
3D-HGS: 3D Half-Gaussian Splatting *

Haolin Li Jinyang Liu Mario Sznaier Octavia Camps

{li.haoli, liu.jiyan, m.sznaier, o.camps}@northeastern.edu

Northeastern University

Boston, MA

Abstract

Photo-realistic image rendering from 3D scene reconstruc-

tion has advanced significantly with neural rendering tech-

niques. Among these, 3D Gaussian Splatting (3D-GS) out-

performs Neural Radiance Fields (NeRFs) in quality and

speed but struggles with shape and color discontinuities.

We propose 3D Half-Gaussian (3D-HGS) kernels as a plug-

and-play solution to address these limitations. Our experi-

ments show that 3D-HGS enhances existing 3D-GS meth-

ods, achieving state-of-the-art rendering quality without

compromising speed. More demos and code are available at

https://lihaolin88.github.io/CVPR-2025-

3DHGS.

1. Introduction

The pursuit of photo-realistic and real-time rendering of 3D

scenes is a core research focus in both academic and indus-

trial sectors, with wide-ranging applications including vir-

tual reality [12], media production [18], autonomous driv-

ing [28, 32], and extensive scene visualization [14, 16, 22].

Traditionally, meshes and point clouds have been the pre-

ferred methods for 3D scene representations due to their

explicit compatibility with fast GPU/CUDA-based rasteri-

zation techniques. However, these methods often result in

reconstructions of lower quality and renderings plagued by

various artifacts. In contrast, recent advancements in Neural

Radiance Fields (NeRF) [17] introduced continuous scene

representations leveraging Multi-Layer Perceptron architec-

tures (MLP). This approach optimizes novel-view synthesis

through volumetric ray-marching techniques, providing sig-

nificantly more realistic renderings. However, NeRF meth-

ods are characterized by their slow speed [5].

*This work was supported in part by NSF grant 2038493, ONR grant

N00014-21-1-2431, NIH grant R01CA240771 from NCI, and U.S. Depart-

ment of Homeland Security grant 22STESE00001-03-02. The views and

conclusions contained in this document are those of the authors and should

not be interpreted as necessarily representing the official policies, either

expressed or implied, of the U.S. Department of Homeland Security.

View

Image Plane

View Direction

3D Gaussians in Object Space

(a) 3D Gaussian kernels

View

Image Plane

View Direction

3D Half-Gaussians in Object Space

(b) 3D Half-Gaussian kernels

Figure 1. Illustration of the 3D-GS kernels and the proposed 3D

Half-Gaussian kernels, where each half of the kernel is allowed to

have different opacity parameters.

Recently, 3D Gaussian splatting (3D-GS) [9] has

emerged as a state-of-the-art approach, outperforming ex-

isting methods in terms of both rendering quality and speed.

The concept of using 3D Gaussians to parameterize a scene

dates back to the early 2000s [34, 35]. This technique mod-

els a 3D scene with a collection of 3D Gaussian reconstruc-

tion kernels parameterized by 59 parameters representing

location, scale, orientation, color, and opacity of the ker-

nel. Initially, each Gaussian is derived from a point in a

Structure from Motion (SfM) reconstruction. These pa-

rameters are subsequently refined through a dual process

involving the minimization of image rendering loss and

adaptive kernel density adjustment. The efficiency of 3D-

GS is enhanced by a GPU-optimized, tile-based rasteriza-

tion method, enabling real-time rendering of complex 3D

scenes. Employing 3D Gaussians as reconstruction kernels

simplifies the volumetric rendering process and facilitates

the integration of a low-pass filter within the kernel. This

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

10996

https://lihaolin88.github.io/CVPR-2025-3DHGS
https://lihaolin88.github.io/CVPR-2025-3DHGS

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

y

True Square
Gaussian Mixture

(a) Five Gaussians fitting a square

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

y

True Square
Half-Gaussian Mixture

(b) Three HGs fitting a square

4 2 0 2 4
Time

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl
itu

de

Half-Gaussian
Gaussian

(c) Gaussian and Half-Gaussian in spatial domain

4 2 0 2 4
Frequency

0.0

0.5

1.0

1.5

2.0

2.5

M
ag

ni
te

de

Fourier of Half-Gaussian
Fourier of Gaussian

(d) Gaussian and Half-Gaussian in Frequency domain

Figure 2. Comparison of Half-Gaussian and Gaussian Kernels

fitting a square function and their Fourier Transforms. (a): fit-

ting a square function with 5 Gaussian kernels, and (b): fitting a

square with 4 Half-Gaussian kernels. When approximating sharp

edges, the Half-Gaussian kernels achieve a lower error loss (1.85)

compared to Gaussian kernels (2.97). Figures (c) and (d) illustrate

the Gaussian and Half-Gaussian kernels in both the spatial and fre-

quency domains, where the Half-Gaussian demonstrates a higher

bandwidth than the Gaussian kernel, indicating its superior ability

to capture high-frequency components.

addition effectively mitigates aliasing during the resampling

of scene data to screen space [33, 35].

While 3D-GS benefits from employing 3D Gaussians,

using a Gaussian kernel can be inefficient and lead to inac-

curacies when modeling discontinuous functions, which are

common in 3D scenes at object boundaries and texture-rich

areas. As Fig. 2(a) shows, using Gaussian kernels leads to

a Gibbs phenomenon with high peaks overshooting and un-

dershooting the function value and non-vertical transitions

0 20 40 60 80 100 120
Frames per second (FPS)

28.8

29.0

29.2

29.4

29.6

29.8

30.0

30.2

PS
NR

(d
B)

Mip-NeRF

3DGS
Scaffold-GS

GS-MCMC

3D-HGS

Scaffold-HGS

HGS-MCMC

Mip-Splatting

Mip-Splatting-HGS

Half-Gaussian kernel
Gaussian kernel

Figure 3. Performance (PSNR↑) versus rendering speed for sev-

eral state-of-the-art methods [1, 9, 10, 15, 29] with Gaussian ker-

nels and the proposed half-Gaussian kernels on the Mip-NeRF360

dataset [1]. In all cases, using half-Gaussian kernels resulted in

significant PSNR improvements, with similar or better rendering

speed than the corresponding 3D Gaussian-based method.

(i.e. blurry edges). To address this problem, we propose the

use of 3D-Half-Gaussian Splatting (3D-HGS), which em-

ploys a 3D-Half Gaussian as a novel reconstruction kernel.

As seen in Fig. 2(b), using this kernel significantly reduces

the Gibbs oscillatory effect and better fits the vertical dis-

continuities. This can be explained by the fact that Half-

Gaussians have a higher content at higher frequencies than

full Gaussians do (Fig. 2 (c) and (d)).

A pair of 3D half-Gaussians can be easily represented by

adding the parameters of a vector normal to a plane split-

ting a 3D Gaussian through its center, and allowing each

half to have different opacity values (Fig. 4(b)). By intro-

ducing this plane, the kernel can efficiently capture high-

frequency information at discontinuities, while preserving

the essential characteristics of the original 3D Gaussian ker-

nel (Fig. 2). This preservation is facilitated by the sym-

metric pairing of 3D Half-Gaussians, which also allows to

seamlessly represent full 3D Gaussians (see for example the

center Gaussian in Fig. 2(b)).

Thus, the proposed 3D-Half-Gaussian kernel preserves

the key parameters in the original 3D-GS and provides

the capability to be easily applied to existing 3D Gaus-

sian kernel-based methods as a plug-and-play kernel. Our

experiments (see Fig. 3 and section 4.2) show that using

the proposed 3D Half-Gaussian as the reconstruction ker-

10997

nel achieves state-of-the-art (SOTA) rendering quality per-

formance on MipNeRF-360, Tanks&Temples, and Deep

Blending datasets, with similar or better rendering speed

than the corresponding 3D Gaussian-based methods.

Our main contributions are: (1) We introduce a novel

plug-and-play reconstruction kernel, the 3D Half-Gaussian,

designed to enhance the performance of 3D Gaussian Splat-

ting (3D-GS). (2) Our proposed kernel achieves state-of-

the-art novel view synthesis performance across multiple

datasets without compromising rendering frame rate. (3)

We demonstrate the versatility and effectiveness of our ker-

nel by applying it to other state-of-the-art methods, show-

casing its broad applicability. Our code will be available on

our GitHub project page.

2. Related Work

3D reconstruction and Novel View Synthesis (NVS) have

long been key goals in computer vision. NeRFs [17] have

significantly advanced NVS, enabling highly realistic image

synthesis from new viewpoints. More recently, 3D-GS has

set new state-of-the-art benchmarks in this field. This sec-

tion reviews both historical and recent developments in 3D

reconstruction and NVS, with a detailed analysis of 3D-GS,

its methods, achievements, and impact on the field.

2.1. Novel View Synthesis

Before the advent of NeRFs, Multi-View Stereo (MVS) [20]

and Structure from Motion (SfM) were commonly utilized

for reconstructing 3D scenes from multiple viewpoint im-

ages. MVS relies on feature extraction from diverse im-

ages to correlate viewpoints and produce a final reconstruc-

tion, typically represented as a colored mesh grid or point

cloud. However, due to its reliance solely on image features,

achieving high-quality reconstructions can be challenging.

SfM [19], employs multi-view images to generate a point

cloud representing the 3D scene. In contrast to MVS, SfM

excels in accurately estimating camera poses for different

images, while MVS provides more precise 3D estimations

of the scene. Notably, SfM’s simultaneous estimation of

camera positions and point clouds makes it a preferred pre-

processing step in recent advanced NVS methods.

NeRFs [17], stand as a significant milestone in NVS,

demonstrating remarkable achievements in tasks such as

image and view synthesis alongside scene reconstruction.

Unlike previous methods, a Nerf represents the 3D scene

using a radiance field, treating the entire scene as a contin-

uous function parameterized by position.

3D-GS [9], is a recently introduced NVS technique. This

method boasts a remarkable reduction in both training and

rendering times, surpassing the Nerf methods. Diverging

from its predecessors, 3D-GS does not rely on training neu-

ral networks or any type of network architecture. Instead,

it initiates from a point cloud. Unlike treating each point

discretely, 3D-GS conceptualizes them as 3D Gaussian en-

tities, each possessing a unique size and orientation, and

spherical harmonics to depict their color. Subsequently,

during the splatting stage, these 3D Gaussians are projected

onto a 2D plane, with their appearances accumulated to gen-

erate renderings for a given viewing angle.

2.2. Splatting methods

The original concept of splatting was introduced by West-

over [25, 26], and improved by Zwicker et. al [33–35]. Re-

cently, the 3D-GS technique has achieved great success in

photo-realistic neural rendering [9, 27].

Although 3D-GS has attained state-of-the-art perfor-

mance in terms of rendering speed and quality, opportuni-

ties for further enhancements remain. Various studies [2, 3]

have introduced modifications to the original framework.

For instance, Mip-splatting [29] limits the frequency of

the 3D representation to no more than half the maximum

sampling frequency, as determined by the training images.

Analytic-Splatting [13] employs a logistic function to ap-

proximate the Gaussian cumulative distribution function,

thus refining each pixel’s intensity response to minimize

aliasing. Similarly, SA-GS [21] adapts during testing a 2D

low-pass filter based on rendering resolution and camera

distance. Scaffold-GS [15] employs voxel grids for ini-

tializing 3D scenes and utilizes Multi-Layer Perceptrons

(MLPs) to constrain and learn voxel features. Following

a similar paradigm, SAGS [23] incorporates a graph neu-

ral network to capture structural relationships between indi-

vidual Gaussians, preserving geometric consistency across

neighboring regions during rendering. FreGS [30] intro-

duces frequency-domain regularization to the rendered 2D

images to enhance the recovery of high-frequency details.

2D-GS [8] aligns 3D scenes with 2D Gaussian kernels to

improve surface normal representations. MCMC-GS [10]

applied Stochastic Gradient Langevin Dynamics (SGLD)

to iteratively refine Gaussian positions. Lastly, GES [6] em-

ploys generalized exponential kernels to reduce the memory

required to store 3D information.

The two papers most closely related to ours are 2D-

GS [8] and GES [6], as they also focus on switching the

reconstruction kernels. However, GES did not change the

rasterizer but learned a scaling factor for each of the points

to approximate different kernels. This method faces diffi-

culties in complex 3D scenes. On the other hand, instead of

doing a volumetric rendering as in the original 3D-GS, 2D-

GS tries to do a surface rendering. Our method still learns a

volumetric rendering of scenes to retain the rendering per-

formance while enabling accurate modeling of discontinu-

ous functions.

10998

Initialization

Projection

Adaptive

Density Control

Rasterizer

Camera

Image

Forward Flow

Backward Flow

SfM Points

(a) The training and rendering pipeline for 3D Half-Gaussian

O
paci

ty
1

Opacity1

Opacity2

Normal [𝑛!, 𝑛", 𝑛#]

Mean [𝜇!, 𝜇", 𝜇#]

(b) 3D Half-Gaussian pair

Opacity1

Image plane

View

Ray Space Opacity1

Opacity2

𝑢

𝑣

3D Half-Gaussian

on Image plane

(c) Mapping the Half-Gaussian to image plane in the ray space

Figure 4. Illustration of the 3D-HG kernel, and the mapping of a pair of 3D Half-Gaussians to a 2D image.

3. Method

3D-GS [9] models 3D scenes using 3D Gaussian kernels

[34, 35]. However, these kernels frequently encounter dif-

ficulties in accurately modeling 2D/3D discontinuous func-

tions, which are prevalent in 3D scenes at edges, corners

of objects, and texture-rich areas. The inefficiencies of the

3D Gaussian kernel in representing shape and color dis-

continuities can compromise the model’s effectiveness. To

overcome these limitations, we propose the use of a Half-

Gaussian kernel for novel view synthesis as illustrated in

Fig. 4. Section 3.1 presents an overview of the foundational

concepts relevant to 3D Gaussian Splatting. In Section 3.2,

we introduce the 3D half-Gaussian kernel, followed by an

in-depth description of the 3D-HGS rasterizer in Section

3.3. Finally, Section 3.4 provides a detailed account of the

splatting process.

3.1. Preliminaries

3D-GS [9] represents the 3D scenes with parameterized an-

tisotropic 3D Gaussian kernels [34, 35]. It starts from an

initial set of 3D Gaussians located at a set of sparse points

obtained using a Structure-from-Motion (SfM) step. Then,

3D Gaussians are mapped to 2D images through a GPU-

specified tile-based rasterization. The parameters of these

Gaussians are optimized, pruned, and added based on a loss

function on the rendered images and ground-truth images.

Each of the 3D Gaussians is parameterized by their po-

sition (mean) µ, covariance-related scaling matrix, opacity

α, and Spherical harmonics coefficients for color c. A 3D

elliptical Gaussian GΣ(x) centered at a point µ with covari-

ance matrix Σ is given by:

GΣ(x − µ) =
1

(2π)3/2|Σ| 12
e−

1

2
(x−µ)TΣ

−1(x−µ) (1)

where x and µ are the column vectors [x, y, z]T and

[µx, µy, µz]
T , respectively, and Σ is a positive definite 3×3

matrix. The covariance under the world coordinate system

Σ
w is further parameterized by a scaling matrix S and a

rotation matrix R to maintain its positive definite property:

Σ
w = RSSTRT (2)

Given a viewing transformation W and the Jacobian of

the affine approximation of the projective transformation J ,

the covariance matrix Σ in the camera coordinate system is

given by:

Σ = JWΣ
wWTJT (3)

As in the rendering function we will learn the opacity

parameter α, we can merge the constant term 1

(2π)3/2|Σ|
1

2

into α. Integrating a normalized 3D Gaussian along one

coordinate axis results in a normalized 2D Gaussian. Thus,

3D Gaussians G(x) can be efficiently transformed to 2D

Gaussians Ĝ(x̂) on the image plane using a ray coordinate

system representation [33]:
∫

R

GΣ(x− µ)dz = Ĝ
Σ̂
(x̂− µ̂) (4)

where x̂ = [x, y]T , µ̂ = [µx, µy]
T , and the covariance Σ̂

can be easily obtained by taking the top-left 2×2 sub-matrix

of the transformed Σ:

10999

Σ =





a b c
b d e
c e f



⇔
(

a b
b d

)

= Σ̂ (5)

Finally, the pixel values on the 2D image are obtained by

α-blending:

C =
∑

i∈N

ciσi

i−1
∏

j=1

(1− σj), σi = αiĜ(x̂ − µ̂) (6)

where x̂ is the queried pixel position and N is the set of

sorted 2D Gaussians associated with x̂.

3.2. 3D Half­Gaussian Kernel

In this section, we provide a detailed description of the pro-

posed kernel. We begin by giving the definition of the half

Gaussian kernel and how to parameterize it.

We propose to use 3D Half-Gauusians kernels, where

each half can have different opacity values α1 and α2. The

half Gaussians are obtained by splitting a 3D Gaussian with

a plane through its center. Note that this representation in-

cludes as a special case the 3D-GS representation in the case

when α1 = α2. However, incorporating a planar surface

into the kernel allows to represent sharp changes, such as

edges and textures, as well as planar surfaces, more accu-

rately. As seen below, the increase in the number of learned

parameters is very modest: the 3D normal of the splitting

plane and an additional opacity term. Furthermore, it should

be noted that the plane normal can be stored using the nor-

mal field, which is available but not used, in the original

3DGS kernel implementation. Thus, 3DHGS effectively in-

creases the memory requirements only by an extra opacity

coefficient, while it increases computational cost by a mul-

tiplication by a scaling factor.

Formally, a 3D Half-Gaussian kernel is described by:

HGΣ(x−µ) =

{

e−
1

2
(x−µ)TΣ

−1(x−µ)
n
T (x− µ) ≥ 0

0 n
T (x− µ) < 0

(7)

where n = [n1, n2, n3]
T is the normal of the splitting plane

through the full Gaussian center, represented as a column

vector, while the complementary half Gaussian is obtained

by simply changing the sign of the normal. The integration

of a 3D Half Gaussian along the z axis yields a similar result

as Eq. 4, except for a scaling factor related to the normal of

the splitting plane:

∫

nT (x−µ)≥0

HGΣ(x− µ)dz =
1

2
I(x, y)Ĝ

Σ̂
(x̂− µ̂) (8)

where

I(x, y) = erfc

(

− (n1x+ n2y)/n3 + µz|xy√
2σz|xy

)

(9)

0.0 0.2 0.4 0.6 0.8 1.0
Opacity Values

0

50000

100000

150000

200000

250000

Fr
eq

ue
nc

y

3DGS
3D-HGS

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Opacity Differences

0

50000

100000

150000

200000

250000

300000

Fr
eq

ue
nc

y

3D-HGS

Figure 5. (Left) Histograms of the 3DGS opacity values and of the

3D-HGS mean opacity values of corresponding halves, trained on

the Bonsai scene. The 3D-HGS mean opacity values cluster in a

lower range than those in the 3DGS, implying that treating both

halves identically while rendering increases the number of kernels

involved in each tile, slowing down the overall process. (Right)

Histogram of the differences between opacity values within a half

Gaussian, normalized by the maximum opacity value within each

kernel. Over 75% of the 3D-HGS kernels have normalized opacity

differences over 0.5, highlighting that each half Gaussian often

represents a distinct effective area in the rendering space.

and µz|xy , and σz|xy refer to the mean and standard devia-

tion for the distribution of z, conditioned on given x, y, i.e.

P (z|x, y) ∼ N (µz|xy, σz|xy), respectively.

Eq. 8 and Eq. 9 give a closed-form solution to calculate

the integral of a 3D Half-Gaussian. The right-hand side of

Eq. 8 consists of two factors: I(x, y), which is a scaling

factor related to the learned normal of the splitting plane,

while x̂ − µ̂ remains the same as in the original 3D Gaus-

sian in Eq. 4. For a detailed derivation please refer to the

supplementary material.

3.3. 3D Half­Gaussian Rasterization

For rasterization, we follow a similar process as in 3D-

GS, adapted to the proposed 3D Half-Gaussian reconstruc-

tion kernel. For enhanced parameter efficiency, we jointly

represent pairs of Half-Gaussians, since the parameters for

mean, rotation, scaling, and color are shared between the

two halves, while we learn the orientation of the splitting

plane and two opacity parameters, one for each side of the

splitting plane. Thus, the volumetric alpha blending for

each pixel on the image can be expressed as :

C =
∑

i∈N

ciHĜi(x̂− µ̂)
i−1
∏

j=1

(

1−HĜj(x̂− µ̂)
)

(10)

where N is the sorted 3D Half-Gaussian set for the pixel

and HĜ(x) is the integration of both halves of a 3D Half-

Gaussian pair:

HĜ(x̂− µ̂) =
1

2
{2α2 + (α1 − α2) I(x, y)} ĜΣ̂

(x̂− µ̂)

(11)

11000

Tiles Covered by Half-Gaussian

Redundant Tiles

Overall Valid Rectangle Area

Height & Width of the Valid Half-Gaussian

Area Relative to the Projected Center

The second Half-Gaussian

The first Half-Gaussian

Splitting Surface Valid area

Figure 6. Left: Method for calculating the bounding rectangle

of a half-Gaussian. Middle: Visualization when one half of the

Gaussian is transparent. Right: Visualization when each side of

the Gaussian has distinct opacity levels.

3.4. 3D Half­Gaussian Splatting

The 3D half-Gaussian kernel has a splitting plane along

with distinct opacity values for each half (Fig. 4b). Unlike

conventional splatting methods – which compute the pro-

jection shape of a Gaussian as a whole – the half-Gaussian

kernel requires specialized handling.

Naively applying standard splatting uniformly across

both halves is inefficient since, in general, a large num-

ber of kernels have one of their halves fully transparent.

This is supported by Fig. 5, where the left plot shows that

the average opacity values per half-Gaussian kernel cluster

in a lower range than when using the full Gaussian kernel

and the right plot shows that over 75% of the kernels have

normalized opacity differences greater than 0.5. Therefore,

treating both halves identically while rendering would in-

crease the number of kernels involved in each tile, slowing

down the overall process.

Thus, we propose an efficient 3D half-Gaussian splat-

ting technique that independently calculates the valid region

for each half as illustrated in Fig. 6. Initially, we project

the ellipsoidal splitting surface onto the 2D image plane,

defining the inner rectangle (relative to the projected cen-

ter) of the projected half-Gaussian (green dashed rectangle

in Fig. 6). To determine the outer bound, inspired by [4], we

compute the height and width of the tangent edges relative

to the ellipse’s center (blue dashed lines in Fig. 6), thereby

establishing the limits of the valid region. This region is

encapsulated by the minimal bounding rectangle that fully

encloses the projected splitting ellipse along with its tangent

edges (red rectangle in Fig. 6).

In practice, if one side of the half-Gaussian is entirely

transparent, only the opaque half is splatted, as depicted in

Fig. 6, center. When both halves contribute, the valid region

is determined by the outer bounding tangent edges and the

projected splitting ellipse Fig. 6, right.

4. Experiments

4.1. Experimental Setup

Datasets and Metrics. Following the published litera-

ture, we tested our design on 11 (indoor and outdoor)

scenes from various datasets: 7 scenes from Mip-nerf360

dataset[1], 2 scenes from Tanks &Temples [11], and 2

scenes from DeepBlending [7].

Consistent with prior studies, we use PSNR, SSIM [24]

and LPIPS [31] to measure the performance on each dataset.

We provide the averaged metrics over all scenes for each

dataset in the main paper and give the full quantitative re-

sults for each scene in the Appendix. We also report render-

ing times and model size.

Baselines. To evaluate the general improvement brought by

using a Half-Gaussian kernel in neural rendering, we ran

experiments based on four baseline methods: vanilla-3D-

GS [9] and three of its extensions Scaffold-GS [15], Mip-

Splatting [29], and GS-MCMC [10], where we replaced

the reconstruction kernel with the Half-Gaussian kernel.

We denote our models as 3D-HGS, Scaffold-HGS, Mip-

Splatting-HGS, and HGS-MCMC, respectively. We com-

pared performance against state-of-the-art 3D reconstruc-

tion methods: 3D-GS [9], Mip-NeRF [1], 2D-GS [8], Fre-

GS [30], Scaffold-GS [15], GES [6], Mip-Splatting [29],

and GS-MCMC [10].

Reconstruction Kernels. We compared the rendering per-

formance of the half-Gaussian kernel against three other

reconstruction kernels: the original 3D-GS kernel, the 2D

Gaussian kernel (2D-GS) and the generalized exponential

kernels (GES), which were proposed in [8] and [6], respec-

tively. For a fair comparison, we used the same loss function

and training iterations as the original 3D-GS. For details on

the implementation of different kernels, please refer to the

supplementary material.

Implementation. For our implementation, we utilize the

three (unused) normal parameters in 3D-GS to represent

the normal vector of the splitting plane. Additionally, we

learn one opacity for each half of the Gaussian. This re-

sults in memory increasing by only one additional parame-

ter for each reconstruction kernel compared to the 3D-GS.

The forward and backward passes of the rasterizer are mod-

ified based on the vanilla 3D-GS and Eq. 11. For 3D-HGS

and Mip-Splatting-HGS, we adhered to the training settings

and hyperparameters used in [9], and [29], setting the learn-

ing rate for the normal vector at 0.3 for the Deep Blending

dataset and 0.003 for the other datasets. For the implemen-

tation of Scaffold-HGS, we did not increase the number of

parameters in each Gaussian. Following the referenced pa-

per, we employed an MLP to learn the normal vector based

on the feature vector of each voxel and doubled the width

of the output layer of the opacity MLP to accommodate two

opacity values. The rasterizer was also modified based on

11001

Table 1. Quantitative comparison to the SOTA methods on real-world datasets.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending

Method PSNR ↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Mip-NeRF [1] 29.23 0.844 0.207 22.22 0.759 0.257 29.40 0.901 0.245

2D-GS[8] 28.98 0.867 0.185 23.43 0.845 0.181 29.70 0.902 0.250

Fre-GS [30] 27.85 0.826 0.209 23.96 0.841 0.183 29.93 0.904 0.240

GES [6] 28.69 0.857 0.206 23.35 0.836 0.198 29.68 0.901 0.252

3D-GS [9] 28.88 0.870 0.182 23.60 0.847 0.181 29.41 0.903 0.243

3D-HGS (Ours) 29.66 +0.78 0.873 0.178 24.45 +0.85 0.857 0.169 29.76 +0.35 0.905 0.242

Scaffold-GS [15] 28.95 0.848 0.220 23.96 0.853 0.177 30.21 0.906 0.254

Scaffold-HGS(Ours) 29.25 +0.30 0.867 0.186 24.42 +0.46 0.859 0.162 30.36 +0.15 0.910 0.240

Mip-Splatting [29] 29.39 0.880 0.162 23.75 0.857 0.157 29.46 0.903 0.243

Mip-Splatting-HGS(Ours) 29.88 +0.49 0.881 0.160 24.53 +0.78 0.865 0.145 29.61 +0.15 0.901 0.241

GS-MCMC [10] 29.89 0.900 0.190 24.29 0.860 0.190 29.67 0.890 0.320

HGS-MCMC(Ours) 30.13 +0.24 0.886 0.158 25.08 +0.77 0.841 0.144 29.80 +0.13 0.898 0.245

Eq. 11. For HGS-MCMC, we adopt the hyperparameters

and training settings from [10], with the exception that we

set the opacity threshold for Gaussian relocation to 0.015

for the Playroom scene. Additional training details are pro-

vided in the supplementary material. All experiments were

conducted using an NVIDIA RTX 3090 GPU.

Ground-Truth

3DGS error map 3D-HGS error map

Fitting Error @red column

Figure 7. Fitting Error. Top-left: Frame from Bonsai scene. Top-

right: Fitting error using 3DGS and 3DHGS, along the red column.

Bottom: Fitting error on the entire image, shown as a normalized

heat map in the range [0,1] for 3DGS and 3DHGS.

4.2. Results Analysis

Quantitative results are presented in Figs. 3 and 7, and in

Tabs. 1 and 2. Further details are provided in the supple-

mentary material. Across all datasets and methods, the in-

tegration of the 3D Half-Gaussian kernel yields substantial

gains, establishing it as a superior choice for enhancing 3D

novel view synthesis accuracy.

Fig. 7 shows plots of the grayscale fitting for the Bon-

sai scene along an image column containing both smooth

surface regions and sharp transitions, along with the corre-

sponding fitting error map for the entire image. The plots

compare the proposed half-Gaussian kernel and standard

3D Gaussian Splatting (3DGS) against the ground truth.

Consistent with the results in Fig. 2, they illustrate that

the half-Gaussian kernel achieves a more accurate fit than

3DGS, especially in areas with sharp transitions.

Table 1 shows that incorporating the proposed Half

Gaussian kernel, 3D-HGS, Scaffold-HGS, Mip-Splatting-

HGS, and MCMC-HGS achieved SOTA performance

across multiple datasets, consistently outperforming their

respective baselines. This improvement underscores the

effectiveness of the 3D Half-Gaussian kernel as a robust

choice for the novel view synthesis. On the MipNeRF360

dataset, our proposed kernel enables 3D-HGS, Scaffold-

HGS, Mip-Splatting-HGS, and MCMC-HGS to surpass

baseline PSNRs by 0.78, 0.30, 0.49, and 0.24, respectively,

with MCMC-HGS achieving a new state of the art. For

the Tanks and Temples dataset, these methods see PSNR

improvements of 0.85, 0.46, 0.78, and 0.77, again with

MCMC-HGS setting a new benchmark. Lastly, on the

Deep Blending dataset, our methods outperform baselines

by 0.35, 0.15, 0.15, and 0.13 PSNR, with Scaffold-HGS

achieving state-of-the-art performance.

Table 2. Comparison of rendering speed and storage memory

between the proposed Half-Gaussian kernel-based methods and

traditional Gaussian kernel-based methods.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending

Method FPS ↑ Mem ↓ FPS ↑ Mem ↓ FPS ↑ Mem ↓
3D-GS [9] 115 762 149 429 104 668

3D-HGS (Ours) 125 694 160 437 126 641

Scaffold-GS [15] 120 173 120 77 129 55

Scaffold-HGS(Ours) 118 180 115 84 136 53

GS-MCMC [10] 75 732 133 438 90 969

HGS-MCMC(Ours) 72 743 139 445 92 980

Mip-Splatting [10] 76 970 117 569 91 843

Mip-Splatting-HGS(Ours) 83 883 121 566 102 808

Finally, using half-Gaussian kernels does not signifi-

cantly impact the rendering speed and memory require-

ments, as shown in Fig. 3, Table 2, and in the ablation study

in the supplemental material.

Qualitative results are shown in Figs. 8, 9, and in the

11002

3D-GS (frame PSNR/ avg PSNR) 3D-HGS Ours (frame PSNR/ avg PSNR) Ground-Truth (scene name)

26.91/25.30 27.59/26.25

26.55/21.91 27.90/22.65

27.06/27.30 28.10/27.50

31.86/32.20 34.77/33.52T&T-Truck

T&T-Train

Mip360-Garden

Mip360-Bonsai

27.28/30.80 32.16/32.22 Mip360-Kitchen

DB-DrJohnson29.68/29.09 30.12/29.30

34.00/31.40 36.74/32.52 Mip360-Room

3D-GS (frame PSNR/ avg PSNR) 3D-HGS Ours (frame PSNR/ avg PSNR) Ground-Truth (scene name)

27.52/28.70 29.77/29.84 Mip360-Counter

Figure 8. Qualitative comparison between 3D-GS and 3D-HGS.

Table 3. PSNR scores ↑ of the rendering performance with different reconstruction kernels. Red indicates performance improvement,

while blue denotes performance decline.

Kernels
Tanks&Temples Deep Blending Mip-NeRF360

AVG
Truck Train Avg Playroom Drjohnson Avg Bicycle Garden Kitchen Stump Room Counter Bonsai Avg

3D-GS 25.30 21.91 23.60 29.98 29.09 29.53 25.21 27.30 30.80 26.56 31.40 28.70 32.20 28.88 28.04

2D-GS 25.14 21.70 23.42 30.18 29.12 29.65 25.02 27.14 31.33 26.57 31.37 28.97 32.33 28.94 28.06

GES 24.94 21.73 23.34 30.29 29.35 29.82 24.87 27.07 31.07 26.17 31.17 28.75 31.97 28.72 27.94

3D-HGS 26.25 22.65 24.45 30.20 29.30 29.76 25.25 27.50 32.22 26.64 32.52 29.84 33.52 29.66 28.70

2
D

G
S

3
D

H
-G

S
(O

u
r
s
)

Rendering Depth Image Normal map from Depth Zoom in

3
D

G
S

Figure 9. Comparison of Depth Images and Normal Maps. We

visualize the depth maps alongside normals estimated from these

maps. Our method demonstrates superior performance, capturing

finer details in the bench structure and the surface textures of pots.

supplemental material. In Fig. 8 it can be observed that

our method delivers better performance on fine-scale de-

tails (e.g., T&T-Truck, Mip360-Garden, Mip360-Bonsai,

Mip360-Room), high-frequency textures (e.g., T&T-Train,

Mip360-Counter), light rendering (e.g., Mip360-Garden,

DB-DrJohnson), and shadow areas (e.g., T&T-Train,

Mip360-Bonsai, DB-DrJohnson). Fig. 9 provides an ex-

ample of a generated depth image and the corresponding

estimated surface normals, which were produced using the

method described in [8]. The proposed method captures

better finer details in the bench structure and the surface

texture of the pots.

Different Reconstruction Kernels Table 3 provides the

PSNR score for each 3D scene, the average score for each

dataset, and the total average score when using the differ-

ent kernels. In this experiment, we use 3D-GS as the base-

line, with improved and degraded results highlighted in red

and blue, respectively. Compared to the original 3D Gaus-

sian kernel, the 3D Half-Gaussian kernel shows consistent

improvement across all 3D scenes. While other kernels

demonstrate superiority in some 3D scenes, they exhibit

drawbacks in others. Overall, we achieved the best average

performance across all 3D scenes.

5. Conclusion

We introduced Half-Gaussian Splatting, a plug-and-play
method for accurate 3D view synthesis. Our approach uses
two distinct opacities in each Gaussian, allowing precise
rendering control without increasing inference time. This
design achieves SOTA performance across multiple datasets
and integrates seamlessly into most Gaussian-splatting
architectures without structural changes. We validated the
effectiveness of our approach across four baseline methods,
consistently improving accuracy. To rigorously assess its
advantages, we compared it against other kernel modi-
fication techniques, confirming Half-Gaussian Splatting
as a highly effective choice for 3D splatting-based methods.

11003

References

[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.

Mip-nerf: A multiscale representation for anti-aliasing neu-

ral radiance fields. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 5855–5864,

2021. 2, 6, 7

[2] Guikun Chen and Wenguan Wang. A survey on 3d gaussian

splatting. arXiv preprint arXiv:2401.03890, 2024. 3

[3] Anurag Dalal, Daniel Hagen, Kjell G Robbersmyr, and Kris-

tian Muri Knausgård. Gaussian splatting: 3d reconstruc-

tion and novel view synthesis, a review. arXiv preprint

arXiv:2405.03417, 2024. 3

[4] Guofeng Feng, Siyan Chen, Rong Fu, Zimu Liao, Yi

Wang, Tao Liu, Zhilin Pei, Hengjie Li, Xingcheng Zhang,

and Bo Dai. Flashgs: Efficient 3d gaussian splatting for

large-scale and high-resolution rendering. arXiv preprint

arXiv:2408.07967, 2024. 6

[5] Kyle Gao, Yina Gao, Hongjie He, Dening Lu, Linlin Xu,

and Jonathan Li. Nerf: Neural radiance field in 3d vision,

a comprehensive review. arXiv preprint arXiv:2210.00379,

2022. 1

[6] Abdullah Hamdi, Luke Melas-Kyriazi, Guocheng Qian, Jin-

jie Mai, Ruoshi Liu, Carl Vondrick, Bernard Ghanem,

and Andrea Vedaldi. Ges: Generalized exponential splat-

ting for efficient radiance field rendering. arXiv preprint

arXiv:2402.10128, 2024. 3, 6, 7

[7] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm,

George Drettakis, and Gabriel Brostow. Deep blending for

free-viewpoint image-based rendering. ACM Transactions

on Graphics (ToG), 37(6):1–15, 2018. 6

[8] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and

Shenghua Gao. 2d gaussian splatting for geometrically accu-

rate radiance fields. arXiv preprint arXiv:2403.17888, 2024.

3, 6, 7, 8

[9] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,

and George Drettakis. 3d gaussian splatting for real-time

radiance field rendering. ACM Transactions on Graphics, 42

(4):1–14, 2023. 1, 2, 3, 4, 6, 7

[10] Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Wei-

wei Sun, Yang-Che Tseng, Hossam Isack, Abhishek Kar,

Andrea Tagliasacchi, and Kwang Moo Yi. 3d gaussian splat-

ting as markov chain monte carlo. In The Thirty-eighth An-

nual Conference on Neural Information Processing Systems,

2024. 2, 3, 6, 7

[11] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen

Koltun. Tanks and temples: Benchmarking large-scale scene

reconstruction. ACM Transactions on Graphics (ToG), 36

(4):1–13, 2017. 6

[12] Zhe Li, Zerong Zheng, Lizhen Wang, and Yebin Liu. Ani-

matable gaussians: Learning pose-dependent gaussian maps

for high-fidelity human avatar modeling. arXiv preprint

arXiv:2311.16096, 2023. 1

[13] Zhihao Liang, Qi Zhang, Wenbo Hu, Ying Feng, Lei

Zhu, and Kui Jia. Analytic-splatting: Anti-aliased 3d

gaussian splatting via analytic integration. arXiv preprint

arXiv:2403.11056, 2024. 3

[14] Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong

Liu, Jiayue Liu, Yangdi Lu, Xiaofei Wu, Songcen Xu, You-

liang Yan, et al. Vastgaussian: Vast 3d gaussians for large

scene reconstruction. arXiv preprint arXiv:2402.17427,

2024. 1

[15] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin

Wang, Dahua Lin, and Bo Dai. Scaffold-gs: Structured 3d

gaussians for view-adaptive rendering. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 20654–20664, 2024. 2, 3, 6, 7

[16] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,

Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-

worth. Nerf in the wild: Neural radiance fields for uncon-

strained photo collections. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 7210–7219, 2021. 1

[17] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. Communications of the ACM, 65(1):99–106, 2021. 1,

3

[18] Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao,

Gang Zeng, and Ziwei Liu. Dreamgaussian4d: Genera-

tive 4d gaussian splatting. arXiv preprint arXiv:2312.17142,

2023. 1

[19] Johannes L Schonberger and Jan-Michael Frahm. Structure-

from-motion revisited. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

4104–4113, 2016. 3

[20] Steven M Seitz, Brian Curless, James Diebel, Daniel

Scharstein, and Richard Szeliski. A comparison and evalua-

tion of multi-view stereo reconstruction algorithms. In 2006

IEEE computer society conference on computer vision and

pattern recognition (CVPR’06), pages 519–528. IEEE, 2006.

3

[21] Xiaowei Song, Jv Zheng, Shiran Yuan, Huan-ang Gao, Jing-

wei Zhao, Xiang He, Weihao Gu, and Hao Zhao. Sa-

gs: Scale-adaptive gaussian splatting for training-free anti-

aliasing. arXiv preprint arXiv:2403.19615, 2024. 3

[22] Haithem Turki, Deva Ramanan, and Mahadev Satya-

narayanan. Mega-nerf: Scalable construction of large-

scale nerfs for virtual fly-throughs. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12922–12931, 2022. 1

[23] Evangelos Ververas, Rolandos Alexandros Potamias, Jifei

Song, Jiankang Deng, and Stefanos Zafeiriou. Sags:

Structure-aware 3d gaussian splatting. arXiv preprint

arXiv:2404.19149, 2024. 3

[24] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-

moncelli. Image quality assessment: from error visibility to

structural similarity. IEEE transactions on image processing,

13(4):600–612, 2004. 6

[25] Lee Westover. Interactive volume rendering. In Proceedings

of the 1989 Chapel Hill workshop on Volume visualization,

pages 9–16, 1989. 3

[26] Lee Westover. Footprint evaluation for volume rendering.

In Proceedings of the 17th annual conference on Computer

graphics and interactive techniques, pages 367–376, 1990. 3

11004

[27] Tong Wu, Yu-Jie Yuan, Ling-Xiao Zhang, Jie Yang, Yan-

Pei Cao, Ling-Qi Yan, and Lin Gao. Recent advances in 3d

gaussian splatting. arXiv preprint arXiv:2403.11134, 2024.

3

[28] Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang,

Haiyang Sun, Kun Zhan, Xianpeng Lang, Xiaowei Zhou,

and Sida Peng. Street gaussians for modeling dynamic ur-

ban scenes. arXiv preprint arXiv:2401.01339, 2024. 1

[29] Zehao Yu, Anpei Chen, Binbin Huang, Torsten Sattler, and

Andreas Geiger. Mip-splatting: Alias-free 3d gaussian splat-

ting. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 19447–19456,

2024. 2, 3, 6, 7

[30] Jiahui Zhang, Fangneng Zhan, Muyu Xu, Shijian Lu, and

Eric Xing. Fregs: 3d gaussian splatting with progressive

frequency regularization. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 21424–21433, 2024. 3, 6, 7

[31] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 586–595, 2018. 6

[32] Cheng Zhao, Su Sun, Ruoyu Wang, Yuliang Guo, Jun-Jun

Wan, Zhou Huang, Xinyu Huang, Yingjie Victor Chen, and

Liu Ren. Tclc-gs: Tightly coupled lidar-camera gaussian

splatting for surrounding autonomous driving scenes. arXiv

preprint arXiv:2404.02410, 2024. 1

[33] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and

Markus Gross. Ewa volume splatting. In Proceedings Visu-

alization, 2001. VIS’01., pages 29–538. IEEE, 2001. 2, 3,

4

[34] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and

Markus Gross. Surface splatting. In Proceedings of the

28th annual conference on Computer graphics and interac-

tive techniques, pages 371–378, 2001. 1, 4

[35] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and

Markus Gross. Ewa splatting. IEEE Transactions on Visual-

ization and Computer Graphics, 8(3):223–238, 2002. 1, 2,

3, 4

11005

	Introduction
	Related Work
	Novel View Synthesis
	Splatting methods

	Method
	Preliminaries
	3D Half-Gaussian Kernel
	3D Half-Gaussian Rasterization
	3D Half-Gaussian Splatting

	Experiments
	Experimental Setup
	Results Analysis

	Conclusion

