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Abstract

The exponential increase in video content poses significant
challenges in terms of efficient navigation, search, and re-
trieval, thus requiring advanced video summarization tech-
niques. Existing video summarization methods, which heav-
ily rely on visual features and temporal dynamics, often
fail to capture the semantics of video content, resulting in
incomplete or incoherent summaries. To tackle the chal-
lenge, we propose a new video summarization framework
that leverages the capabilities of recent Large Language
Models (LLMs), expecting that the knowledge learned from
massive data enables LLMs to evaluate video frames in a
manner that better aligns with diverse semantics and human
Jjudgments, effectively addressing the inherent subjectivity in
defining keyframes. Our method, dubbed LLM-based Video
Summarization (LLMVS), translates video frames into a
sequence of captions using a Muti-modal Large Language
Model (M-LLM) and then assesses the importance of each
frame using an LLM, based on the captions in its local con-
text. These local importance scores are refined through a
global attention mechanism in the entire context of video
captions, ensuring that our summaries effectively reflect both
the details and the overarching narrative. Our experimental
results demonstrate the superiority of the proposed method
over existing ones in standard benchmarks, highlighting the
potential of LLMs in the processing of multimedia content.

1. Introduction

Video summarization is essential in multimedia content pro-
cessing, particularly as the exponential growth in video data
has far exceeded human capacity for consumption. Every
day, millions of videos are uploaded across platforms, pos-
ing significant challenges in efficient navigation, search, and
retrieval of video content. Video summarization addresses
these challenges by condensing lengthy videos into concise
summaries that capture the essential content. In response,
researchers have explored automatic video summarization
techniques aimed at producing videos that are shorter, more
digestible, and appealing to users. However, summarizing
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Figure 1. Video summarization with (M-)LLMs. Given the input
video frames, captions for each frame are generated using M-LLM.
For each frame at time-step ¢, the generated captions within a local
window are grouped and provided as input to the LLM. The LLM
is prompted to assess the importance score of the frame at time
step ¢ by considering this local context. Finally, a global context
aggregator produces the final predictions by taking into account the
overall context of the entire video. Note that, in this illustration,
the local window size is set to 3.

video content remains complex due to its varied nature and
the subjective elements of effective summarization.

Previous video summarization methods [5, 11, 12, 18, 35,
59] have primarily focused on selecting important frames
solely based on visual features. Recent multi-modal meth-
ods [6, 14, 22, 28] integrate both visual and language modal-
ities to leverage the contextual richness of natural language.
However, these methods still prioritize visual features, in-
corporating textual data via an attention mechanism [44],
where visual features serve as queries and language features
as keys and values. While textual data helps to enhance the
visual features, the main focus of video summarization still
remains on visual content.
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The advent of Large Language Models (LLMs) [1, 3, 4,
42, 43] presents new opportunities for video summarization.
LLMs have shown strong capabilities in contextual under-
standing [7, 20], cross-domain reasoning [21, 48], and multi-
modal processing [2, 8, 10, 23, 25], allowing them to identify
key moments based on semantic insights rather than visual
saliency alone. Leveraging these strengths, we introduce
LLMVS, an LLM-based video summarization framework
that utilizes LLMs as important frame selectors, guided by
textual data and embedded knowledge.

To this end, we propose a local-to-global video summa-
rization model, as illustrated in Figure 1. First, we obtain
textual data for each frame by generating textual descrip-
tions from video frames using a pre-trained multi-modal
LLM (M-LLM) [25]. Textual descriptions of video frames
within a local window are fed into the LLM [43], along with
structured instructions and examples in natural language, to
perform in-context learning for video summarization. The
LLM then evaluates the importance score of the center frame
within the local context. Unlike existing methods that rely on
the end output of LLMs [19, 34, 51, 57], our method extracts
the output embeddings from LLMs and apply self-attention
on them to aggregate global context from the videos and
make the final predictions. During learning, the M-LLM and
LLM are frozen to preserve their general domain knowledge,
and only the self-attention blocks are trained.

Our contributions can be summarized as follows: 1) We
introduce LLMVS, a novel video summarization framework
that leverages LLMs to utilize textual data and general knowl-
edge in video summarization effectively. 2) The proposed
local-to-global video summarization framework integrates
local context via window-based aggregation and global con-
text through self-attention, enabling a comprehensive under-
standing of video content. 3) Experimental results show that
using output embeddings from LLMs is more effective for
video summarization than using direct answers generated
by LLMs. 4) Comprehensive results demonstrate the effec-
tiveness of the proposed method, achieving state-of-the-art
performance on the SumMe and TVSum datasets.

2. Related Work

2.1. Video Summarization

Recent advancements in video summarization have sig-
nificantly leveraged deep learning techniques by captur-
ing temporal dynamics. A notable direction in this do-
main employs LSTMs [15, 17, 45, 50, 53-56] which are
adept at capturing both short- and long-range dependen-
cies in sequential frames. A pioneering work by Zhang
et al.[53] utilizes Long Short-Term Memory (LSTM) net-
works, leveraging their ability to model variable temporal
dependencies among video frames. Building on this foun-
dation, subsequent studies explored various LSTM-based

architectures for video summarization, such as hierarchi-
cal frameworks[54], stacked LSTMs [45], and encoder-
decoder structures [17]. Transitioning to the utilization of
self-attention mechanisms [5, 11, 12, 18, 47, 49, 59], VAS-
Net [11] employs soft self-attention. Other approaches in-
troduce localization components to guide attention, such as
DSNet [59], which predicts the spatial offsets of interest
regions, and iPTNet [18], which integrates moment local-
ization through collaborative learning. Positional encoding
has also been explored, as in PGL-SUM [5], which incorpo-
rates absolute position information into multi-head attention.
CSTA [35] initially extracts and concatenates frame features,
representing the temporal sequence as an image. This repre-
sentation is then processed by a 2D CNN, yielding attention
maps that capture spatiotemporal dependencies. These mod-
els primarily rely on visual cues and temporal features. In
contrast, our work leverages the capabilities of LLMs to
incorporate semantic information, enriching the contextual
understanding of the video.

2.2. Multi-Modal Video Summarization

Unlike unimodal methods that rely solely on visual frames,
multimodal video summarization [6, 14, 22, 28] integrates
multiple modalities, such as visual and textual features, to
produce more comprehensive summaries. CLIP-It [28] uti-
lizes a cross-attention module between visual and textual fea-
tures, both extracted using CLIP [32], allowing summariza-
tion to be conditioned on natural language. A2Summ [14]
introduces an alignment-guided self-attention module that
effectively fuses different modalities by leveraging the tem-
poral correspondence between video and text, incorporating
captions generated by GPT-2 [31] or existing transcript. Ar-
gaw et al.[6] propose a cross-modal attention mechanism
to integrate multimodal cues from contextualized features,
employing SRoBERTa-NLI-large[33] for sentence embed-
ding and CLIP [32] for visual features. Prior multimodal
video summarization methods [6, 14, 28] employ cross-
attention mechanisms, where visual features act as queries
and language features serve as keys and values. While these
approaches incorporate language to enhance semantic un-
derstanding, they primarily focus on refining visual repre-
sentations, often treating textual information as auxiliary
information. In this paper, LLMVS leverages contextual
understanding capabilities of LLMs for video summariza-
tion by utilizing both textual data and the general knowledge
encoded in LLMs.

2.3. Video Understanding with LLM

Recent advancements in natural language processing (NLP)
have been significantly driven by Large Language Models
(LLMs)[1, 9, 39, 40, 42, 43]. The widespread adoption of
these models spur the development of multimodal models
that seamlessly integrate vision and text data[19, 27, 36,
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Figure 2. Overall architecture. Our LLMVS framework consists of three key components: text description generation, local importance
scoring, and global context aggregation. First, captions for each video frame are generated using a pre-trained Multi-modal Large Language
Model (M-LLM)[25]. These captions are then incorporated into the query component of an LLM [43] by segmenting through a sliding
window local context, while instructions and examples are provided as part of the in-context learning prompt. We obtain the output
embeddings from an intermediate layer of the LLM [43], categorized into instructions, examples, queries, and answers. The query and
answer embeddings are pooled and passed through an MLP to produce inputs for the global context aggregator, which encodes the overall
context of the input video. Finally, we obtain the output score vectors for the corresponding input video frames.

52, 57]. MovieChat [36] enhances video understanding by
processing video representations with a Q-former [24] and
a linear projection layer. These components convert visual
features into text space before feeding them into a LLM for
user interaction. In the realm of video question answering,
MoReVQA [27] employs LLM in a multistage modular
reasoning framework that breaks down complex queries into
event parsing, grounding, and reasoning stages to interpret
complex queries. Similarly, AntGPT [57] addresses action
anticipation task by leveraging LLMs to infer pseudo-ground
truth from observed actions and generate future steps. These
works highlight the versatility of M-LLMs in merging data
modalities and transforming interactions across domains.
Inspired by these advancements, our approach applies M-
LLM and LLM to the video summarization task, leveraging
their ability to incorporate semantic information and provide
a richer contextual understanding of video content.

3. LLM-based Video Summarization (LLMVS)

In this section, we present LLMVS, an LL.M-based video
summarization framework. Figure 2 shows the overall ar-
chitecture of LLMVS. LLMVS consists of three parts: text
description generation via M-LLM, local important frame
scoring via LLM, and global context aggregation using self-
attention blocks for final predictions of video summarization.

We begin by introducing the problem setup for video sum-
marization in Section 3.1. Text description generation via
M-LLM is discussed in Section 3.2. Local importance scor-
ing, including in-context learning and extracting embeddings
from LLM, is presented in Section 3.3. The global context

aggregation using self-attention is detailed in Section 3.4,
and the training objective is provided in Section 3.5.

3.1. Problem Setup

Givenavideo F = [Fy, Fy, ..., Fr] € RTXHXWX3 'where
T represents the temporal length of the video and H and
W denote the height and width of each frame, respectively,
the goal of video summarization is to obtain a sequence
of importance scores 8 = [s1, 82, ..., 57] € RT*1, where
higher scores indicate more significant frames.

3.2. Text Description Generation via M-LLM

To incorporate textual data into video summarization, we
first generate descriptions of input video frames using a
pre-trained M-LLM, denoted by ¢ [25]. Specifically, we
prompt ¢ with “Provide a detailed one-sentence description,
generating a sequence of captions C = [C1,Cs,...,Cr],

]

C =¢(F) (1)

where C; is the caption for the i-th frame.

3.3. Local Importance Scoring via LLM

Given a sequence of captions C, we employ a pre-trained
LLM 7 [43] to evaluate the importance of each frame within
its local temporal context. Due to the inherent redundancy
in video frames, it is essential to identify key frames based
on local context rather than individual frames to filter out
repetitive information. To achieve this, we apply a sliding
window-based scoring method. Specifically, for each frame
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[Instruction] You are an intelligent chatbot designed to critically
assess the importance of a central frame within a
specific context . ... Evaluate the frame using the
following criteria: 1. Narrative Significance

2. Uniqueness and Novelty 3.Action and Dynamics

[Example 1] Please evaluate the importance score of the central frame
#7 in following 13 frames.
#1 frame’s caption ... #13 frame’s caption

[Answer] score: 1

[Example 2] Please evaluate the importance score of the central frame
#3 in following 7 frames.
#1 frame’s caption ... #7 frame’s caption

[Answer] score: 5

[Example 3] Please evaluate the importance score of the central frame
#6 in following 11 frames.
#1 frame’s caption ... #11 frame’s caption

[Answer] score: 9

[Query] Please evaluate the importance score of the central frame

#lw] in following w frames.

#1 frame’s caption ... #w frame’s caption

Figure 3. In-context learning prompt of LLM. The instruction
for the LLM outlines the video summarization task and specifies
the criteria. Then, three examples are provided. Each example
includes the number of frame captions and identifies the central
frame number as the target. In the query part, the frame captions of
our focused video are passed.

F; at time-step ¢, the captions within a window of size w,
denoted as C;_ |2 )it |2, are fed into the LLM 7 to evalu-
ate the importance of the central frame C; in relation to its
surrounding frames. Here, |.| denotes the floor function.

In-context learning for video summarization. To guide
the LLM in generating task-specific outputs for video sum-
marization, we apply in-context learning [36, 57], providing
examples and instructions directly within the prompt, as
shown in Figure 3. The prompt consists of three compo-
nents: instructions, examples, and queries. The instructions
define the frame scoring task and criteria; the examples pro-
vide three sample question-answer pairs related to video
summarization; and the queries contain actual questions for
the LLM to answer. The instructions and examples remain
fixed, while only the queries vary based on the input. The
full prompt configuration is provided in the Appendix B. In
this way, we can effectively leverage the pre-trained LLM
for video summarization without finetuning, enabling it to
generate consistent and task-specific outputs based on the
provided examples and instructions.

Output embeddings from LLM. Rather than obtaining
direct answers from the LLM, we extract and utilize output
embeddings in video summarization, which retain richer
contextual and semantic information from the internal rep-
resentations. This method offers a potentially more robust
assessment of frame importance, preserving essential details
that could be abstracted away in final answer outputs. Specif-

ir, e, qe a;
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Self-attention (Grouped Multi-Query Attentions)
with KV Cache

Rotray Positional
Encodings

Figure 4. Output embedding from LLM (Llama-2). Among
the output embeddings of instruction i;, examples e, query g,
and answer a; after the RMS Norm layer of the LLM (Llama-2),
we utilize q and a, which retains richer contextual and semantic
information of the frame within a local context.

ically, these embeddings are extracted from the Llama-2 [43]
after the RMS Norm layer, as illustrated in Figure 4.

For each frame ¢, the LLM processes an in-context learn-
ing prompt consisting of instruction ¢, examples e, query q,
and answer a. Since the instructions embeddings ¢ and exam-
ple embeddings e remain constant across frames, we focus
on the window-specific query embeddings g and correspond-
ing answer embedding a. As a result, the query embeddings
q: € RE“*D and the answer embeddings a; € RL™D are
obtained from the LLM 7:

q,ar = (Co g v ), 2)

where L9 and L?* denote the sequence lengths of each embed-
ding, respectively, and D represents the hidden dimension.
Here, q; and a; encode the semantic information relevant to
the frame at time-step ¢ within its local context w.

3.4. Global Context Aggregating via Self-Attention

While the LLM effectively identifies important frames based
on local context, incorporating global context is essential
for producing a coherent summary of the entire video. To
address this, we apply self-attention blocks v [44], enabling
the model to capture dependencies across the entire video
for the final important score prediction.

Within each local window centered at timestep ¢, we first

concatenate q; and a; along the sequence axis, producing
2, € RESHLID;

x; = concat(qy, at). 3)
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Then, max pooling is applied to x; along the sequence axis,
followed by an MLP, resulting in input embeddings x} €

RIXM:
x; = MLP(maxpool(xz)). 4)

The input embeddings for all timesteps, ' = [z, ...
RTxM

x| €
, are provided to the global attention blocks :

s = MLE($(a)), ®)

producing the final output of importance scores for the entire
video, s € RT*1,

3.5. Training Objective

The proposed method is trained using the Mean Squared
Error (MSE) loss to optimize frame importance predictions.
The loss £ between the ground truth score vector § and the
predicted score s and is defined as:

T

1
L= T Z(St _§t)2- (6)

t=1
4. Experiment

4.1. Datasets

To evaluate the performance of our method, we use two well-
known benchmarks: SumMe [13] and TVSum [37].
SumMe. The SumMe [13] comprises 25 videos, each rang-
ing from 1 to 6 minutes in length, with an average duration
of 2 minutes and 40 seconds. These videos, captured with
egocentric, moving, and static cameras, cover various topics,
including holidays, events, and sports. Each video is anno-
tated by 15 to 18 raters.

TVSum. The TVSum [37] includes 50 videos with dura-
tions between 2 and 10 minutes, averaging 4 minutes and
11 seconds. This dataset spans diverse content types, such
as how-to videos, documentaries, and vlogs. Each video is
segmented into equal-length shots, and importance scores
are assigned by 20 raters to these segments.

4.2, Evaluation Setup

The evaluation protocols for SumMe and TV Sum differ in
how ground truth and prediction are constructed. In SumMe,
the ground truth summary is generated by averaging bi-
nary annotations from multiple users. Following the pro-
cedure in [53], we convert the predicted frame-level impor-
tance scores s into video summaries, by aggregating frame
scores at the shot level using Kernel Temporal Segmentation
(KTS) [30], which identifies shot boundaries. Shots with
the highest importance scores are selected to form the sum-
mary, addressing the 0/1 knapsack problem and ensuring the
summary length does not exceed 15% of the original total
duration of the video. The resulting summary is evaluated
against the ground truth summary to measure performance.

For TVSum, importance scores of each user on a con-
tinuous 0-1 scale serve as the ground truth. Evaluation is
conducted by comparing the predicted scores s individually
with annotations of each user, and the final performance is
computed by averaging the results across users.

We evaluate our method using the standard 5-fold cross-
validation protocol, following the previous approaches [5,
14, 18, 35, 59]. As evaluation metrics, we adopt rank order
statistics, specifically Kendall’s 7 and Spearman’s p fol-
lowing [29]. While the F1 score is widely used in video
summarization, it favors short shots over key shots due to
length constraints [29, 35, 41]. This limitation may result in
an inaccurate reflection of summarization quality. We thus
exclude it from our evaluation metrics.

4.3. Implementation Details

We employ LLaVA-1.5-7B [25] as the text description gen-
erator model ¢, and Llama-2-13B-chat [43] as the local
importance scoring model 7. The length of each frame cap-
tion generated by ¢ is limited to a maximum of 77 tokens.
We train our model using the AdamW optimizer [26] across
200 epochs on 5 NVIDIA A100 GPUs with a batch size of
1. The total training time is approximately 10 hours. The
learning rate is set to 1.19e — 4 for the SumMe [13] and
7e — 5 for the TVSum [37]. For both datasets, the window
size w is set to 7 and the dimension reduction M is 2048.
The number of self-attention blocks and the number of heads
for global context aggregator v are set to 3 and 2, respec-
tively. The frame captions used in the example section for
in-context learning are randomly sampled from the training
set of SumMe.

4.4. Comparison with the State of the Art

Table | compares the performance of LLM and LLMVS with
the state-of-the-art models on two benchmark datasets. The
table is divided into three compartments: (1) random and hu-
man baselines, (2) models utilizing use visual features, and
(3) models using both visual and text features. Random and
human performance metrics are from [29], where random
performance is computed by averaging the results of com-
parisons between 100 randomly generated value sequences
in the range [0, 1] and the ground truth.

LLMs. Table | investigates the impact of the general knowl-
edge of LLM [43] on video summarization by evaluating it
in a zero-shot setting. Importance scores are obtained via
in-context learning (Figure 3), using the same experimental
setup as LLMVS, but without the global context aggregator
1. The LLM achieves competitive performance among previ-
ous methods on SumMe, demonstrating the effectiveness of
leveraging textual data alongside its general knowledge. In
contrast, its performance on TVSum is comparatively lower.
This discrepancy can be attributed to differences in the eval-
uation protocols of SumMe and TVSum, as described in
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Method SumMe TVSum 10} T P T p
T p T p (D) - LLaVA - 0.119 0.132
Random [29] 0.000  0.000 0000 0.000 2) - LLavA® - 0140 0.156
Human [29] 0205 0213 0177 0204 (3) LLaVA  Llama - 0170 0189
’ : ’ ’ @ LLaVA Llama* - 0.181  0.201
Visual (5) LLaVA Llama SAB* 0.253 0.282
VASNet [11] 0.160 0.170 0.160 0.170
DSNet-AB [59] 0.051 0.059  0.108  0.129 Table 2. Finetuning (M-)LLM, ¢ and 7. ¢: text generator, :
DSNet-AF [59] 0.037 0.046 0.113 0.138 local importance scorer, 1: global context aggregator, *:finetuned,
DMASum [46] 0.063 0.089 0.203 0.267 SAB: self-attention blocks.
PGL-SUM [5] - - 0.206 0.157
MSVA [12] 0.200 0.230 0.190 0.210
iPTNet [ 18] 0.101 0.119  0.134  0.163 Prompt type T P
CSTA [35] 0.246 0274  0.194  0.255 Central-background 0.241 0.269
Visual + Text Generic 0.253 0.282
CLIP-It [28] - - 0.108 0.147 (a) Prompting to M-LLM ¢
A2Summ [14] 0.108 0.129 0.137 0.165 Promot tvpe -
SSPVS [22] 0192 0257 0.181 0238 PP P
Argaw et al. [0] 0.130 0.152 0.155 0.186 Textual explanation 0.239 0.266
LLM 0.170 0.189 0.051 0.056 Numerical evaluation 0.253 0.282
LLMVS (ours) 0253 0282 0211 0275 (©) Promping 1o LM =

Table 1. Comparison with the state of the arts. The table is
divided into three compartments: (1) random and human baselines,
(2) models utilizing use visual features, and (3) models using both
visual and text features. LLMVS achieves the state-of-the-art per-
formance on two benchmark datasets.

Section 4.2. In SumMe, evaluation is performed by averag-
ing the user summaries, whereas in TVSum, evaluation is
conducted separately for each user score, and the results are
then averaged. This performance gap, attributed to differ-
ences in subjectivity between the two datasets, indicates that
the LLM is well-suited for general summarization tasks but
less effective in capturing individual user preferences.

LLMYVS. Our model achieves state-of-the-art performance
on both benchmark datasets. Notably, LLMVS shows sig-
nificant performance gains over the zero-shot LLM, as seen
by comparing the last two rows in Table 1. The result in-
dicates that the proposed method effectively handles both
general and subjective aspects of keyframe selection in video
summarization. In particular, it highlights the importance
of the global context aggregator v, which enhances the
reasoning ability of LLM by capturing contextual relation-
ships across local windows, enabling more coherent and
informed sequence-level decision-making. Moreover, our
method outperforms existing multimodal video summariza-
tion models [6, 14, 22, 28], where text information serves as
an auxiliary input to support visual processing. Unlike these
approaches, our framework centers summarization around
language, relying on textual descriptions and the reasoning
capabilities of LLMs. These results underscore the advan-
tage of integrating textual data with the broad reasoning
capabilities of LLMs, enabling more contextually aware and
semantically rich video summaries.

Table 3. Prompting to (M-)LLM. Evaluation of different prompt-
ing styles applied to (a) M-LLM ¢ and (b) LLM 7 on the SumMe
dataset [13]. All experiments use a window size of w = 7.

4.5. Analysis

Finetuning (M-)LLM, ¢ and 7. To determine whether
the performance improvements arise from fundamental ar-
chitectural enhancements or are simply due to finetuning on
downstream benchmarks, we conduct experiments on both
zero-shot and finetuned settings using (M-)LLM.

We first establish a baseline by evaluating M-LLM
(LLaVA [25]) and LLM (Llama-2 [43]) in zero-shot set-
tings. In particular, we assess whether M-LLM can directly
serve as the importance scorer 7, assigning frame-level im-
portance scores without relying on captions, as shown in
the first row of Table 2. Comparing the first and third rows
of the table demonstrates that explicitly providing captions
from M-LLM to the LLM yields better results than direct
scoring by M-LLM alone, underscoring the importance of
leveraging language semantics in video summarization.

Subsequently, to evaluate the impact of finetuning, we
apply LoRA [58] to both the M-LLM and LLM, with the
finetuned models denoted by * in Table 2. The performance
improvements observed when comparing the first and sec-
ond rows, as well as the third and fourth rows, validate the
effectiveness of finetuning. However, LLMVS exhibits sig-
nificantly greater improvements in the fifth row compared to
these baselines, demonstrating that its effectiveness extends
beyond simple finetuning.

Prompting to (M-)LLM , ¢ and w. Prompting is essential
in (M-)LLMs, as it determines how the model processes
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Query g Answer a P T p

(1 - v SAB* 0233 0.260
2) v - SAB* 0238 0.265
A3) v v SAB* 0.253 0.282
@) v v MLP* 0.182 0.203

Table 4. Ablation studies. The embeddings are used individually or
concatenated. Performance is evaluated on the SumMe dataset [13].
*:finetuned, MLP: MLP only (without self-attention blocks), SAB:
self-attention blocks.

information and generates responses. To evaluate the ef-
fectiveness of different prompting strategies, we examine
prompts for both M-LLM ¢ and LLM 7.

For M-LLM ¢, we explore the impact of different caption-
ing styles. Specifically, we examine how the richness and
descriptiveness of frame captions influence summarization.
As detailed in Section 3.2, we instruct the M-LLM with a
generic prompt “Provide a detailed one-sentence descrip-
tion.” To obtain more fine-grained descriptions, we instruct
the model to separately describe the center and background
regions of the image using two prompts: “Describe the cen-
ter part of this image in one detailed sentence” and “Describe
the background part of this image in one detailed sentence.”
Table 3 (a), the generic prompt yields better results than the
central-background approach. This suggests that a broader,
high-level description allows the model to better capture
scene dynamics and key events, reducing reliance on spe-
cific frame regions.

For LLM 7, we compare two prompting types: (1) direct
numerical scoring of frame importance using the prompt,
“Please evaluate the importance score of the central frame
in following frames,” as described in Figure 3; and (2) tex-
tual explanation, where the LLM is instructed to summarize
frame captions within a local window using the prompt,
“Please summarize the following frames in one sentence.”
inspired by [16]. Table 3 (b) shows that direct numerical
scoring consistently outperforms textual summarization, sug-
gesting that assigning explicit importance scores provides a
clearer and more effective evaluation of frame significance.

Ablation studies. We conduct experiments to validate the
effectiveness of using the output embeddings q and a and
self-attention blocks 1). Table 4 shows the results. From
the first and second rows, we either use query embeddings
g or answer embeddings a during input structuring in Sec-
tion 3.4. Comparing the first and second rows shows that
leveraging query embeddings yields better performance than
leveraging answer embeddings alone, highlighting the impor-
tance of contextual information in assessing frame relevance
and enriching the semantic processing capabilities of the
LLM. Furthermore, the third row, which combines both
query and answer embeddings with the global context aggre-
gator, achieves the best results, confirming that integrating

Extraction position T p
After Linear layer 0.241 0.269
After RMS Norm layer 0.253 0.282

Table 5. Extraction position of output embeddings g and a.
Evaluation performed on SumMe with window size w = 7.

Method T p
VASNet [44] 0.364 0.364
PGL-SUM [5] 0.375 0.375
DSNet-AB [59] 0.362 0.362
DSNet-AF [59] 0.342 0.342
LLMYVS (ours) 0.440 0.440

Table 6. Zeroshot evaluation on MR.HiSum. The evalu-

ation is conducted on 50 randomly selected videos from the
MR.HiSum [38]. Both previous methods and LLMVS are tested
directly on MR.HiSum using pre-trained models which are origi-
nally trained on SumMe.

both query and answer embeddings with the global context
aggregator yields the most effective results. In the fourth row,
we replace the self-attention blocks (SAB) used as ¢ with
a simple MLP. A comparison between the third and fourth
rows demonstrates that employing the global self-attention
block is more effective than using an MLP.

Extraction position of output embeddings g and a. In
Table 5, we examine the effects of extraction position of
output embeddings q and a. Specifically, we consider two
positions within the LLM =: after the RMS Norm layer and
after the Linear layer, as shown in Figure 4. Since embed-
dings extracted after the linear layer are specialized for word
domains, we aim to explore the effectiveness of embeddings
obtained both before and after this specialization, namely
after the RMS Norm layer and the Linear layer, respectively.

Table 5 presents that embeddings extracted after the
RMS Norm layer outperform those after the Linear layer,
likely due to their retention of richer contextual informa-
tion, whereas embeddings after the Linear layer are more
specialized for word domains.

Zero-shot evaluation on MR.HiSum. To evaluate the
generalization ability of the proposed method on unseen
videos, we train LLMVS on the SumMe [13] and test its
zero-shot performance on a random subset of 50 videos from
the MR.HiSum [38]. We compare LLMVS with previous
methods [5, 44, 59]. Table 6 shows that LLMVS outper-
forms other models, demonstrating its strong generalization
capability in zero-shot settings. This result suggests that by
leveraging the advanced capability of the LLM to interpret
text-based information and incorporating its contextual em-
beddings, LLMVS effectively captures representations that
extend well to unseen video content.
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Figure 5. Qualitative results. Videos are from the TVSum dataset [37]. The x-axis and y-axis represent time step ¢ and importance score s,
respectively. The blue line indicates the averaged user scores from the ground truth annotations, while the orange line denotes the predicted
importance scores from our model, normalized to the range [0, 1]. Green regions highlight segments where importance scores are high,
whereas pink regions indicate segments where importance scores are low.

4.6. Qualitative Results

Figure 5 presents qualitative results on TVSum [37], compar-
ing predicted scores from LLMVS against the ground-truth
user scores. The x- and y-axes are time step ¢ and importance
score s, respectively. In this figure, the blue line represents
the average user scores, while the orange line shows the
normalized predicted scores from our model. All scores are
in the range of 0 to 1. Green areas indicate segments that re-
ceived high importance scores, while pink areas correspond
to segments with low scores.

The predicted importance scores align well with overall
trends in the ground truth, highlighting the robustness and
generalization capability of our approach. We also observe
that action-related scenes tend to receive higher importance
scores from both human annotators and LLMVS. For exam-
ple, in Figure 5 (a), which presents a video about instructing
how to stop a bike, scenes where a woman is talking to the
camera receive relatively low scores. In contrast, frames
depicting dynamic actions—such as riding or touching the
bike—are assigned higher scores. Similarly, in Figure 5 (b),
which features a motorcycle stunt show, frames showing a
man being interviewed are rated lower, whereas those in-
volving high-energy activities, such as stunts, receive higher
scores. These patterns suggest that LLMVS effectively iden-
tifies and emphasizes action-oriented content that contributes
significantly to the narrative.

5. Conclusion

We have introduced the LLM-based Video Summarization
framework (LLMVS), which leverages the semantic under-
standing capabilities of large language models to perform
video summarization through caption-guided frame scor-
ing. LLMVS integrates textual descriptions generated by
M-LLM from video frames, which are then evaluated and
refined through the LLM using a comprehensive local-global
context aggregation network. This design allows the model
to capture narrative structure more effectively by combining
the descriptive strength of the M-LLM with the reasoning
capabilities of the LLM. Experiments on the SumMe and TV-
Sum demonstrate the effectiveness of the proposed approach,
showing consistent improvements over existing methods. By
bridging the gap between visual data and language, LLMVS
enhances the summarization process and sets a new direction
for future research in multimedia content analysis, enabling
advanced cross-modal reasoning.
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