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Figure 1. We present OffsetOPT (Offset OPTimization) for explicit surface reconstruction from 3D point clouds, without the need for
point normals. The prediction model is trained on synthetic meshes with supervision and then generalized to unseen point clouds through
unsupervised optimization of per-point offsets. All surfaces in this figure are reconstructed using the same trained model with offset
optimization. Our method achieves state-of-the-art performance in overall surface quality, sharp detail preservation, and scalability.

Abstract

Neural surface reconstruction has been dominated by im-
plicit representations with marching cubes for explicit sur-
face extraction. However, those methods typically require
high-quality normals for accurate reconstruction. We pro-
pose OffsetOPT, a method that reconstructs explicit sur-
faces directly from 3D point clouds and eliminates the need
for point normals. The approach comprises two stages:
first, we train a neural network to predict surface triangles
based on local point geometry, given uniformly distributed
training point clouds. Next, we apply the frozen network
to reconstruct surfaces from unseen point clouds by opti-
mizing a per-point offset to maximize the accuracy of trian-
gle predictions. Compared to state-of-the-art methods, Off-
setOPT not only excels at reconstructing overall surfaces
but also significantly preserves sharp surface features. We
demonstrate its accuracy on popular benchmarks, including
small-scale shapes and large-scale open surfaces.

1. Introduction

Surface reconstruction from 3D point clouds is essential in
applications across computer vision, graphics, and robotics.
Traditional solutions to this problem include computational
methods such as ball-pivoting [3] and Delaunay triangula-
tion [12], along with the classic Poisson method [22, 23],
which estimates an implicit indicator function by solving a

linear system. The success of Poisson surface reconstruc-
tion [22] in industry has resulted in the predominant explo-
ration of implicit neural representations in geometric deep
learning [20, 30, 33, 42]. These methods generally require
high-quality, oriented normals to predict a scalar field as the
implicit surface representation. Explicit surfaces are then
extracted using Marching Cubes [27] or its variants [21, 40].

However, Marching Cubes becomes incompatible with
the unsigned distance fields (UDFs) [13] in open-surface
reconstruction because it relies on sign changes across the
surface for mesh extraction. Researchers have explored var-
ious methods [18, 20, 43] to incorporate signs into UDFs
such that Marching Cubes can still be applied. In contrast
to the widespread interest in implicit neural representations,
neural computational methods for explicit surface recon-
struction have been largely overlooked [25, 26, 39, 41], de-
spite their bypass of implicit representations, no reliance on
point normals, and good generalization to diverse surfaces.
The key limitations restricting their applications are: (i) a
strong bias toward input points distributed like those from
Poisson disk sampling [49], which is impractical, (ii) in-
sufficient or inconvenient handling of edge-manifoldness in
reconstructed surfaces.

With this work, we contribute a novel neural computa-
tional method, OffsetOPT, for explicit surface reconstruc-
tion directly from 3D point clouds. The method does not
rely on normals but reconstructs surfaces of both shapes
and open scenes with high accuracy. More importantly, it
demonstrates remarkable performance in producing edge-
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manifold triangles without requiring specific handling [25,
26, 39, 41]. OffsetOPT consists of two stages. First, we
train a transformer-based network [44] to predict triangle
faces adjacent to each point based on local geometry. All
of our training point clouds [24] approximate an uniform
distribution. Second, we freeze the network to reconstruct
surfaces from unseen point clouds by optimizing per-point
offsets to enhance the quality of triangle predictions.

Compared to state-of-the-art methods, the proposed Off-
setOPT excels not only in overall surface reconstruction but
also in preserving sharp surface details. We demonstrate
its accuracy on popular benchmarks, using shapes from
ABC [24], FAUST [5], and MGN [4], as well as large-scale
scene surfaces from ScanNet [14], Matterport3D [8], and
CARLA [15]. Below are our main contributions:
• A novel neural computational method is proposed for sur-

face reconstruction from general 3D point clouds.
• It does not rely on point normals or Poisson-disk sampled

points for accurate surface reconstruction.
• Unlike the previous computational methods, it produces

edge-manifold triangles without explicit handling.
• It outperforms existing approaches in reconstructing the

overall structure and fine details of surfaces.

2. Related Work

Surface reconstruction from 3D point clouds is a central re-
search topic in geometry processing. Existing solutions for
this problem generally fall into two categories: (a) compu-
tational methods that directly reconstruct explicit surfaces
from point clouds; (b) implicit methods that solve for differ-
ent scalar fields to represent surfaces implicitly (e.g., binary
occupancy, signed distance, or unsigned distance fields).
The latter must resort to Marching Cubes [27] for explicit
surface extraction from the scalar fields. They also depend
on consistently oriented normals for reliable performance.

Traditional methods in the computational category in-
clude Alpha shapes [16], the ball pivoting algorithm [3],
and Delaunay triangulation [7, 12], while Poisson surface
reconstruction [22, 23] is a representative approach in the
implicit category. Below, we briefly review neural methods
advancing the two directions in geometric deep learning.

2.1. Implicit Neural Representations

Implicit neural representations initially focused on water-
tight surface reconstruction, where neural networks are used
to predict occupancy fields or signed distance fields (SDFs)
for the surface. Researchers have developed multiple loss
functions to learn the underlying implicit surface from ori-
ented, dense point clouds [1, 2, 17, 30, 33, 42].

For improved reconstruction, various encoder architec-
tures have been explored to extract more effective local fea-
tures for each point, allowing the decoder to predict the oc-

cupancy status or signed distance associated with each point
more accurately [6, 10, 34, 46]. Meanwhile, inspired by the
success of basis functions in SPSR [22], a number of works
have applied (learnable) basis functions or neural kernels to
surface reconstruction [19, 20, 35, 47, 48].

Given the significance of open surface reconstruction
in real-world applications, research on unsigned distance
fields (UDFs) has gained increasing attention [13, 28, 50].
However, a key limitation of UDFs is their incompatibility
with Marching Cubes due to the absence of sign informa-
tion. The primary solution to this issue is to convert UDFs
into SDFs by introducing signs [18, 20, 43, 45]. Among
implicit methods, NKSR [20] is a notable contribution that
holds strong inductive bias. It leverages well-oriented nor-
mals to establish SDFs for surfaces with varying topolo-
gies, including both watertight and open surfaces. While the
method remains effective without normals, it prefers high-
quality normals for superior performance. For their repre-
sentativeness, we compare our reconstruction accuracy with
the implicit methods, SPSR [22] and NKSR [20].

A known drawback of implicit methods is that they tend
to oversmooth the sharp surface details [38], which we
show empirically in our experiments. It is worth noting
that we focus on reconstructing surfaces from general 3D
point clouds, assuming they adequately capture the under-
lying surface. Surface reconstruction from noisy and sparse
point clouds [9, 32] is beyond the scope of this work.

2.2. Neural Computational Reconstruction

In contrast to the popularity of implicit neural represen-
tations, neural computational reconstruction has received
less attention. Existing methods generally establish candi-
date triangles based on the KNN neighborhood informa-
tion [36] of each point. PointTriNet [41] proposes can-
didate triangle faces using a proposal network and classi-
fies surface triangles with a separate network. It handles
edge-manifoldness between triangles explicitly in the pro-
posal network. IER [26] predicts whether a candidate tri-
angle face belongs to the reconstructed surface based on
the intrinsic-extrinsic distance ratio. The complexity for es-
tablishing candidate triangles is O(K2) per point, and the
method is highly restricted to Poisson-disk sampled points.
DSE [39] parameterizes the 3D neighborhood of each point
onto a 2D chart, enabling the use of Delaunay triangula-
tion [29]. Both IER and DSE rely on a voting-based mech-
anism during post-processing to handle edge-manifoldness
in the reconstructed surface. Different from the combinato-
rial formulation of previous methods, CircNet [25] exploits
the duality between a triangle and its circumcenter to re-
formulate the reconstruction as a detection of triangle cir-
cumcenters, resulting in reduced complexity. Therefore, it
is much faster at producing the primitive surfaces. Yet, the
edge-manifoldness handling at post-processing takes time.
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(a) Training samples from ABC (b) Triangle prediction network (b) Offset optimization

Li
ne

ar
 P

ro
je

ct
io

n

5-
La

ye
r T

ra
ns

fo
rm

er

Po
sE

nc
 

ground-truth 
 

adjacent triangles
and KNN of  

supervision

In
pu

ts

La
be

ls

Fr
oz

en
 

ne
tw

or
k

U
ns

up
er

vi
se

d
Pr

ed
ic

tio
n

Points Offsets
normalized

KNN
Loss 

optimize the offsets

Figure 2. Overview of the proposed OffsetOPT method. (a) provides examples of training samples from the ABC dataset, showing meshes
with uniformly distributed points and equilateral triangles (zoom-in for a better view). (b) is the training of our triangle prediction network
in a supervised manner, where ground-truth labels are established from adjacent triangles of each point in the training meshes. The network
predicts surface triangles based on KNN neighborhoods of points. (c) is the offset optimization for surface reconstruction. For a point cloud
{pn}, we optimize its offsets {�pn} by backpropagating the unsupervised prediction loss through the frozen network. For each offset
update during optimization, the KNN geometry used by the network is recomputed with points {pn +�pn}.

The neural computational methods exhibit strong gen-
eralization to unseen point clouds across diverse shapes
and scenes. In contrast, implicit neural representations are
highly data-driven and constrained by their training priors
when applied to unseen data. For instance, NKSR [20] re-
quired extensive training on a combined dataset of varied
shapes and scenes to establish a robust inductive bias. Cur-
rently, a key limitation hindering the applications of compu-
tational methods is their over-reliance on input points being
ideally distributed, simulating a Poisson disk sampling [49].

To justify the promise of neural computational recon-
struction, we present OffsetOPT. Similar to previous ap-
proaches, it reconstructs the surface based on the local point
geometry derived from their KNN neighborhoods. The net-
work is trained to predict surface triangles from the O(K2)
candidates. Our proposed offset optimization effectively ad-
dresses edge-manifoldness without requiring explicit han-
dling. Besides, it extends the applicability of neural compu-
tational reconstruction to general point clouds, rather than
being restricted to those produced by the Poisson method.

3. Explicit Surface Reconstruction

Overview. Computational reconstruction preserves the in-
put points as mesh vertices, avoiding the need for interpo-
lating new points as in implicit methods [23]. It directly re-
constructs the explicit surface from its point cloud represen-
tation by predicting adjacent triangle faces for each point.
Our method involves training a transformer-based network
on point clouds with an approximately ideal uniform distri-
bution, followed by the optimization of 3D coordinate off-
sets for each input point. We train the network [44] with
Binary Cross-Entropy (BCE) to predict triangle faces based
on local point geometry, as detailed in §3.1. The trained
network is then frozen, and we optimize per-point offsets
to improve the prediction accuracy, extending explicit sur-
face reconstruction to general point clouds while achiev-
ing satisfactory edge-manifoldness (see §3.2). Here, edge-
manifoldness refers to each edge being adjacent to at most
two triangles in the reconstructed surface.

3.1. Triangle Prediction Network

Local point geometry. The local geometry of a point
has been widely exploited in geometric deep learning to
learn expressive feature representations [25, 37, 39]. We
therefore utilize input features derived from the neighbor-
hood of each point to predict surface triangles with a neu-
ral network. Let K(p) = {q1,q2, . . . ,qK} be the KNN
neighborhood of point p, where points are sorted such that
kqk � pk  kqk+1 � pk. To ensure the prediction ro-
bustness across different data resolutions, we normalize the
KNN neighborhood by the smallest non-zero distance as

K(p) =
n
qk|qk = ⌘0

qk � p

kq1 � pk

oK

k=1
, (1)

with ⌘0 fixed as 0.01. The neural network then takes these
normalized KNN coordinates with positional encoding [31]
to predict the surface triangles, similar to [25].
Candidate triangles. Given the K neighbors of a point p,
all combinations yield

�K
2

�
candidate triangles. However,

for better control of the edge-manifoldness, we predict K2

triangles, represented by a symmetric matrix of size K⇥K.
Each entry (i, j) of the matrix for point p corresponds to
a triangle formed by (p,qi,qj), which is identical to the
one in entry (j, i). Triangles in the same row, such as those
involving q3, share the edge (p,q3). The diagonal entries
correspond to degenerate triangles, where two vertices are
identical and hence ignored. For each edge (p,qi), we ex-
tract either two triangles or none. Our network predicts the
probabilities for each candidate triangle in this matrix. For
symmetric control, we predict a raw probability matrix O of
size K⇥K and symmetrize it as O = O+O

|. The ground-
truth labels O⇤ for the supervised training of O with BCE
loss are established based on the adjacent triangles to each
point in the training meshes.
The prediction network. Our neural network for triangle
face prediction consists of a linear projection layer followed
by a 5-layer transformer [44]. Let N be the number of
points in the point cloud. The inputs to our network have
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dimensions N ⇥ K ⇥ Cin, and the outputs have dimen-
sions N ⇥K ⇥K. We train the network using point clouds
that approximate an uniform distribution, leveraging trian-
gle meshes from the ABC dataset. Figure 2(a) shows some
examples from our training set, which consists of simple
synthetic shapes. Figure 2(b) illustrates how the network is
trained using the adjacent triangles and the KNN neighbor-
hood of each point in the mesh.
Triangle Extraction. While applying the trained network
to surface reconstruction, we extract triangle faces based on
the predicted probabilities O at each point. Specifically, we
sort the columns of each row in O to select the top two
most likely triangle faces. Different confidence thresholds
are applied to filter the selected triangles, with p1 for the
first triangle and p2 for the second. Furthermore, we check
the angle between the two triangles to avoid unwanted face
folding, enforcing an angle greater than A. This strategy is
applied to extract adjacent triangles for each point. Dupli-
cate triangle predictions from different points are removed.

3.2. Point Offset Optimization

The trained network in §3.1 performs well only on surface
reconstruction from point clouds with distributions similar
to the training data. To extend its applicability to general
point clouds, we propose optimizing an offset for each input
point, which constitutes our key contribution. The intuition
behind this design is to adjust the point locations to match
the preferred distribution of the network.
Offset initialization. We initialize the offsets of each point
based on their nearest neighbors. For example, the offset of
point p is initialized as

�p
0 = 0.25⇥(p� q1), (2)

where q1 is the nearest neighbor of p. This initialization
pulls each point further apart from its nearest neighbor.
With these offsets, we re-establish the normalized KNN
neighborhood K(p) using the new points with added off-
sets (e.g., p+�p). Note that we do not search those KNN
neighborhoods again but use the original indexing and or-
dering. Our trained network employs the re-computed
K

0
(p) to calculate new input features.

Offset optimization. We freeze the network and compute
the gradients of the offsets by minimizing the average BCE
loss for triangle predictions:

L =
1

N⇥K⇥K

X

n

X

i

X

j

BCE(Onij). (3)

As there are no ground-truth labels in this process, we con-
struct pseudo-labels based on the triangle extraction strat-
egy described in §3.1. Specifically, for each predicted O,
we encourage the top two most likely triangles along each
row to have labels of 1, with the condition that the highest
confidence p1 > 0.5.

Let the raw gradient for �p at the t-th iteration be
rt(�p), and �t be the learning rate. The original distance
between p and its nearest neighbor q1 is d0(p) = kp�q1k.
Based on the directions provided by the raw gradient, we
control the offset update to prevent each point from drifting
arbitrarily away from the surface, using the distance to its
nearest neighbor. Our uncontrolled updates for each offset
are computed as

�p
t+1 = �p

t
� �t ·

ert(�p), (4)

in which

ert(�p) = d0(p) ·
rt(�p)

krt(�p)k
. (5)

For every uncontrolled update of the offset, we evaluate
how it affects the new distance between each point and its
nearest neighbor, calculated as

dt+1 = min
k

k(p+�p
t+1)� (qk +�q

t+1
k )k, (6)

To prevent collisions and promote the repulsion between
nearest-neighbor points during the offset optimization, we
update the offset �p only when dt+1>

d0
2 . Finally, the con-

trolled updates of each offset become

�p
t+1 = �p

t
�m · �t ·

ert(�p), (7)

with
m = I

⇥
dt+1(p) > 0.5⇥d0(p)

⇤
. (8)

In the experiments, we apply the offset optimization with
a decaying learning rate �t for a specified number of itera-
tions T to reconstruct the surface effectively.
Comparison to NKSR [20]. Our approach reconstructs
surfaces by optimizing an offset for each point, making it
applicable to arbitrary surfaces, even though the network
is trained solely on the ABC dataset. In contrast, NKSR
requires training on a diverse set of shapes and surfaces
for effective generalization and relies on high-quality, well-
oriented normals for optimal performance. Although nor-
mals are not used, OffsetOPT outperforms NKSR in both
reconstruction accuracy and the preservation of fine details.

3.3. Reconstruction Application

Although our method handles general point cloud inputs,
its primary target is surface reconstruction from dense point
clouds. In that case, we begin by voxelizing1 the dense point
cloud to create a more regular input, then apply the trained
network in §3.1 with offset optimization in §3.2 to recon-
struct the surface. A recommended setting for the voxel
size v is to approximate the largest nearest-neighbor dis-
tance between point pairs, which is the coarsest resolution

1voxel-based point cloud subsampling.
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(e) Input point cloud

(f) Initial reconstruction (g) Reconstruction after 20 iterations (h) Final reconstruction

(a) Input point cloud

(b) Initial reconstruction (c) Reconstruction after 20 iterations (d) Final reconstruction

Details of the
triangulation

Details of the triangulation

Figure 3. Evolution of manifold edges during OffsetOPT reconstruction. In the top row, we illustrate the reconstruction process for a shape
from Thingi10k, with manifold edges in black and non-manifold edges in red. Given the input point cloud in (a), the initial reconstruction
contains a high percentage of non-manifold edges, as shown in the histogram in (b), where ‘Edge Adjacency’ refers to the number of faces
adjacent to each edge. We note that manifold edges have an adjacency of no more than 2. After 20 iterations of offset optimization, the
percentage of manifold edges increases significantly from 75% to 99% in (c), while the number of non-manifold edges diminishes. The
final reconstructed mesh, with detailed triangulation around the belly, is shown in (d). The bottom row shows a similar effect in scene
reconstruction from ScanNet. Comparing (f) and (g), iterative offset optimization substantially increases the number of manifold edges. In
(h), we display the final reconstruction with detailed triangulation around a sink.

of the point cloud. We briefly summarize the proposed Off-
setOPT method for surface reconstruction in Algorithm 1.

For a visual understanding of how OffsetOPT promotes
manifold edges during surface reconstruction, we present

two examples to demonstrate the process: one for a shape
and another for a scene, as illustrated in Fig. 3. In both
cases, the number of manifold edges increases significantly
through offset optimization, resulting in high-quality trian-
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Algorithm 1 Offset optimization for surface reconstruction.

Input: (1) A point cloud {xs}
S
s=1; (2) The trained network.

Output: The reconstructed surface as a triangle mesh.
1: Voxelize the point cloud as {pn}

N
n=1 with grid size v.

2: Establish the KNN neighborhood K(p) of each point.
3: Initialize the corresponding offsets {�p

0
n}

N
n=1.

4: for iteration t < T do

5: Re-compute the normalized neighborhood K
0
(p).

6: Predict triangles with the network using K
0
(p).

7: Compute loss L in Eq. (3) and backpropagate to get
raw offset gradients rt(�p).

8: Compute the uncontrolled �p
t+1 using Eq (4).

9: Check the updated NN distance dt+1 with Eq. (6).
10: Update the offset with the controlled Eq. (7).
11: end for

12: Extract surface triangles using the strategy in §3.1.
13: [Optional] Post-process for strict edge-manifoldness.
14: return The reconstructed triangle mesh.

gulation details in the final reconstructed surface.
Despite achieving notable performance in yielding edge-

manifold triangles, our method may still reconstruct the sur-
face with a small percentage of non-manifold edges. These
can be removed through post-processing using functions
from [25] or 3D libraries like Open3D [52]. Given the low
percentage of non-manifold edges, such post-processing is
efficient and has minimal impact on the reconstruction qual-
ity. We report reconstruction accuracy of our method on the
non-post-processed surfaces in the experiments.

4. Experiments

Implementation details. The transformer layers in our
neural network has 64 channels and 4 attention heads. We
use K=50 in the KNN search, and a basis level of 8 for the
positional encoding. During training, we randomly sample
points from each training mesh, using their adjacent trian-
gles for ground-truth labels and KNN geometry as network
inputs. The input point clouds are augmented with random
rotations, scaling, and jittering. For offset optimization, the
learning rate is initialized to �0 = 0.1 and decays by a fac-
tor of 0.7 every 10 iterations. We optimize the offsets for
100 iterations. The threshold settings for triangle extraction
are (p1, p2, A) = (0.8, 0.5, 120�).
Evaluation criteria. We assess the overall surface qual-
ity of each reconstructed mesh using symmetric Chamfer
distances (CD1, CD2), F-Score (F1), normal consistency
(NC), and normal reconstruction error (NR) in degrees. The
quality of fine surface details is further evaluated using Edge
Chamfer Distance (ECD1) and Edge F-score (EF1), follow-
ing [11, 25]. Specifically, for shape reconstruction, we sam-
ple 105 points from both the ground-truth and reconstructed
meshes, while for scene reconstruction, we use 106 points to

ensure adequate surface coverage. All meshes are re-scaled
to fit within a unit sphere for metric reporting.
Training data. The ABC dataset [24] offers a collection
of clean synthetic meshes with high-quality, nearly equi-
lateral triangle faces. We use the 9,026 voxelized2 meshes
from [25], split into 25% for training and 75% for testing,
to train and evaluate our triangle prediction network.
Method comparison. We compare the reconstruction qual-
ity of OffsetOPT to computational reconstruction methods,
including ball-pivoting ([3]), PointTriNet [41], DSE [39],
and CircNet [25], as well as representative implicit neural
methods, including SPSR [22] and NKSR [20].

4.1. Shape Reconstruction

Trained on the ABC training set, our prediction network
outperforms existing methods on the ABC test set with a
simple forward pass, without offset optimization, due to the
similarity in point distributions between the training and test
sets. The results are reported in Table 1.

For surface reconstruction from unseen point clouds in
general, we apply the model trained on ABC with offset
optimization, i.e., the proposed OffsetOPT. We validate the
generalization of OffsetOPT using FAUST [5], a dataset of
watertight meshes of human bodies, and MGN [4], a dataset
of open meshes of clothes. The results are reported in Ta-
ble 2 and Table 3, respectively.

It can be seen that OffsetOPT consistently outperforms
other approaches, especially in reconstructing sharp surface
details. We note that the performance drop of NKSR on the
MGN dataset is due to its tendency to close small holes in
the open surfaces, such as those around the neck and legs.

For all shape reconstruction experiments, the default in-
put points consist of the vertices of the test meshes. We
additionally sample 0.1 millon points from each test mesh
to report the improved reconstruction results of NKSR. We
compute estimated normals n̂ for ball-pivoting from the in-
put point cloud and the ground-truth normals n for SPSR
and NKSR from the ground-truth mesh.

4.2. Scene Reconstruction

To demonstrate the performance of OffsetOPT in large-
scale scene reconstruction, we apply it to surfaces from the
test splits of ScanNet [14], Matterport3D [8], and 10 ran-
dom scenes from CARLA [15, 20]. In all experiments,
we randomly sample one million points from the ground-
truth meshes (ScanNet and Matterport3D) or dense point
clouds (CARLA) as inputs. In the reconstruction with
OffsetOPT, we voxelize the input points with a grid size
of 2 cm for ScanNet and 10 cm for Matterport3D and
CARLA. We compare OffsetOPT to SPSR and the state-of-
the-art NKSR, with quantitative results provided in Table 4
and visualized comparisons in Fig. 4. It is observed that

2Mesh decimation with voxel-based vertex clustering.
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Table 1. Method comparison on the ABC test set. ‘+n̂, +n’ indicate the usage of estimated and ground-truth normals, respectively; ‘0.1M’
represents reconstruction from 0.1 million points randomly sampled from the ground-truth mesh.

Method
Surface Quality

overall sharp
CD1(⇥102)# CD2(⇥105)# F1" NC" NR# ECD1(⇥102)# EF1"

ball-pivot (+n̂) 0.297 0.684 0.939 0.981 2.244 0.782 0.873
SPSR (+n) 0.400 6.081 0.901 0.972 6.020 26.160 0.108
DSE 0.285 0.548 0.949 0.985 1.793 0.538 0.929
PointTriNet 0.288 0.790 0.948 0.984 1.931 0.688 0.926
CircNet 0.284 0.544 0.950 0.985 1.758 0.708 0.924
NKSR (+n) 0.370 3.968 0.918 0.978 5.225 27.499 0.097
NKSR (+n, 0.1M) 0.306 1.167 0.938 0.989 2.929 4.152 0.514
OffsetOPT (Prop.) 0.283 0.540 0.951 0.988 1.318 0.402 0.941

Table 2. Method comparison on the FAUST dataset. Each point cloud contains 6,890 points by default.

Method
Surface Quality

overall sharp
CD1(⇥102)# CD2(⇥105)# F1" NC" NR# ECD1(⇥102)# EF1"

ball-pivot (+n̂) 0.323 1.002 0.923 0.970 6.037 2.887 0.184
SPSR (+n) 0.427 4.108 0.915 0.969 10.269 1.069 0.810
DSE 0.218 0.307 0.995 0.984 3.910 0.883 0.801
PointTriNet 0.219 0.308 0.995 0.983 4.393 1.233 0.807
CircNet 0.221 0.316 0.993 0.980 4.557 0.939 0.820
NKSR (+n) 0.302 0.654 0.972 0.973 9.410 2.737 0.501
NKSR (+n, 0.1M) 0.227 0.319 0.997 0.987 6.303 0.970 0.813
OffsetOPT (Prop.) 0.217 0.301 0.996 0.985 4.038 0.561 0.896

Table 3. Method comparison on the MGN open surfaces.

Method
Surface Quality

overall sharp
CD1(⇥102)# CD2(⇥105)# F1" NC" NR# ECD1(⇥102)# EF1"

ball-pivot (+n̂) 0.462 4.917 0.844 0.974 5.803 11.847 0.083
SPSR (+n) 1.077 10.481 0.402 0.948 12.224 7.912 0.137
DSE 0.270 0.530 0.968 0.983 3.970 4.508 0.440
PointTriNet 0.272 0.562 0.967 0.981 4.398 5.936 0.399
CircNet 0.269 0.512 0.968 0.981 4.230 3.231 0.486
NKSR (+n) 0.946 23.263 0.611 0.947 11.818 13.815 0.065
NKSR (+n, 0.1M) 0.381 0.884 0.891 0.990 4.997 6.488 0.441
OffsetOPT (Prop.) 0.278 0.511 0.964 0.991 2.967 5.447 0.538

SPSR recovers the overall scene structure well but suffers
from strong over-smoothing, limiting its reconstruction ac-
curacy. In contrast, our method-without relying on normals-
consistently outperforms NKSR, particularly in recovering
the fine details, whereas ground-truth normals are provided
for the latter. For space concern, we show additional visual
comparisons in the supplementary material.

4.3. Ablation Study

Impact of offset optimization. Table 5 presents the re-
construction accuracy (CD1) and the percentage of mani-
fold edges (%) using our trained model with (w) and with-
out (w/o) the offset optimization in stage two. The results
clearly indicate that optimizing offsets significantly pro-
motes manifold edges, as shown in the histograms of Fig. 3.
Different offset initialization. In Eq. (2), we slightly move
each point away from its nearest neighbor for offset ini-

tialization. A more straightforward approach is to initial-
ize all offsets as zeros. Figure 5 illustrates the percentage
of manifold edges in reconstructed surfaces using differ-
ent initializations for the FAUST (§4.1) and Thingi10k [51]
datasets. This experiment uses 100 shapes from Thingi10k,
with point clouds consisting of 0.1 million points randomly
sampled from the ground-truth meshes. See Table 7 in the
supplementary for the reconstruction accuracies using the
two initializations. We adopt the proposed initialization as
it yields slightly better performance.

5. Limitation

Although the proposed OffsetOPT demonstrates remark-
able improvements in producing manifold edges compared
to prior computational reconstruction methods, a small per-
centage of non-manifold edges may still occur. Future
work will aim to address this limitation more comprehen-
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Table 4. Method comparison on large-scale open surface datasets: ScanNet, Matterport3D, and CARLA.

Method
Surface Quality

overall sharp
CD1(⇥102)# CD2(⇥105)# F1" NC" NR# ECD1(⇥102)# EF1"

Sc
an

N
et SPSR (+n) 5.428 352.674 0.194 0.709 35.904 7.370 0.131

NKSR (+n) 0.157 0.164 0.997 0.963 9.824 0.618 0.885
NKSR 0.423 1.648 0.793 0.901 17.699 1.743 0.586
OffsetOPT (Prop.) 0.147 0.136 1.0 0.960 9.533 0.389 0.931

M
Po

rt3
D SPSR (+n) 0.926 28.893 0.724 0.830 23.322 2.202 0.344

NKSR (+n) 0.183 0.220 0.995 0.936 12.713 0.619 0.842
NKSR 0.271 0.762 0.939 0.894 18.076 0.903 0.718
OffsetOPT (Prop.) 0.148 0.139 1.0 0.938 10.665 0.250 0.973

C
A

R
LA

SPSR (+n) 4.407 234.338 0.121 0.733 30.835 6.799 0.062
NKSR (+n) 0.175 0.299 0.974 0.953 7.740 0.679 0.903
NKSR 0.238 2.682 0.968 0.936 10.761 1.013 0.810
OffsetOPT (Prop.) 0.124 0.272 0.987 0.963 5.530 0.317 0.946

(e) OffsetOPT
     (Proposed)

(a) GT (b) SPSR ( ) (d) NKSR ( )(c) NKSR

Figure 4. Comparison of different reconstruction methods on a large-scale building from Matterport3D [8]. (a) The ground-truth surface.
(b) SPSR [22] reconstruction using ground-truth normals, showing strong oversmoothing. (c) NKSR [20] reconstruction without normals,
resulting in many disconnected components. (d) The improved NKSR reconstruction with ground-truth normals. (e) Our reconstruction
with OffsetOPT, which captures fine details without requiring normals. Zoomed-in triangulation details are shown for each surface.

Table 5. Impact of offset optimization.
offset ABC FAUST MGN ScanNet MP3D
w/o 0.283 (99%) 0.221 (82%) 0.280 (88%) 0.154 (74%) 0.164 (78%)
w - 0.217 (98%) 0.278 (99%) 0.147 (99%) 0.148 (99%)

FAUST Thingi10k

pe
rc
en

t

samples samples

pe
rc
en

t

Figure 5. The percentage of manifold edges in the reconstructed
surfaces using zero and proposed initializations, with red for zero
and blue for proposed. Results are shown for the FAUST and
Thingi10k datasets. The x-axis in our plots indicates the num-
ber of samples, while the y-axis represents the percentage.

sively. Additionally, our prediction network utilizes a trans-
former architecture, which, while achieving superior recon-
struction accuracy, is less efficient than the graph convolu-
tional networks [25]. Exploring the combination of graph
convolutions with transformers in future work could better
balance accuracy and efficiency in surface reconstruction,

while potentially enhancing method robustness. Currently,
our approach takes an average of 15.67 seconds and 13.83
seconds to reconstruct each shape in FAUST and MGN, re-
spectively, and approximately 6, 12, and 9 minutes to recon-
struct each scene in ScanNet, Matterport3D, and CARLA,
using a single NVIDIA GeForce RTX 4090 GPU.

6. Conclusion

We have introduced a novel neural computational method,
OffsetOPT, for reconstructing explicit surfaces directly
from 3D point clouds. Unlike the implicit methods, it
does not require point normals. OffsetOPT operates in two
stages: it first trains a triangle prediction network based on
local point geometry to reconstruct surfaces from ideally
distributed points, and then applies the trained model to op-
timize per-point offsets for accurate surface reconstruction
from general point clouds. Our approach outperforms exist-
ing methods in both overall reconstruction accuracy and the
preservation of sharp surface features. We validate its effec-
tiveness across a diverse range of benchmark datasets, in-
cluding both small-scale shapes and large-scale indoor and
outdoor surfaces, demonstrating its ability to achieve high-
quality surface reconstructions without relying on normals.

11736



7. Acknowledgments

This research was supported by the Centre for Augmented
Reasoning (CAR) at the Australian Institute for Machine
Learning (AIML), University of Adelaide.

References

[1] Matan Atzmon and Yaron Lipman. SAL: Sign agnos-
tic learning of shapes from raw data. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2565–2574, 2020. 2

[2] Ma Baorui, Han Zhizhong, Liu Yu-Shen, and Zwicker
Matthias. Neural-pull: Learning signed distance functions
from point clouds by learning to pull space onto surfaces.
In International Conference on Machine Learning (ICML),
2021. 2

[3] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier,
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