhibit dominant similarity in
both retrieval directions, yielding a metric value close to
1. In contrast, for noisy pairs, the similarity dominance in
both directions cannot be simultaneously achieved, leading
to a smaller metric value. Thus, yi can be used to indi-
cate cleanliness of i-th pair. The top-K clean pairs are se-
lected as reference agents, denoted as A = {(vak , tak)}Kk=1.
The corresponding video and text features are represented
as FA

v = [va
1 ,v

a
2 , · · · ,va

K ] and FA
t = [ta1 , t

a
2 , · · · , taK ].

Cross-aggregation Mechanism. The agents should res-
onate favorably with the rich semantics of different videos
and texts. To enrich the semantics of the initial agents
above, we employ the cross-aggregation mechanism to con-
dense the various semantics into the corresponding agents.
In specific, we derive the queries Q⋆ from the agent fea-
tures FA

⋆ , the keys K⋆ for obtaining aggregation weights
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from the video or text features F ⋆, and the values V⋆ for
feature aggregation from F ⋆. Here, we use ⋆ to indicate the
subscript, with ⋆ ∈ {V, T} for brevity.

Q⋆ = FA
⋆ W

Q
⋆ , K⋆ = F ⋆W

K
⋆ , V⋆ = F ⋆W

V
⋆ , (9)

F̂
A

⋆ = softmax(
Q⋆K

T
⋆√

L
)V⋆, (10)

where WQ
⋆ ,WK

⋆ ,W
V
⋆ ∈ RL×L are linear projections, and√

L is scaling factor. Subsequently, a feed-forward net-
work is employed to derive the F̂

A

v = [v̂a
1 , v̂

a
2 , · · · , v̂a

K ] and

F̂
A

t = [̂ta1 , t̂
a
2 , · · · , t̂aK ], which include abundant semantics.

Self-aggregation Mechanism. The formulated F̂
A

v and

F̂
A

t are respectively derived from the video and text fea-
tures that exhibit substantial disparities due to significant
modality gap. To narrow this gap, we introduce the self-
aggregation mechanism to integrate complementary infor-
mation. Specifically, we first concatenate the F̂

A

v and F̂
A

t :

F̂
A
= concat(F̂

A

v , F̂
A

t ). (11)

Next, we employ multi-head self-attention on the F̂
A

:

Q = F̂
A
WQ, K = F̂

A
WK, V = F̂

A
WV , (12)

F̃
A

⋆ = softmax(
Q⋆K

T
⋆√

L
)V⋆, (13)

where WQ,WK,WV ∈ RL×L are the linear projections.
After these three processes, we establish highly reliable
agents F̃

A

v , F̃
A

t ∈ RK×L that capture rich semantic infor-
mation and exhibit cross-modal resilience.

3.4. Relation-aware Alignment
With the obtained agents as references, a straightforward
approach is to enforce consistency constraint on the agent-
level alignment (rv and rt) between the i-th video-text pair.

ri⋆ = softmax(F i
⋆(F̃

A

⋆ )
T), ⋆ ∈ {v, t}, (14)

where r⋆ ∈ R1×K . However, considering each agent sep-
arately increases the likelihood of misalignment, especially
under noise correspondence. By further incorporating the
structural information inherent in inter-agent relations, we
meticulously develop the relation-aware alignment based on
ranking distribution for more reliable supervision. The pri-
mary concept is to treat agent ranking as a random event
instead of a fixed permutation. In other words, each permu-
tation of the agents occurs with a certain probability, instead
of a fixed order from largest to smallest. Given r, the prob-
ability associated with a permutation π ∈ P (|P| = N !) is
computed as:

P (π|r) =
K∏

k=1

rπ(k)∑K
k′=k rπ(k′ )

. (15)

Here, π(k) refers to k-th agent index in this permutation.
For example, assume that for a given video-text pair, the
constructed agents are α, β and γ. One possible permuta-
tion of these three agents is π = (α, β, γ). The probability
of π can be obtained from the agent correlation r:

P (π|r) = r(α)

r(α) + r(β) + r(γ)
· r(β)

r(β) + r(γ)
· r(γ)
r(γ)

. (16)

Based on the probabilities of all |P| permutations, we con-
vert simple dot product alignment r into relation-aware
ranking distribution P (P|r) ∈ R1×|P|. Under this view,
ranking distribution captures the inter-agent relationship.
Generally, calculating all permutations of the K agents
would incur prohibitively high costs. In this regard, we ob-
served that the top-4 agents account for nearly all the weight
in Eq. 14. Therefore, we consider only the permutations of
the top-4 agents for each video/text for efficiency. Note that
for simplicity, we omitted the subscript denoting modality
of r in the above process, as the principles are consistent
across both modalities. Based on the agent-ranking distri-
bution of video P (P|rv) and text P (P|rt), we can obtain
the consistency between them as supervision:

Sij
rank = cos(P (P|riv), P (P|rjt )). (17)

As a result, the relation-aware ranking distribution align-
ment regularization can be derived as:

Lrank =
1

B

B∑
i

KL(Si,:
rank, s

i,:), (18)

where B is the batch size, KL denotes KL divergence and
sij = s(vi, tj) is defined in Eq. 5. Finally, the overall loss
function is formulated as:

L = Linfo + λLrank, (19)

where λ is weight coefficient.

4. Experiments
4.1. Experiment Setup
Datasets. MSR-VTT [48] includes 10,000 videos, each ac-
companied by 20 captions. Following [52], we use two data
splits: full and 1k-A [50]. LSMDC [38] contains 118,081
videos with equal captions from 202 movies. The 1,000
test videos are from movies disjoint with the training set.
MSVD [4] contains 1,970 videos with 80,000 captions. We
use 1,200, 100, and 670 videos to train, validate, and test,
respectively. ActivityNet [18] contains 20,000 YouTube
videos. Following [27, 51], we concatenate all descriptions
of a video to form a paragraph and evaluate with video-
paragraph retrieval on the ‘val1’ split. DiDeMo [1] contains
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Table 1. Retrieval performance under 0%, 20% and 50% noise rates on MSR-VTT full and 1k-A. The best results are highlighted in bold.

Noise Method
MSR-VTT Full MSR-VTT 1kA

Text to Video Video to Text Text to Video Video to Text
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CE [24] 10.0 29.0 41.2 15.6 40.9 55.2 20.9 48.8 62.4 20.6 50.3 64.0
MMT [8] - - - - - - 24.6 54.0 67.1 24.4 56.0 67.8

TT-CE+ [6] 15.0 38.5 51.7 25.3 55.6 68.6 - - - - - -
0% T2VLAD [45] 12.7 34.8 47.1 20.7 48.9 62.1 29.5 59.0 70.1 31.8 60.0 71.1

CLIP4Clip [27] 23.6 46.4 57.1 39.6 67.5 77.5 44.5 71.4 81.6 42.7 70.9 80.6
RVTR [52] 24.3 47.2 59.0 40.9 69.4 79.3 45.8 73.0 83.5 43.9 72.6 82.0

Ours 29.8 55.8 66.5 51.6 81.2 90.6 47.6 73.2 83.6 46.3 73.9 83.4

CE [24] 7.4 22.3 32.8 10.2 30.6 42.3 14.8 40.3 52.5 15.2 39.2 40.4
MMT [8] - - - - - - 20.4 50.1 65.7 19.8 50.3 64.4

TT-CE+ [6] 7.5 22.6 33.6 10.9 32.1 44.7 - - - - - -
20% T2VLAD [45] - - - - - - 21.3 44.7 56.3 22.4 45.4 59.0

CLIP4Clip [27] 9.3 23.1 31.9 15.8 35.3 46.3 27.6 52.0 63.7 22.6 47.6 60.0
RVTR [52] 20.8 43.1 54.7 34.6 62.7 75.0 42.3 69.7 81.0 41.0 70.8 79.3

Ours 28.3 53.7 64.4 50.0 80.0 88.1 46.1 72.3 82.4 45.5 72.9 82.6

CE [24] 4.4 14.3 21.6 3.5 13.1 20.1 9.1 23.6 31.0 6.4 19.8 27.3
MMT [8] - - - - - - 14.8 28.0 39.7 13.6 26.4 36.1

TT-CE+ [6] 5.3 17.6 27.3 7.3 23.1 34.7 - - - - - -
50% T2VLAD [45] - - - - - - 2.9 7.8 10.7 3.0 12.8 21.7

CLIP4Clip [27] 11.7 28.0 37.7 8.6 21.9 31.3 24.4 48.7 59.6 23.4 47.1 58.5
RVTR [52] 18.4 38.9 49.9 30.6 60.9 71.0 36.2 61.6 73.7 36.0 61.7 73.0

Ours 27.1 52.1 62.7 48.1 78.2 87.8 44.6 71.1 81.2 44.3 71.9 82.4

10,000 videos with 40,000 captions. Following [20, 24], we
also evaluate with video-paragraph retrieval.
Evaluation Metrics. We evaluate the retrieval performance
by standard video-text retrieval metrics Recall at K (R@K,
higher is better). R@K is defined as the percentage of cor-
rect videos/texts within the top K retrieved videos/texts.
Following [27, 52], K was set to 1, 5, and 50 for Activi-
tyNet, and 1, 5, and 10 for the other four datasets.
Implementation Details. Following [27, 52], visual and
text encoders are initialized from CLIP with ViT-B/32 [37].
For MSR-VTT, LSMDC, and MSVD, the frame length Nv

and text length Nt are set as 12 and 32. For ActivityNet
and DiDeMo, Nv and Nt are 64. Feature dimension L is
set as 512 for all benchmarks, and α is set as 5. All frames
are resized into 224 × 224. Our model is optimized with
Adam [17] and the cosine learning rate schedule [26] is em-
ployed. The initial learning rate is set as 1e-7 for CLIP en-
coders and 1e-4 for others. The batch size is set as 128. The
number of agent K is 10 and weight coefficient λ is 0.2.

4.2. Comparison with State-of-the-arts
We compared our method with previous state-of-the-art
methods on five popular benchmarks. To comprehensively
evaluate the robustness of our method, we simulate two lev-
els of noisy correspondences, namely 20%, and 50% by ran-
domly shuffling the captions like [52].
Results on MSR-VTT. As shown in Tab. 1, our method
consistently outperforms previous advanced methods across
various scenarios, clearly demonstrating its effectiveness.

Specifically, we analyze the results from the following per-
spectives. (1) In the synthetic NC settings, our method sig-
nificantly exceeds all methods under all noise ratios. No-
tably, at 50% noise, our method achieves R@1 gains of 8.7,
and 8.4 over the best baseline RVTR [52] across full and
1k-A splits. (2) As the noise rate rises, other methods expe-
rience significant performance degradation, while ours de-
creases only slightly. For example, on 1k-A split, as the
noise rate rises from 20% to 50%, the R@1 of the RVTR
decreases by 6.1, whereas our method only decreases by
1.5. (3) In the NC-free setting, our method also outperforms
state-of-the-art approaches, further demonstrating the effec-
tiveness and advantage of our method.

Results on Other Four Datasets. Tabs. 2 and 3 demon-
strate the performance comparison on MSVD, LSMDC,
ActivityNet, and Didemo. It can be found that our method
constantly surpasses other methods across all metrics by a
significant margin. These results underscore the powerful
reliable semantic alignment capability under the noisy cor-
respondence setting of our method.

Stability Comparison. To further highlight the stability
of our method, we plot the text-to-video R@1 curves for
each method in MSR-VTT 1k-A at increasing noise ratios
in Fig. 3. It can be observed that our method exceeds all
other methods across all noise ratios. Meanwhile, as the
noise ratio increases, the performance degradation of our
method is much smaller compared to other methods. The
results show that our method is highly noise-resistant.
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Table 2. Retrieval performance under 50% noise rates on MSVD and LSMDC. The best results are highlighted in bold.

Method
MSVD LSMDC

Text to Video Video to Text Text to Video Video to Text
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CE [24] 9.9 27.8 40.6 11.8 27.9 38.7 4.6 13.9 22.2 5.2 14.8 21.7
MMT [8] - - - - - - 5.1 13.9 20.1 5.1 13.7 19.9

TT-CE+ [6] 10.5 32.5 47.4 12.1 31.9 43.7 6.2 20.5 27.3 8.8 18.0 24.7
CLIP4Clip [27] 8.4 22.3 33.4 6.2 17.4 29.8 14.3 32.3 41.7 13.9 29.8 40.4

RVTR [52] 28.7 57.0 70.3 30.0 64.9 80.0 19.2 38.0 47.0 19.9 38.1 46.5

Ours 38.5 69.9 80.9 48.1 71.8 81.3 22.8 42.3 52.4 22.0 39.8 50.9

Table 3. Retrieval performance under 50% noise rates on DiDeMo and ActivityNet. The best results are highlighted in bold.

Method
DiDeMo ActivityNet

Text to Video Video to Text Text to Video Video to Text
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@50 R@1 R@5 R@50

CE [24] 5.7 18.1 28.0 6.5 19.3 27.6 5.1 15.8 55.4 4.2 15.4 61.0
MMT [8] - - - - - - 19.1 48.0 87.0 19.8 48.1 86.6

TT-CE+ [6] 12.5 31.5 42.5 11.8 31.1 42.2 7.3 24.1 69.1 4.9 15.3 51.1
CLIP4Clip [27] 14.5 36.2 48.3 15.6 37.7 50.7 8.4 25.8 38.3 4.2 16.3 26.8

RVTR [52] 26.9 49.5 59.9 27.0 50.1 59.5 31.2 61.3 95.9 34.2 62.8 94.9

Ours 34.7 63.4 74.4 33.4 61.8 73.2 33.0 63.2 96.1 35.9 65.9 96.4

Table 4. Ablation on different agent initialization strategies.

Text-to-Video Video-to-Text

Method R@1 R@5 R@10 R@1 R@5 R@10

All 43.1 70.2 80.5 42.9 70.8 81.1
Learnable 42.9 69.8 80.6 43.3 71.1 80.2
Random 42.8 70.0 79.7 43.1 70.6 80.5

Ours 44.6 71.1 81.2 44.3 71.9 82.4

Table 5. Ablation on agents construction.

Agents Construction Text-to-Video Video-to-Text

SPM Cross Self R@1 R@5 R@10 R@1 R@5 R@10

40.4 66.1 77.4 40.1 67.6 76.8
✓ 42.9 69.8 79.5 42.6 70.8 80.5
✓ ✓ 43.7 70.3 81.1 43.3 71.6 81.7
✓ ✓ 43.3 70.4 80.4 43.5 71.7 81.4
✓ ✓ ✓ 44.6 71.1 81.2 44.3 71.9 82.4

Table 6. Ablation on relation-aware correlation consistency.

Text-to-Video Video-to-Text

Method R@1 R@5 R@10 R@1 R@5 R@10

Pair-wise 39.3 65.5 76.1 40.1 66.7 75.3
Agent-level 42.6 70.6 78.7 42.9 70.0 80.4
Ours 44.6 71.1 81.2 44.3 71.9 82.4

4.3. Ablation Study

To examine the effectiveness of our method, we conduct
extensive ablation studies on MSR-VTT 1k-A at 50% noise.

Effectiveness of Agent Construction. As shown in Tab. 5,
we conduct diagnostic experiments progressively to verify
the effectiveness of each components in the agents con-
struction process. Note that the first line indicates the re-
sult of applying relation-aware alignment in the absence of
proposed agent construction process. We can observe that
this result has already surpassed the previous state-of-the-
art methods, which fully demonstrates the effectiveness of
relation-aware alignment. The 2-nd row shows the intro-
duction of semantic purification mechanism (SPM) yields a
substantial performance lift, i.e., 2.5 on R@1. The gains can
primarily be attributed to our more reliable similarity calcu-
lation method, which effectively suppresses false matches.
By further integrating the cross-aggregation, performance
improved by 0.8 R@1. This can be mainly ascribed to vari-
ous semantic cues absorbed during cross-attention. Finally,
when the self-aggregation is adopted, the performance in-
creases by 0.9 R@1. This proves that refined agents after
self-aggregation bridge the modality gap.

Ablation on Agent Initialization. To explore the effec-
tiveness of different agent selection strategies, we compare
the performance of several intuitive initialization ways in
Tab. 4. In these methods, ‘All’ indicates that all video-text
pairs are used as agents. ‘Random’ refers to randomly se-
lecting k video-text pairs as agents. ‘Learnable’ means that
agents are randomly initialized trainable parameters. It can
be found that our bidirectional selection consistently ex-
ceeds other methods. This can be attributed to the fact that
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Figure 3. R@1 comparison for each method at various noise ratios.

Figure 4. Hyperparameter experiments on the number of agents
and weight for the regularization in Eq. 19.

Figure 5. The similarity distribution of clean pairs and noisy pairs
before and after training on MSR-VTT with a 50% noise rate.

a man stirs the liquid in a pot with a spoon

GT: people are parodying a beauty pageant in a comedy show

Similarity: 0.31 Rank Consistency: 0.04

a young blonde girl is lying down on a bed

GT: someone explaining how to surf the website view47

Similarity: 0.28 Rank Consistency: 0.05

这个similarity的值 需要和sim分布的值保持一致啊
Figure 6. Instances of NC in MSR-VTT training set with 50%
noise, where noisy texts are highlighted in red, and for clarity, the
corresponding ground truth is displayed below in green. The pro-
posed ranking consistency more accurately reflects the true degree
of correspondence compared to pair-wise similarity.

our method selects more reliable agents as references, while
effectively alleviating the interference from noisy pairs.

Effectiveness of Relation-aware Alignment. As shown
in Tab. 6, we compare the performance of different cor-
relation schemes. ‘Pair-wise’ denotes directly calculating
one-to-one similarity between video and text. ‘Agent-level’
refers to measuring the similarity of agent-level correlation
in Eq. 14 via the dot product or L2 distance. The former
may lead to considerable false matches, while the latter
overlooks the inherent relationships between agents. The
proposed relation-aware alignment yields optimal results,
underscoring that modeling inter-agents relationships pro-
vides more effective and reliable supervision.
Hyperparameter Evaluations. Quantitative experiments
are conducted to explore the appropriate number of agents
and weight for the ranking regularization. As illustrated in
Fig. 4(a), the performance continues to grow until the num-
ber reaches 10, beyond which it starts to decline. It is rea-
sonable as too few agents cannot represent diverse semantic
information while too many agents increase the risk of in-
terference from noisy samples. Similarly, in Fig. 4(b), both
too small or too large for λ will lead to suboptimal results,
and we select 0.2 in our experiments. Overall, our method
exhibits robustness to variations in hyperparameters.

4.4. Qualitative Results
To further analyze and understand the proposed RPC, we
show several qualitative examples in MSR-VTT under 50%
noise. In Fig. 5, it can be observed that after training, the
mean of the clean sample distribution becomes distinctly
separated from that of the noisy sample distribution. In
Fig. 6, it can be noticed that noisy samples incorrectly
learn relatively high similarity due to erroneous supervision,
whereas our ranking consistency accurately and reliably re-
flects the true semantic relevance. Note that 0.3 is already
a relatively high similarity (see Fig. 5). For more results,
please refer to Supplementary Material.

5. Conclusion

In this paper, we present a novel and coherent RPC network,
including reliable, representative, and resilient agents con-
struction and relation-aware ranking distribution alignment,
to tackle the challenging video-text retrieval under NC. We
not only achieve consistent performance gains over state-of-
the-art methods on five datasets under different settings, but
also opens up new avenues from the perspective of repre-
sentative reference features. We hope this paper could help
advance the issue in future research.
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