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Abstract

This work tackles the fidelity objective in the perceptual

super-resolution (SR) task. Specifically, we address the

shortcomings of pixel-level Lp loss (Lpix) in the GAN-based

SR framework. Since Lpix is known to have a trade-off

relationship against perceptual quality, prior methods of-

ten multiply a small scale factor or utilize low-pass filters.

However, this work shows that these circumventions fail to

address the fundamental factor that induces blurring. Ac-

cordingly, we focus on two points: 1) precisely discrimi-

nating the subcomponent of Lpix that contributes to blur-

ring, and 2) only guiding based on the factor that is free

from this trade-off relationship. We show that they can be

achieved in a surprisingly simple manner, with an Auto-

Encoder (AE) pretrained with Lpix. Accordingly, we pro-

pose the Auto-Encoded Supervision for Optimal Penaliza-

tion loss (LAESOP), a novel loss function that measures dis-

tance in the AE space 1, instead of the raw pixel space. By

simply substituting Lpix with LAESOP, we can provide effec-

tive reconstruction guidance without compromising percep-

tual quality. Designed for simplicity, our method enables

easy integration into existing SR frameworks. Extensive ex-

periments demonstrate the effectiveness of AESOP.

1. Introduction

Image Super-Resolution is a fundamental challenge in im-

age processing, where the goal is to reconstruct an unknown

high-resolution (HR) image from its low-resolution (LR)

counterpart. Recent advances in this field have branched

into two distinct mainstreams; fidelity-oriented SR and

perceptual quality oriented SR (perceptual SR). Fidelity-

oriented SR methods aim for high fidelity towards the HR

image on a pixel-wise basis. These methods generally adopt

the per-pixel reconstruction loss Lpix (i.e., pixel-level Lp

loss), thereby regressing the unique point that minimizes the

expected error. This unique point of minimum expected er-

ror is known as the average point over multiple plausible

solutions [31], which we will refer to as the optimal fidelity

*Corresponding author.
1AE space indicates the space after the decoder, not the bottleneck.

point (brown dot in Fig.1.(a)) throughout this work. Another

branch of research is the perceptual SR task where the em-

phasis is on generating visually plausible SR images rather

than mere minimum pixel-wise error. Notably, the inherent

ill-posedness leads perceptual SR to exhibit a range of vari-

ant realistic solutions (multiple purple points in Fig.1.(a)),

each pivotal to the aforementioned optimal fidelity point.

Here, the representative framework in perceptual SR is

the SRGAN-based [30] framework, which utilizes percep-

tual quality oriented losses [22, 54] together with Lpix, the

de facto training scheme. Yet, since these methods rely on

Lpix as their fidelity loss term, they cannot avoid the blurring

phenomenon as shown in the perception-distortion (PD)

trade-off [2]. To address this, they either apply a small coef-

ficient [30, 54] to Lpix or use low-pass filters (LPF) [11, 69]

before calculating Lpix. However, we point out that these

circumventions result in suboptimal performance, as they

misinterpret the implications of Lpix and fail to distinguish

between factors that cause blurring and those that do not.

Accordingly, this work revisits Lpix and aims to correctly

analyze the implications of it, by introducing two key fac-

tors of an SR image: 1) the perceptual variance factor, and

2) the fidelity bias factor. Here, the perceptual variance is a

necessary variance that captures realistic textures and fine

details (red line in Fig.1.(a)). Meanwhile, the fidelity bias

is the residual component of the SR image, apart from the

perceptual variance factor. This can be understood as the

blurry average solution without the fine-grained texture that

possesses randomness (no variance, Fig.3.(d)), or can also

be understood as the centroid of the distribution where the

SR image was originally expected to be sampled from (or-

ange dot in Fig.1.(a)). For an optimal SR image (or the HR),

the fidelity bias of itself is the optimal fidelity point.

In terms of these two key components defined above, we

will show that Lpix is identical to minimizing both the fi-

delity bias induced errors and the perceptual variance factor.

However, while minimizing the fidelity bias induced error is

an intended aspect of Lpix, vanishing perceptual variance is

not suitable in perceptual SR. Specifically, when the percep-

tual variance factor is minimized, the prediction space de-

generates and the SR image converges to the blurry average
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Figure 1. Conceptual illustration of the proposed AESOP loss and the pixel-level Lp reconstruction guidance employed in typical perceptual

SR methods. (a) Fidelity oriented SR network trained with Lpix estimates the average over plausible solutions (i.e., the optimal fidelity

point). Meanwhile, perceptual SR involves a range of multiple solutions, standing around the optimal fidelity point. Thus, we identify two

fundamental components of a perceptual SR image as 1) the perceptual variance factor (red line), a factor that possesses randomness and

contributes to realistic textures, and 2) the fidelity bias term (orange dot), the residual blurry component of an SR image, contributing to the

overall fidelity, apart from the perceptual variance. (b) Typical perceptual SR methods adopt Lpix for reconstruction guidance, which pushes

the perceptual variance factor to vanish. Thus, when combined with perceptual quality oriented losses that encourage this variance factor,

conflict arises, leading to suboptimal performance. (c) In contrast, LAESOP only penalizes the fidelity bias-induced error, while preserving

these critical perceptual variance factors. This ensures improved fidelity without sacrificing perceptual quality.

image as in Fig.1.(b). Meanwhile, perceptual quality ori-

ented losses aim to preserve this necessary perceptual vari-

ance, which indicates a conflict against Lpix. Consequently,

as long as the SR network receives reconstruction guidance

fromLpix, the perceptual quality oriented losses cannot con-

verge to an optimal point, limiting the visual quality.

Now, we focus on the other counterpart of the SR image,

the fidelity bias, and the error induced by it. The fidelity bias

induced error indicates the overall degree of misalignment

between the prediction space and the solution space. Ac-

cordingly, reducing the fidelity bias induced error is iden-

tical to aligning the centroids of the prediction space and

the solution space, without altering the range of the pre-

diction space (i.e., preserving perceptual variance), as in

Fig.1.(c). Thus, by reducing the fidelity bias induced error,

we can achieve improved fidelity without degrading percep-

tual variance, which is a highly desired aspect for optimal

reconstruction guidance in the perspective of perceptual SR.

Accordingly, this motivates us to design a novel recon-

struction loss that can precisely discriminate the fidelity bias

and the perceptual variance, and solely penalize based on

the fidelity bias term. Notably, we will show that this can

be surprisingly simplified with a pretrained Auto-Encoder

(AE). We will pretrain an AE with Lpix, and take Lp in the

AE space instead of raw pixel space. Since Lpix removes

perceptual variances, loss in the AE space will enable us

to penalize solely based on fidelity biases. Importantly, we

are conversely taking advantage of the vanishing percep-

tual variance phenomenon of Lpix, which was observed as

a critical limitation. We refer to this as the Auto-Encoded

Supervision for Perceptual SR (AESOP).

In summary, our contributions can be simplified as fol-

lows. First, we point out the implications of Lpix in the con-

text of the perceptual SR task, which has often been mis-

understood. Second, we propose a novel reconstruction loss

that only penalizes the fidelity bias factors, thereby preserv-

ing visually important perceptual variance factors of SR im-

ages. Finally, we provide extensive experiments that vali-

date the effectiveness of AESOP, leading to significant im-

provement in the perceptual SR task.

Disclaimer. Perceptual oriented losses are responsible for

handling the preserved perceptual variance term, thereby

generating realistic textures and fine-details. We keep im-

provements on these losses out of the scope of this work.

2. Related work

Fidelity-oriented SR. The pioneering works [13, 25],

CNN-based [9, 16, 39, 45, 47, 68, 70] and Swin Trans-

former [40] based methods [5, 6, 34, 36, 63] have shown

remarkable improvements. The majority of these meth-

ods employ the per-pixel loss Lpix as their sole objective.

This leads them to estimate the average over multiple solu-

tions [20, 41], resulting in high PSNR scores but is empir-

ically shown to be blurry. In our work, the optimal fidelity

point is the optimal estimation of these fidelity-oriented SR

methods.

Perceptual SR. The emphasis here is on visual quality over

mere per-pixel error. These methods [30, 42, 64, 67] com-

monly adopt the SRGAN [30]-based framework, integrat-

ing Lpix with perceptual-quality-oriented losses such as per-

ceptual loss [22] and adversarial loss [15]. This framework

aims to enhance visual quality while retaining a fair amount
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of fidelity to the HR image. Recently, diffusion-based SR

methods [50, 53, 61] have shown significant progress. How-

ever, due to their limitations in SR tasks without complex

degradations and the high computational cost, GAN-based

SR remains as one of the main branches of research [29].

We limit the scope of our work to GAN-based SR methods.

Improvements in the SRGAN-framework. Advance-

ments were made on the adversarial loss [27, 54], discrim-

inator architecture [33, 48] and the perceptual loss [10, 28,

49], and also in enhancing GAN stability [27, 37, 42, 59].

Despite remarkable improvements, all these efforts primar-

ily concentrate on perceptual-oriented loss factors. Mean-

while, the use of Lpix for perceptual SR tasks has not been

thoroughly investigated. To the best of our knowledge, this

is the first attempt that successfully tackles the fidelity-loss

in a perceptual SR framework, removing the problematic

pixel-level reconstruction loss in the SRGAN-framework.

3. Revisiting per-pixel loss in perceptual SR

Considering the Oracle case. Consider an optimal per-

ceptual SR network that can sample images from the true

posterior. By construction, SR images generated from this

network are valid solutions but are not necessarily a pixel-

wise exact match to the specific HR image instance in our

dataset, due to the inherent ill-posed nature of SR. Yet, Lpix

compares two images on a strict pixel-wise basis. This re-

sults in penalizing the SR image, despite it being an ideal

solution in the context of perceptual SR, by construction.

Revisiting Lpix in perceptual SR. The phenomenon where

even an optimal network gets penalized under Lpix results

in blurred texture. This is grounded in the fact that train-

ing with Lpix is effectively a Maximum Likelihood Estima-

tion, which jointly minimizes both bias errors and also vari-

ance in predictions. Specifically, prior works [21, 32] have

shown that this can be decomposed into jointly minimizing

two terms: the systematic-effect (SE) term and the variance-

effect (VE) term, which are induced by the bias and variance

of the prediction, respectively. Formally, given a symmetric

loss function L and y ∼ p(y|x) for an input x, the training

objective minŷ Ey,ŷ[L(y, ŷ)] can be simplified 2 as:

min
ŷ

{Ey[L(y, µŷ)− L(y, µy)]
︸ ︷︷ ︸

SE(y,ŷ): LF + regressable HF

+Ey,ŷ[L(y, ŷ)− L(y, µŷ)]
︸ ︷︷ ︸

VE(y,ŷ): non-regressable HF

},

(1)

with ŷ as an estimator of y, and µy = argmin
µ
Ey[L(y, µ)]

and µŷ = argmin
µ
Eŷ[L(ŷ, µ)]. For L2, the two terms

above are further simplified as follows:

SE(y, ŷ) = Ey[(y − µŷ)
2 − (y − µy)

2] = (µŷ − µy)
2

VE(y, ŷ) = Ey,ŷ[(y − ŷ)
2 − (y − µŷ)

2] = Eŷ[(ŷ − µŷ)
2].
(2)

2The irreducible variance term of y is omitted here.

SE and VE in terms of perceptual SR. For the percep-

tual SR task, SE minimization is desired but VE should be

sufficiently preserved. We elaborate on the details below.

VE refers to the additional error introduced by gener-

ating components with inherent randomness. In perceptual

SR, this is a necessary and inevitable error term induced by

fine-grained textures, which cannot be learned via regres-

sion. Accordingly, we define the VE term as the perceptual

variance factor. Here, minimizing VE can be understood as

further reducing the expected pixel-wise error, apart from

reducing SE, at the cost of removing visually important fine

textures. In other words, VE is the factor that leads to the

PD trade-off due to its randomness, and VE minimization

pushes the prediction space to degenerate, only accepting

the average solution as in Fig.1.(b), which is blurry [30].

Focusing now on SE, this is an unnecessary error term

that can be reduced without inducing PD trade-off since it

does not have randomness. Intuitively, it is the overall de-

gree of alignment between the SR and HR image. More

specifically, this is the distance between the centroids of the

two distributions, where the HR and SR images are each

expected to be sampled from. Since these centroids are the

minimum expected error points of each distribution, they

resemble the fidelity-oriented SR counterpart of the percep-

tual SR images [31], as in Fig.1.(a). Accordingly, we define

each factor in the SE term (µy, µŷ) as the fidelity biases, and

SE itself as the fidelity bias induced error. Note that fidelity

biases are not simply low-frequency (LF) components. As

often reflected in fidelity-oriented SR methods, specific HF

components such as simple object boundaries and edges can

be learned via pixel-level regression. Fidelity biases include

these regressable high-frequency components.

Overall, since VE is the sole factor inducing the PD

trade-off, it is straightforward that we can safely reduce SE

without harming perception. By minimizing SE for a given

VE, we can obtain the maximum fidelity for a given percep-

tion level; the ideal PD trade-off 3. At the same time, a suffi-

cient level of VE should be preserved for visual quality. Ac-

cordingly, the following sections will elaborate on design-

ing a novel loss that minimizes SE while preserving VE,

taking a step toward the optimal perceptual SR network.

Revisiting prior methods. Observations above share some

key concepts with the well-known perception-distortion

(PD) trade-off [2]. However, we highlight aspects of Lpix

that are often overlooked in most training methods, with the

terms defined above. Specifically, previous approaches aim

to avoid blurring by either 1) introducing LPF before loss

calculation [11, 69] or 2) simply applying a small coeffi-

cient for Lpix [30, 37, 54]. Below, we will show that both

are misinterpreting the blurring phenomenon.

First, LPF-based approaches remove more information

3Zero SE alone does not indicate optimal perception.
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Figure 2. (a) We pretrain an Auto-Encoder ψAE that removes

perceptual variance factors, thereby establishing a feature space

where only the fidelity bias factors reside. (b) The main SR net-

work training step with the proposed LAESOP. By applying recon-

struction objectives such as the L1 loss in the auto-encoded space,

we can solely target the fidelity bias induced error without suffer-

ing from vanishing perceptual variance (i.e., suffer from blurring).

We omit perceptual-quality-oriented losses here.

than required. They assume that the fidelity biases solely

consist low-frequency image components. Yet, bias fac-

tors (µy, µŷ) include certain high-frequency components

as discussed above. Therefore, despite that LPF-based ap-

proaches can avoid texture blurring induced by VE, they

also fail to guide regressable high-frequency components

that are free from texture blurring. By not providing guid-

ance for certain components of SE, they achieve lower fi-

delity than necessary, failing to reach the optimal PD trade-

off. We provide further analysis for this in Sec.5.2.

Meanwhile, applying a small coefficient to Lpix misguid-

edly treats all aspects of Lpix as contributing to blurring.

This indiscriminative approach unintentionally weakens SE

reduction. When combined with the adversarial loss, this

also leads to redundant SE, failing to reach the optimal PD

trade-off. This is because adversarial loss works in a task-

blind, unsupervised manner: it improves realism but does

not consider the alignment between the input image and

the network output. As this significantly hinders SE conver-

gence [37, 59], strong guidance on the SE factor is required

to prevent high SE. However, the small coefficient greatly

reduces this guidance, resulting in unnecessary fidelity loss

and a suboptimal PD trade-off. Additionally, since Lpix fun-

damentally enforces VE reduction, it can also never achieve

optimal perception despite applying a small scale factor. See

Appendix.E for discussions and graphical illustrations.

4. Method

Motivation. An optimal perceptual SR should minimize fi-

delity bias induced errors while preserving perceptual vari-

ance. However, prior methods often fail to achieve this due

to their inability to effectively discriminate these factors.

This motivates us to design a new method that disentangles

them, and solely penalizes based on fidelity biases, bringing

us closer to the optimal perceptual SR.

Overview. The proposed method can be simplified into two

steps. First, we develop an Auto-Encoder (AE), tailored to

create a feature space exclusively for fidelity biases. Sec-

ond, instead of taking Lp in raw pixel space as typical

methods, we calculate Lp in the AE space as in Fig.2. Tak-

ing Lp in the AE space enables us to provide effective re-

construction guidance with preserved perceptual variance.

Note that the term AE space indicates the space after the

decoder, not the bottleneck. Fundamentally, we are utiliz-

ing an AE as a differentiable approximation of an operator

ψ(·) := argmin
µ
E[L(·, µ)] to substitute Lpix with SE.

Baseline. This work aims to make improvements in the

GAN-based perceptual SR task. Accordingly, we follow a

recent GAN-based SR method LDL [37], and set our base-

line training objective as below:

Lbase = λ1Lpix + λ2Lpercep + λ3Ladv + λ4Lartif, (3)

where Lpix, Lpercep, Ladv, Lartif are the widely used pixel-

level Lp loss, perceptual loss [22], the adversarial loss [54],

and the artifact loss [37], respectively, and λ1, λ2, λ3, λ4 are

coefficients for each loss factors, respectively. We limit the

scope of this work to tackling the fidelity loss term of per-

ceptual SR, thus, we will only modify Lpix, while leaving

all other loss terms unchanged.

4.1. Auto-Encoder pretraining
Designing the fidelity bias feature space. Our aim is to

provide reconstruction supervision focused exclusively on

SE. Given that the only components of SE are the fidelity

biases (µy, µŷ), our task simplifies into estimating an op-

erator ψ that estimates the fidelity bias of a given image

as ψ(·) := argmin
µ
E[L(·, µ)]. To maintain simplicity, we

employ a basic Auto-Encoder (AE) to construct a differ-

entiable approximation of this operator. This architectural

choice is grounded by the nature of SR, where the HR im-

ages are conditioned by the LR images and the scale fac-

tor. Thus, we model this relationship as y ∼ p(y|x) with

x ≡ ϕ(y, s), where ϕ is the×s downsampling function. Ad-

ditionally, the definition of ψ involves minimizing the ex-

pected loss over this conditional distribution. Thus, we pre-

train the AE with Lp to learn the forward mapping x ← y,

and consecutively, the inverse mapping y ← x. Now, the

pretrained AE will act as a differentiable approximation of

ψ, which can decompose the fidelity bias of images and can

also be directly plugged into the training framework.

To provide further intuition, we emphasize that the bot-

tleneck of our AE is designed to have the same dimension-

ality as the LR image. Contrary to most AEs or feature en-

coders [22], which use a high-dimensional latent space to

learn additional semantics or high-level representations be-

yond the raw pixel space, our AE is specifically designed

to remove particular low-level features from the pixel space.

The carefully chosen architecture and pretraining objective

form an information bottleneck that effectively compresses

out factors that have inherent randomness. Since this is the
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Figure 3. Key components of LAESOP and Lpix on SwinIR-backbone. Lpix in (e) penalizes perceptually-variance factors, leading to blurry

images in (b). In contrast, LAESOP in (f) only penalizes based the fidelity bias (d), which enables us to obtain increased realism as in (c).

perceptual variance, we can isolate only the fidelity bias as

in Fig.2. Thus, Lp in the AE space resembles loss between

fidelity biases, which is fundamentally identical to SE: a

term that improves fidelity without inducing blurring. No-

tably, while vanishing perceptual variance was observed as

a critical limitation of Lpix in the perceptual SR task, we are

conversely taking advantage of it by removing perceptual

variance factors in our newly designed fidelity loss term.

AE pretraining. To design a fidelity bias estimator, we pre-

train our AE to approximate ψ(·) := argmin
µ
E[L(·, µ)]

for y ∼ p(y|x) with x ≡ ϕ(y, s). Thus, the AE con-

secutively estimates the low-resolution counterpart x and

then reconstructs y. Accordingly, the pretraining objective

is straightforward as follows:

Lrec
LR = ||ψenc(I

HR)− ILR||p (4)

Lrec
HR = ||ψAE(I

HR)− IHR||p, (5)

where ψAE := ψdec · ψenc denotes the AE, ψenc, ψdec is the

encoder and decoder, and ILR, IHR are LR, HR images. The

AE will act as an effective bias estimator, enabling us to

design a space where only fidelity biases reside. Note that

these losses are only used to pretrain the AE, and will not

be used when training the SR network.

AE architecture. Based on the constructions above, the en-

coder takes an HR image, and estimates the corresponding

LR versions; and the decoder, vice-versa as follows:

ψenc := R
3HW 7→ R

3hw, ψdec := R
3hw 7→ R

3HW, (6)

where HW and hw each indicate the spatial dimension of

the HR and LR images. Since the decoding process resem-

bles a fidelity oriented SR task, we employ an off-the-shelf

SR architecture RRDBNet [54], and initialize the decoder

as the pretrained weights for the fidelity-oriented SR task.

The encoder is simply a lightweight CNN with downsam-

pling. Refer to the appendix for further details.

Bottleneck collapse. Consider a scenario where the en-

coder exactly matches the corresponding LR image of the

input. If the SR image simply downscales to the original LR

image, no loss would backpropagate regardless of the re-

gressable high-frequency component quality of the SR im-

age. Since this can potentially harm the performance, the

encoder is jointly optimized with the decoder for Eq.(5).

4.2. Auto-Encoded supervision
Defining the AESOP loss. Since we have obtained a feature

space that only retains the fidelity bias factors, we finally

define LAESOP as Lp with auto-encoded versions of HR and

SR images. Contrary to Lpix which minimizes both SE and

VE, the proposed LAESOP only minimizes SE is as follows:

Lpix = ||IHR − ISR||p (= SE + VE), (7)

LAESOP = ||ψAE(I
HR)− ψAE(I

SR)||p (≈ SE +��VE), (8)

where IHR, ISR represent HR, SR images, respectively.

Considering the AE pretraining, ψAE is a differential ap-

proximation of a fidelity bias estimator. Thus, LAESOP is

now fundamentally identical to only penalizing the SE fac-

tor of Eq.(2) or Eq.(7). Since these features are decou-

pled from the perceptual variance factors by construction,

LAESOP leads to increased fidelity without forcing visually

important textures to vanish. Also, note that auto-encoded

indicates the space after the decoder, not the bottleneck.

Final objective function. Since we focus on improving the

fidelity loss term of the framework, we substitute Lpix with

LAESOP, leading to the overall objective function as follows:

Ltotal = λAESOPLAESOP+λ2Lpercep+λ3Lartif+λ4Ladv, (9)

where λAESOP, λ2, λ3, λ4 are coefficients for each loss

factors. The overall pipeline of our training strategy is vi-

sualized in Fig.2. Based on the constructions above, the

proposed LAESOP provides reconstruction guidance without

facing conflicts with the perceptual-quality-oriented losses.

This indicates that both the LAESOP and perceptual-quality-

oriented losses can converge to an optimal point, leading

to increased performance in terms of perception-distortion

trade-off [2]. Accordingly, while typical methods multiply

a very small coefficient to the reconstruction loss (generally

chosen as 0.01 [37, 54]) to prevent blurring effects, we let

λAESOP = 1. This way, we can provide significantly stronger

reconstruction guidance without suffering from unintended

blurring, leading to both lower levels of artifacts [37] and

enhanced realism. For the other coefficients, we follow our

baseline [37] settings and choose λ2 = 1, λ3 = 1, λ4 = 0.005.

AE collapse. Eq.(8) leads to a trivial solution when the AE

outputs the same value regardless of the input. To prevent

this, we keep the AE frozen when training the SR network.
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Backbone RRDB SwinIR

Metrics Benchmark ESRGAN SPSR LDL AESOP AESOP† +GAN LDL AESOP* AESOP
Recon. Objective Lpix Lpix Lpix LAESOP LAESOP Lpix Lpix LAESOP LAESOP

Patch Size (Training) 128 128 128 128 256 256 256 256 256

LPIPS ↓

Set14 0.1241 0.1207 0.1132 0.1067 0.1053 0.1160 0.1091 0.1023 0.1027
Manga109 0.0649 0.0672 0.0544 0.0525 0.0494 0.0542 0.0469 0.0440 0.0461
General100 0.0879 0.0862 0.0796 0.0784 0.0734 0.0796 0.0740 0.0717 0.0710
Urban100 0.1229 0.1184 0.1084 0.1064 0.1033 0.1077 0.1021 0.0961 0.0945
DIV2K-val 0.1154 0.1099 0.0999 0.0977 0.0936 0.1038 0.0944 0.0909 0.0893
BSD100 0.1616 0.1609 0.1535 0.1515 0.1443 - 0.1572 0.1441 0.1385
LSDIR 0.1378 0.1312 0.1180 0.1152 0.1123 - 0.1132 0.1094 0.1071

DISTS ↓

Set14 0.0951 0.0920 0.0866 0.0852 0.0825 0.0930 0.0869 0.0809 0.0819
Manga109 0.0471 0.0463 0.0355 0.0360 0.0356 0.0365 0.0315 0.0327 0.0328
General100 0.0874 0.0884 0.0801 0.0798 0.0773 0.0835 0.0794 0.0768 0.0762
Urban100 0.0880 0.0849 0.0793 0.0793 0.0768 0.0835 0.0800 0.0751 0.0742
DIV2K-val 0.0593 0.0546 0.0526 0.0518 0.0484 0.0531 0.0507 0.0469 0.0459
BSD100 0.1165 0.1176 0.1163 0.1117 0.1089 - 0.1185 0.1078 0.1072
LSDIR 0.0764 0.0699 0.0650 0.0641 0.0612 - 0.0650 0.0601 0.0591

PSNR ↑

Set14 26.594 26.860 27.228 27.361 27.246 27.282 27.526 27.822 27.421
Manga109 28.413 28.561 29.620 29.973 29.747 29.345 30.143 30.453 30.061
General100 29.425 29.424 30.289 30.482 30.251 30.104 30.441 30.752 30.401
Urban100 24.365 24.804 25.459 25.630 25.541 25.736 26.231 26.398 26.148
DIV2K-val 28.175 28.182 28.819 29.079 28.910 28.784 29.117 29.543 29.137
BSD100 25.313 25.501 25.954 26.080 25.904 - 26.216 26.405 25.930
LSDIR 23.882 24.232 24.663 24.933 24.845 - 25.129 25.419 25.038

SSIM ↑

Set14 0.7144 0.7254 0.7358 0.7402 0.7371 0.7407 0.7478 0.7578 0.7438
Manga109 0.8595 0.8590 0.8734 0.8827 0.8802 0.8796 0.8880 0.8949 0.8880
General100 0.8095 0.8091 0.8280 0.8335 0.8269 0.8305 0.8347 0.8415 0.8328
Urban100 0.7341 0.7474 0.7661 0.7724 0.7697 0.7786 0.7918 0.7947 0.7884
DIV2K-val 0.7759 0.7720 0.7897 0.7978 0.7951 0.7911 0.8011 0.8121 0.8023
BSD100 0.6527 0.6596 0.6813 0.6841 0.6783 - 0.6923 0.6982 0.6813
LSDIR 0.6866 0.6966 0.7117 0.7220 0.7202 - 0.7316 0.7397 0.7289

Table 1. Quantitative comparison between AESOP (Ours) and baseline methods. The best results of each group are highlighted in bold.

AESOP∗ indicates only training 200K iterations, AESOP† indicates training with a larger patch.

5. Experiments

5.1. Benchmark evaluation

Experimental setup. We employ benchmark datasets in-

cluding Set14 [62], Manga109 [44], General100 [14], Ur-

ban100 [19], DIV2K [1], BSD100 [43], LSDIR [35]. For

both the AE pretraining and the SR network training, we use

DF2K, a combination of DIV2K [1] and Flickr2K [38]. We

report PSNR and SSIM [57] scores for distortion metrics

and LPIPS [66], DISTS [12] for perceptual quality metrics.

We use both RRDB-based models: ESRGAN [54], SPSR

[42], LDL [37], CALGAN[48]; and SwinIR-based versions

of each, if available. AESOP is used interchangeably to in-

dicate eitherLAESOP or the SR networks trained with Eq.(9).

Refer to the Appendix for details on experimental settings.

Quantitative comparison. In Tab.1, we perform a quantita-

tive evaluation against baseline GAN-based perceptual SR

methods. Against all RRDB [54] based baseline methods,

AESOP significantly improves both distortion metrics and

perceptual scores. We find the key factor of this improve-

ment as the carefully designed feature space and pretrained

AE. It provides an increased level of reconstruction guid-

ance, specifically to fidelity bias factor, while providing ad-

ditional freedom to perceptual-quality-oriented losses. For

29.530.030.531.031.5
PSNR
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Perception-distortion Trade-off
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Figure 4. The PD trade-off curve. The backbone and training patch

size are indicated; if not specified, the default patch size is 128.

SwinIR [36] backbone methods, we report both the final

results at 300K iterations and intermediate training results

at 200K iterations (indicated as AESOP∗). At 200K, it can

be seen that AESOP leads to improvements in both fi-

delity scores and perceptual metrics, similar to the RRDB-

backbone. When we fully train our model up to 300K, we

observe further enhancements in perception scores. Since

improved perception leads to lower fidelity due to the PD

trade-off, we provide the PD trade-off curves in Fig.4, with
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(a) HR (b) Bicubic (c) ESRGAN (d) SPSR (e) LDL (f) AESOP (Ours)

Figure 5. Visual comparison of AESOP with baseline methods for the ×4 SR task on the RRDB backbone. Our method produces images

with fewer visual artifacts. See the Appendix for more visual examples of AESOP’s improvement in realism and fine details.

PSNR and LPIPS scores on the General100 dataset. AESOP

leads to improved trade-off relationships on both RRDB

and SwinIR backbones. Additionally, we provide RRDB-

backbone results using a training HR patch size of 256 (de-

noted as AESOP†) to align with the training settings of

SwinIR. AESOP also improves realism for real-world SR

tasks as in Tab.2. Refer to Appendix.B for more results.

Qualitative comparison. In Fig.5, baseline methods often

suffer from unpleasant GAN artifacts [37] while AESOP

presents a significantly lower level of these artifacts. This is

due to the strong reconstruction guidance LAESOP provides,

since it does not require a small scaling factor. Addition-

ally, refer to the Appendix for visual examples of AESOP

improving realism on fine details and complex textures.

Ablation studies. To verify the effects of each component,

we perform ablation studies on AESOP (128). In Tab.3, we

report DISTS and PSNR scores for each setting on DIV2K

validation set. The first line indicates the baseline setting

that matches LDL, where none of our proposed components

are applied. Tab.3.(a) indicates employing a decoder, but

using a simple bicubic downsampling operation instead of

the encoder. As reported, the perceptual quality and fidelity

are improved even when solely utilizing the decoder due

to its ability in offering stronger reconstruction loss with-

out conflict with perceptual objectives. However, the us-

age of bicubic downsampling with a decoder corresponds

to the bottleneck collapse, where no loss backpropagates if

the SR image downsamples to the LR image, thus, lead-

ing to slightly lower performance against our full method.

In Tab.3.(b), we further introduce a learnable encoder to-

Dataset Method Recon. Obj. NIQE↓ MANIQA↑

RealSRv3 [3]
Real-ESRGAN Lpix 4.6790 0.3662
AESOP (Ours) LAESOP 4.2337 0.4136

DRealSR [58]
Real-ESRGAN Lpix 4.7152 0.3404
AESOP (Ours) LAESOP 4.1922 0.3917

Table 2. Quantitative results of AESOP in real-world settings. Re-

fer to the Appendix for further results, including visual examples.

Decoder Encoder Lrec
LR DISTS ↓ PSNR ↑

Baseline (LDL) 0.0526 28.819

Config-(a) ✓ 0.0521 29.060
Config-(b) ✓ ✓ 0.0526 29.150
Config-(c) (Ours) ✓ ✓ ✓ 0.0518 29.079

Table 3. Ablation study on each component of AESOP (128).

gether with the decoder, but without Eq.(4) (i.e., without

estimating the LR image). Given that both fidelity bias fac-

tors and perceptual variance factors are determined by the

LR counterpart, the model cannot properly estimate the fi-

delity bias and the perceptual variance. Consequently, the

perceptual variance factor can be penalized, which is not

intended, leading to the lowest perceptual score. Our full

model in Tab.3.(c) further employs Eq.(4). Thus, it better

models the LR than Tab.3.(b), while also avoiding the bot-

tleneck collapse which Tab.3.(a) has suffered, leading to the

best scores in terms of perceptual quality.

5.2. Analysis
Spectral analysis. Several prior works [11, 69] employ

low-pass filtering (LPF) to avoid the blurring effect of Lpix.

To identify the difference between our AE and LPF, we an-

alyze the spectral magnitudes of Fig.6.(a) after applying AE
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and LPF, in Fig.6.(c)-(d), respectively. As can be seen, LPF

blindly removes all HF components, contrary to AE, where

certain patterns in the HF regions are preserved. As dis-

cussed in Sec. 3, the remaining HF components in Fig.6.(c)

are factors that can be learned by pixel-level regression, and

the removed HF components are the non-regressable factors

(VE) that lead to blurring when minimized.

Here, we focus on the remaining HF components and

visualize it in Fig.6.(e), by taking the absolute difference

between Fig.6.(c)-(d). Simple object edges are highlighted,

which are regions where even fidelity-oriented SR networks

(trained with pixel-level regression loss, Lpix), can also

sharply reconstruct. This indicates that specific HF compo-

nents can be regressed, and importantly, these HF compo-

nents cannot be disentangled from other HF components by

band-pass filters (e.g., LPF) or frequency selection [7, 8];

since they are intertwined within the same frequency band.

Meanwhile, LPF is expected to provide limited super-

vision in these regressable HF components, leading to de-

graded performance. To validate this statement, we com-

pare AESOP against LPF in Tab.5.(b). We apply LPF on SR

and HR images before calculating Lpix on top of our base-

line method LDL. A notable degradation in performance

can be observed, highlighting the superiority of our AE-

based method in maintaining high-quality reconstruction

guidance over conventional frequency-based methods.

Overall, we conclude that our AE can successfully disen-

tangle fidelity biases and perceptual variances, by capturing

specific HF components that 1) cannot be obtained by sim-

ple frequency selection, 2) but can be learned via regression,

and 3) significantly contribute to improved fidelity.

Loss map comparison. Fig.3 visualizes key components

of LAESOP and Lpix. In Fig.3.(e),Lpix cannot distinguish

perceptual variance factors and fidelity bias factors. Thus,

visually important fine-textures are penalized, leading to a

blurry result as in Fig.3.(b). Meanwhile, LAESOP in Fig.3.(f)

successfully extracts and penalizes only the fidelity bias fac-

tor Fig.3.(d), leading to increased realism as in Fig.3.(c).

Fidelity bias estimation. Since LAESOP does not lead to

blurring, we do not multiply a small scaling factor. Ac-

cordingly, we can provide significantly stronger guidance

on fidelity biases. Here, we measure how well each net-

work estimates the fidelity biases, apart from PSNR scores

which are influenced by perceptual variances. To do this,

we introduce AE-PSNR, which measures the PSNR between

auto-encoded SR and HR images. This score reflects how

well an image captures the fidelity bias of the reference im-

age. However, since AESOP is trained using the AE, there

may be unintended biases introduced by the AE itself. Thus,

we additionally report LR-PSNR as an unbiased metric in-

dependent of the AE, which measures the PSNR between

downscaled SR and the original LR images. This captures

(a) (b) (c) (d) (e) 

Figure 6. Visual comparison between AE and LPF. (a) Origi-

nal image. (b) Original image in spectral domain. (c) Forwarding

through AE. (d) Applying LPF. (e) Absolute difference between

(c) and (d). (Electronic viewer highly recommended.)

Method Set14 Mg109 Gen100 Urb100 DIV2K B100 LSDIR

A
E

- LDL [37] 31.525 33.215 33.994 29.374 32.855 29.792 29.071
Ours 32.111 33.635 34.535 29.666 33.490 30.366 29.552

L
R

- LDL [37] 46.899 49.135 48.663 47.404 48.084 45.494 45.731
Ours 48.245 50.042 49.733 48.564 49.856 47.578 47.476

Table 4. AE-PSNR and LR-PSNR scores with SwinIR-backbone.

Manga109 General100 Urban100 DIV2K100

Ours 29.97/.0525 30.48/.0784 25.63/.1064 29.08/.0977

(a) 29.78/.0534 30.35/.0789 25.55/.1054 28.97/.0982
LDL 29.62/.0544 30.29/.0796 25.46/.1084 28.82/.0999
(b) 29.55/.0545 30.20/.0801 25.39/.1090 28.75/.1005

Table 5. PSNR/LPIPS scores. (a) AESOP with SRResNet-based

AE (ψ). (b) Applying LPF before calculating Lpix with LDL [37].

how well the fidelity biases align, but without being influ-

enced by the AE. However, note that this measure only re-

flects the LF feature, a subcomponent of the fidelity bias. In

Tab.4, AESOP shows improvements on both AE-PSNR and

LR-PSNR scores, demonstrating the superiority of LAESOP

against scaled Lpix in effectively reducing the SE term. See

the Appendix for scores on RRDB-backbone methods.

Architectural choice of AE. Performance of AESOP with

SRResNet-based [30] AE is reported in Tab.5.(a). We ob-

serve a slight performance drop against our RRDB-based

AE, but it is still superior against LDL. While this indi-

cates that AESOP relies on a well-performing AE, this re-

liance does not pose a practical issue. In our pretraining

framework, we initialize the decoder of AE as the fidelity-

oriented SR network, which is expected to be already in

place under the SRGAN-based training framework.

6. Conclusion

This work analyzes limitations ofLpix (i.e., the conventional

pixel-level Lp) in the context of perceptual SR. Further, we

highlight the shortcomings of prior circumvention to avoid

blurring, in terms of fidelity biases and perceptual variance

factors. We tackle this issue by introducing LAESOP, a novel

reconstruction loss that separates fidelity bias factors from

perceptual variance factors using an AE, pretrained for a re-

construction task. This allows us to focus on enhancing fi-

delity while preserving the visual quality of SR images. Ex-

perimental results validate that the proposed method leads

to significant improvement in the perceptual SR task.
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